您好,欢迎来到苹果植保专题库

苹果植保专题库

热门搜索:
苹果锈病
防治方法
首页 < 基因Rgls位点的精细定位及分子标记可靠性验证

基因Rgls位点的精细定位及分子标记可靠性验证

所属图书:苹果抗炭疽菌叶枯病基因的分子标记及遗传定位 作者:刘源霞;白姗姗;马广洋 出版时间:2019-06
字号:

基因Rgls位点的精细定位及分子标记可靠性验证

高分辨熔解曲线 (High Resolution Melting,HRM) 分析技术是近年来国际上兴起的一种最新的应用于基因突变检测和 SNP 分析的方法。因为所用的荧光染料只能嵌入并结合到双链 DNA 上,因此利用实时 PCR 技术,就能通过实时检测双链DNA 熔解过程中荧光信号值的变化,将 PCR 产物中存在的差异以不同形状熔解曲线的方式直观地展示出来,并且可以借助于专业的分析软件对测试群体实现基于不同形状熔解曲线的基因分型或归类 (殷豪等,2011)。

高分辨熔解 (HRM) 曲线分析技术具有三个突出的优势:一是高通量、高灵敏度、高特异性、低成本且不受检测位点的限制;二是操作简单、快捷、节省时间成本;三是闭管操作,无污染且 DNA 不受损伤,熔解分析后还可以进行凝胶电泳或测序分析。在 LightCycler ? 480分析仪上一次可以完成96个或348个样本的分析,从反应开始到数据生成仅需要90~120 min。目前HRM技术在果树的种质鉴别和基因分型研究中已有应用。吴波等 (2012) 引入高分辨率熔解曲线分型技术对柑橘进行SNP 分型;Ganopoulos等 (2013) 利用 HRM 技术对9个甜樱桃基因上的 SNP 位点进行分析,成功的实现了对21 个甜樱桃品种的鉴别,准确率达到 99.9%;Distefano 等 (2013) 第一次将HRM技术应用于对柑橘品种 SNP 及 InDel的检测,并利用21 个 SNP标记实现了对柑橘不同品种的区别。

分子标记辅助选择育种 (marker assisted selection,MAS) 作为一种高效的现代分子育种技术,已被广泛应用于作物品种选育和遗传改良。它是利用与目标基因紧密连锁的分子标记,来鉴定不同个体的基因型,从而进行辅助选择育种。与通过表现型间接对基因型进行选择的传统育种方法相比,MAS具有更大的信息量,能有效结合基因型与表型鉴定结果,更加高效和准确,避免选育过程中的盲目性和不可预测性,能够将育种时间从传统的十几年缩短到几年时间,从而显著提高育种效率。分子标记对目标性状鉴定的准确性是影响分子标记辅助选择效率的一个重要条件。

本试验利用HRM分析技术对上一章节所开发的SNP 和InDel标记进行筛选和验证,以获得与抗炭疽菌叶枯病基因 R gls位点紧密连锁的SNP 及InDel标记,对抗病基因进行精细定位,缩小抗性基因位点的区域范围,为基因克隆提供数据。同时利用筛选出的4 个与 R gls基因位点紧密连锁的分子标记对50 个苹果栽培品种和品系进行准确性鉴定,以验证分子标记的可靠性。

第一节 材料与方法

一、植物材料

选择青岛农业大学苹果试验基地 (山东省胶州市) 2009 年种植的,经过人工离体接种鉴定的 ‘金冠’ב富士’ 的F1 杂交群体207株实生树为材料用于验证 SNP、InDel标记及进行抗炭疽菌叶枯病基因的精细定位。所用群体与第三章SSR标记的开发与遗传定位为同一群体。选择该试验基地栽培的 50 个田间栽培品种和品系做为试材,经人工离体接种鉴定并提取DNA,用于分子标记准确性的验证。

二、抗感DNA池的构建

同第三章。

三、SNP引物的设计

用于引物设计的SNP 和 InDel位点来源于第四章中所筛选出的位于第15条染色体上3.9~4.9 Mb候选区域的18 个 SNP 位点和30 个InDel位点。从网站 https://www.rosaceae.org/gb/gbrowse/malus_x_domestica/下载位于SNP 和InDel位点上游150 bp和下游150 bp距离内的contig 序列用于引物设计。引物设计的主要参数为:产物大小60~150 bp;引物退火温度 (Tm) 在 55~65℃,且上、下游引物 Tm相差不大于 2℃;引物 GC (%) 含量为 45%~55%,引物大小在60~160 bp。引物序列 (附表 5-1)。所有引物由生工生物工程 (上海) 股份有限公司合成。

四、高分辨率熔解曲线分析

PCR扩增和高通量熔解曲线分析在 LightCycler ? 480Ⅱ荧光定量PCR 仪 (Roche) 上进行。反应试剂来自 LightCycler ? 480 High Reso-lution Melting Master试剂盒。反应体系为15 μl,内含10 ng/μl的基因组 DNA 1.0 μl,1×Master Mix 7.5 μl,2.0 mmol/L MgCl2 1.5 μl,左右引物为 0.2 μmol/L各0.5 μl。

PCR扩增程序为95℃预变性10min,然后按95℃变性10min,55℃退火15s,72℃延伸10s的程序进行45个循环。在PCR循环结束后,立即对扩增产物进行HRM检测,程序为:95℃1min,40℃1min,65℃1s,在65℃升温至95℃的过程中,以25次/℃的频率收集荧光信息,最后降温至40℃。高分辨率熔解曲线分析用LightCycler?480的Gene Scanning软件(1.5version)进行。

五、SNP、InDel标记的筛选验证

用18对 SNP 及30对InDel引物在亲本和抗感基因池中筛选,将出现不同分型的引物在分离群体上进行验证,以确定该标记是否与目的基因连锁。

六、基因Rgls位点的精细定位

将筛选的多态性标记在重组个体上的基因型表现与重组个体的抗病表型进行统一分析,对抗炭疽菌叶枯病基因 R gls位点进行精细定位,缩小抗性基因位点的范围。为后续的候选基因筛选及图位克隆提供准确的信息。

七、基因Rgls位点区域内的基因分析

将进一步缩小的R gls位点区域内的基因进行统计并进行同源比对和GO功能富集分析,以筛选该区段内可能与抗病相关的候选基因。

八、分子标记准确性鉴定

SSR标记的PCR产物利用3.5%的琼脂糖凝胶电泳进行标记基因型鉴定。SNP 和InDel标记利用HRM技术进行基因分型鉴定。

第二节 结果与分析

一、SNP及InDel标记的筛选

通过对设计的引物进行 BSA 筛选,获得了与 Rgls基因位点连锁的6个SNP 及5个 InDel标记,分别为 SNP3955、SNP4236、SNP4257、SNP4299、SNP4336、SNP4432 和InDel4199、InDel4227、InDel4254、InDel4305、InDel4334。在6个SNP 位点中有A/G、G/A、T/C和C/G四种变换形式,其中发生A/G转换的占50.0%,发生G/A转换,T/C转换,C/G颠换的各占16.7%(表5-1)。

引物名称引物序列序列长度参考碱基突变碱基位置SNP3955R:CCCTTAAAAGCCATGGAAGAGF:GTTCTGCATAAAAACCTCGCA133AGchr15∶3,955,630-3,955,763SNP4236R:GCTTATCATAAAAAGCAAGACCACF:ATCATATAATTGTGTAATTTAGTAGAACA114AGchr15∶4,236,220-4,236,353SNP4257R:GGAGTCATAAGCCACAACGAGF:TCAGCTTTGAAGCATCCAATT145GAchr15∶4,257,141-4,257,286SNP4299R:GGTTATACATAGAGGCACTTAGAGCF:GCACAAAACTTAGATCAAAGATGAG135TCchr15∶4,299,179-4,299,314

表5-1 SNP、InDel引物筛选

引物名称引物序列序列长度参考碱基突变碱基位置SNP4336R:AGTTCGTTCTTTTCCGTTGCTF:GCGGTCCTGATTCAGGTACAG133CGchr15∶4,336,382-4,336,515SNP4432R:CGAGGAGCAAACGATAGTCAGF:ATTGGTCTCCGAATTAGAAGTCC137AGchr15∶4,432,529-4,432,666indel4199R:ATTGTGAAACCTTGATTGGGF:GAGATTATCCTTATTTTGTGGG156AAAGchr15∶4,198,916-4,199,072indel4227R:AGCGTTGCTATGCTTCTAATGF:AAGATGGAAATGGTATGTGAT81TTCchr15∶4,227,569-4,227,650indel4254R:ATAAAGTCACTTCTAGCACAAATAF:CGAAAAACGCTTTACTTAGG119GGCchr15∶4,254,896-4,255,015indel4305R:GTAAACTCATTAAATTATGCTTGF:TGCTTTACTCCGATTCTTC134CCCAchr15∶4,305,342-4,305,476indel4334R:ATACTATGAGGTGAAGGATTTAAF:GTATCTTCTACATTATCTTTCGTG115TTAchr15∶4,334,597-4,334,712

表5-1 SNP、InDel引物筛选(续)-1

二、SNP及InDel标记的验证

将获得的11个标记在207 株 F1 群体上检验其与抗炭疽菌叶枯病基因的连锁情况,结果表明,这11 个标记的扩增子熔解曲线形状明显不同,可据此区分抗病型和感病型植株 (附图5-1)。

三、基因Rgls位点的精细定位

将从全基因组重测序中筛选出并经群体验证的与 R gls位点紧密连锁6个SNP 及4个InDel标记 (InDel4305标记在染色体上的物理位置与遗传位置不符,未用于精细定位分析),加上1 个 SSR标记,共11个标记与重组个体基因型及表型进行分析。结果显示,InDel4227、SNP4236和InDel4254标记与基因Rgls位点共分离,没有重组个体。标记InDel4199有一个重组个体 S29 和标记 SNP4257 有两个重组个体R16和R31,这三个关键的重组个体将基因 Rgls位点定位于 InDel4199和SNP4257 两标记之间,物理距离由 500kb 缩小为 58kb (附图5-2)。

四、基因Rgls位点区域内的基因分析

按照基因位置信息从蔷薇科基因组网站 GDR下载基因组15 号染色体4.1~4.3 Mb内基因45个。通过perl脚本整理基因组GFF文件,BLAST同源比对NR数据库,选取最优比对结果。获得目的区段内的45个基因,其中5 个基因功能未知,2 个为转录因子,另外40 个基因均有明确的注释信息 (表5-2)。

序号MDP号码同源基因1MDP0000180944生长素诱导蛋白15A2MDP0000205434非病原性诱导蛋白3MDP0000148158生长素诱导蛋白15A4MDP0000177664蛋白酶体beta亚基5MDP0000177665转录共抑制因子LEUNIG6MDP0000215349转录共抑制因子LEUNIG7MDP0000664885抗烟草花叶病毒蛋白N8MDP0000877582抗烟草花叶病毒蛋白N9MDP0000200748转录因子10MDP0000481972抗烟草花叶病毒蛋白N11MDP0000481973抗烟草花叶病毒蛋白N12MDP0000381897转录因子13MDP0000297052抗烟草花叶病毒蛋白N14MDP0000700563黄瓜素15MDP0000242744阳离子运输调控蛋白216MDP0000551192阳离子运输调控蛋白217MDP0000242745转录因子18MDP0000153007来自转座子TNT1-94的反转录病毒Pol多肽蛋白19MDP0000130036未知功能转录因子20MDP0000199184未知功能转录因子21MDP0000489432三角状五肽链重复包含蛋白22MDP0000318360类LRR丝氨酸/苏氨酸受体蛋白激酶23MDP0000247898类LRR丝氨酸/苏氨酸受体蛋白激酶

表5-2 区段内基因同源比对结果

序号MDP号码同源基因24MDP0000811774核糖核酸酶H2亚基B25MDP0000309446未知功能线粒体蛋白26MDP0000272143单尿苷绑定蛋白1B;与mRNA3’-UTR绑定27MDP0000871880脱水响应蛋白RD2228MDP0000272145酪蛋白激酶Idelta小体29MDP0000167752结构域包含蛋白3430MDP0000167753核糖核酸酶H2亚基B31MDP0000596125核细胞溶解酶TIA-1小体32MDP0000201427拓扑异构酶I33MDP0000149447脱水响应蛋白RD2234MDP0000596128酪蛋白激酶Ideta小体35MDP0000201428UDP-糖转运蛋白36MDP0000201429环核苷酸离子通道蛋白1437MDP0000255274环核苷酸离子通道蛋白1438MDP0000120033丝氨酸精氨酸富集剪接因子。39MDP00001695343-酮脂酰-CoA合酶640MDP0000203647细胞分裂素-O-葡糖基转移酶341MDP0000864010鼠李糖生物合成酶142MDP0000279973肌氨酸氧化酶43MDP0000178030未知蛋白44MDP0000289536肌氨酸氧化酶45MDP0000272940转录因子WRKY11

表5-2 区段内基因同源比对结果(续)-1

为了对基因功能做进一步分析,提取区段内基因的 GO (gene on-tology) 信息,采用基因功能GO分类网站WEBGO ( http://wego.ge-nomics.org.cn/cgi-bin/wego/index.pl) 进行基因分类。结果显示,这40个基因在细胞组成上涉及到4 个 GO 分类,包括细胞、细胞组分、细胞器组成以及大分子复合体的组成;在分子功能方面,该区段内基因涉及到电子传递、转运蛋白、水解、绑定、催化以及物质传递6 个GO分类;在生物过程方面,该区段内基因涉及到免疫过程、生物调控过程、细胞过程、色素沉着过程、程序性死亡过程、代谢过程、响应刺激过程、定位以及定位确立9个生物过程 (附图5-3)。

五、标记在品种(系)中的鉴定

经离体接种鉴定,50 个作为分子标记准确性鉴定材料的品种(系) 中有33 个抗病品种 (系) 和17 个感病品种 (系)。从与抗炭疽菌叶枯病基因紧密连锁的分子标记中挑选出4 个有代表性意义的分子标记SSR标记S0405127,S0304673,SNP 标记 SNP4236,InDel标记InDel4254作为鉴定标记。其中SSR标记 S0405127 与基因 Rgls位点的遗传距离为 0.5cM,S0304673 的遗传距离为 0.9 cM (见第三章),标记SNP4236和 InDel4254与目的基因共分离。鉴定结果显示,SSR标记 S0405127,S0304673,SNP 标记 SNP4236,InDel 标记 In-Del4254 鉴定抗感品种 (系) 的准确率分别为 90.0%,94.0%,98.0%,96.0%。在基因型与表型鉴定结果中,不相符的个数分别为5个,3个,1个,2 个。这 4 个分子标记鉴定结果的准确率均达到90%以上,可以应用于田间栽培品种、品系、种质资源以及杂种后代幼苗对炭疽菌叶枯病抗性的鉴定 (表5-3)。

序号品种/系表型S0405127S0304673SNP4236InDel42541海棠RRSRR2斗南RRRRR3福丽RRRRR4福艳RRRRR5红勋1号RRRRS6华帅RRRRR7鲁加1号RRRRR8鲁加2号SSSSS9鲁加4号RRRRR10鲁加6号RRRRR11旭RRRRR12早杂1号RRRRR13威赛克旭RRRRR14五月金RRRRR15早翠绿RRRRR

表5-3 四个分子标记对苹果栽培品种和品系的抗病性的鉴定结果

序号品种/系表型S0405127S0304673SNP4236InDel425416国光RRRRR17霞光RRRSS18烟富1RRRRR19福早红SSSSS20嘎拉SSSSS21金冠SSSSS22秦冠SSSSS23华硕RSRRR24瑞丹SSSSS25乙女RRRRR26王林RSRRR27青农红SSSRR28秦冠SSSSS29瑞红SSSSS30赛金RSRRR31红肉1号RRRRR32双阳红SSSSS33望山红RRRRR34新红星RRRRR35青冠RRRRR36弘前富士RRRRR37富士RRRRR387C-102RRRRR39N2SSSSS40PinavaRRRRR417C-35SRRSS4295-161RRRRR4395-231RRRRR4495-232SSSSS4595-32RRRRR4695-93RRRRR477C-104SSSSS487C-105SSSSS497C-106SRRSS507C-107SSSSS

表5-3 四个分子标记对苹果栽培品种和品系的抗病性的鉴定结果(续)-1

第三节 讨论与小结

精细定位通常采用的方法是侧翼分子标记法,对于有参基因组植物来说,就是根据对目的基因的初步定位结果,选择位于目的基因两侧的分子标记之间的碱基,用于设计合适的分子标记。筛选出的与目的基因连锁的分子标记,通过鉴定更大的群体来确定发生交换的重组单株,最终找到与目的基因紧密连锁的分子标记,从而实现对目的基因的精细定位。精细定位是图位克隆策略中重要的一步,可以通过开发新的分子标记,整合原来已有的遗传图谱来进行图谱加密,以实现对目的基因的精细定位。

本研究利用全基因组重测序技术开发出的 SNP 及 InDel标记,结合Rgls基因初步定位结果,选出在 Rgls基因两侧的 SSR 标记 S0304673和S0405127之间的SNP 和InDel标记,通过HRM曲线分析技术对18个SNP 位点和30 个 InDel位点进行了分析,筛选出6 个 SNP 及5 个InDel标记与Rgls基因位点紧密连锁。并选择其中的10 个标记用于Rgls基因位点的精细定位。标记InDel4227、SNP4236和 InDel4254表现出与R gls基因位点共分离。由于所用群体规模的限制,所以筛选出的SNP 及InDel标记仍无法对R gls基因位点进行真正意义上的精细定位。

由于现有的金冠苹果基因组数据库中可能存在组装错误,所以在对定位区域内的基因进行分析中,扩大 R gls基因位点区域。对苹果第15条染色体4.1~4.3 Mb距离内的基因进行统计分析,结果表明在该区段存在40个有功能注释的基因,涉及到细胞组成方面,分子功能方面,生物过程方面共18个GO分类。在细胞组成层面上,参与细胞组成的基因,一般是由主效基因或寡基因控制的质量性状,是个体保持组成性抗性的基础,影响着品种的垂直抗性。在分子功能层面上,植物个体抗性与电子传递、转运蛋白、水解、绑定、催化以及物质传递等生物过程密切相关。例如,植物受到病原菌侵染后,体内会产生并积累一些次生代谢物质,如植保素、酚类、木质素、菇类等化合物,对病原菌产生抵抗作用 (Pirie and Mullins,1976)。植物次生代谢途径尤其是苯丙烷类代谢途径是与植物抗病性密切相关,许多抗菌物质 (包括酚类、类黄酮、绿原酸、酮类等) 的生物合成都是通过这条途径完成的 (RalPhL,1992;Cole R.A,1985)。在生物过程层面上,程序性死亡过程,响应刺激过程以及免疫过程与抗病机制密切相关。细胞程序性死亡 (programmed cell death,PCD) 是细胞死亡的两种基本类型之一,是细胞接受某种信号或受到某些因素刺激后主动发生的由基因调控的死亡过程。植物与病原菌互作过程中发生的过敏性反应 (hypersensitive reaction,HR) 是PCD 的重要表现形式之一,是植物抵抗病原菌入侵的早期重要抗性反应,对植物抗病性有着重要意义。

在该区域内存在着4个编码WRKY转录因子的基因MDP0000272940MDP0000242745 MDP0000381897 MDP0000200748 以及5 个 TIR-NB-LRR 家族基因 MDP000066488 MDP0000877582 MDP0000481972MDP0000481973 MDP0000297052。许多研究结果表明,当植物受到病原菌入侵或植食性昆虫取食植物后,植物体内的一些WRKY 转录因子的表达水平会随之发生改变 (Hui et al.,3003;Zhao et al.,2007)。Huang等 (2002) 研究了一个茄科植物的 WRKY 蛋白 STHP-64,发现其在低温胁迫下表达增强,Rizhsky 等 (2004) 发现拟南芥的 At-WRKY25蛋白与氧化胁迫下胞液抗坏血酸过氧化物酶的表达有关。Li等 (2006) 通过对WRKY70蛋白过表达的转基因植株和变异植株的研究,证明过表达拟南芥 WRKY70 蛋白的转基因植株能提高水杨酸(SA) 介导的抗病性,但降低茉莉酸 (JA) 介导的抗病性。2006 年Ryu等对水稻WRKY 转录因子在不同生物胁迫下的表达量变化进行了研究。结果显示在45 个水稻 WRKY 转录因子中有15 个 WRKY 转录因子可以被稻瘟病病菌 ( Magnaporthe grisea) 诱导表达,其中12个可以同时被水稻白叶枯菌 ( Xanthomonas oryzae Dowson) 诱导表达。在对防御反应相关的信号分子对 WRKY 转录因子的影响的研究中发现OsWRKY10、OsWRKY82和OsWRKY85可以在经过茉莉酸诱导的叶片中表达,OsWRKY45 和 OsWRKY62 可以在经过水杨酸处理的叶片中诱导表达,OsWRKY30 和 OsWRKY82 可以同时被水杨酸和茉莉酸诱导表达,这说明WRKY 转录因子参与了植物的诱导防御反应。抗性基因 (R gene) 编码的蛋白大部分是 NB-LRR 蛋白,不同类别的 NB-LRR蛋白可以直接或间接的识别不同来源的病原菌效应子,从而激发相似的防御反应。这9个基因是人们重点关注的基因。

进一步的基因功能研究及苹果与炭疽叶枯菌的分子互作机制研究将围绕着SNP 定位的5个候选基因及该区段内的相关基因展开。

随着分子生物学技术的快速发展,特别是以DNA多态性为基础的分子标记技术在苹果育种中的应用,大大提高了目标性状早期选择的效率,缩短了育种周期,加快了新品种选育的速率。Tartarini 等(2000) 报道了利用获得的与抗苹果黑星病的显性单基因Vf紧密连锁的RAP D标记测验了携带该基因个体,淘汰错误率为3%,保留错选率仅为 0.02%。Cheng等 (1996) 利用与控制果色的Thd01基因紧密连锁的RAP D标记,在苹果实生苗发育早期进行了标记筛选,实现了对果色这一特定性状的早期选择,大大减少了人力物力的浪费。苹果柱型性状有利于形成集约高效的现代苹果栽培模式,能够降低生产成本,提高产量。Moriya等 (2012) 所得到的 3个与控制苹果柱型性状Co基因共分离的标记 Mdo.chlO.12、Mdo.chlO.13 和 Mdo.chlO.14,对于柱型苹果杂交育种中对群体材料的早期选择、基因的克隆及转化有着重要意义。王彩虹 (Wang caihong,et al.,2011) 通过SCARs标记和SSR标记对控制梨矮生性状基因 PcDw 进行了基因定位,对梨矮化育种有着重要的意义。随着不同果树基因组测序的完成,在果树方面陆续开展了相关 SNP 芯片研发和利用。Chagne等 (2012) 对27 个苹果品种进行低深度重测序检测并确认全基因组范围的 SNP,开发了苹果 8 K 的 SNP 芯片,可用于苹果幼苗大规模检测,这将会促进标记—位点—性状之间关联性的发现,进一步阐明质量性状的遗传结构特性,推动遗传变异研究。

本实验利用四个紧密连锁的分子标记 S0405127、S0304673、SNP4236和 InDel4254对50个田间栽培品种和青岛农业大学选育出的优系进行了抗炭疽菌叶枯病的基因型鉴定,并结合其抗病的表型鉴定对四个标记的准确性进行了分析。结果表明四个标记的准确率分别为90.0%,94.0%,98.0%和96.0%,可以有效的应用于分子标记辅助育种。在第三章的研究结果中,SSR标记S0405127 与基因Rgls位点的遗传距离为0.5cM,而S0304673 的遗传距离为0.9 cM,理论上标记S0405127与抗性基因位点连锁的更紧密,准确性应该更高,而在品种群体验证中,标记 S0304673 鉴定抗感品种 (系) 的准确率为94%,而标记S0405127的准确率为90%。在利用重组个体对基因Rgls位点进行精细定位中,SNP4236 和 InDel4254 标记与目的基因共分离,在品种的群体验证中应该显示100%的准确性,但实际上还是有1~2个表型鉴定与基因型鉴定不符的个体。这种现象存在的原因一是可能由于用于鉴定的品种或品系数量有限,导致了结果的偏离。二是标记S0405127的条带显示为有和无的差异,在电泳时有可能存在读带误差。三是在对做图群体进行表型鉴定中,可能存在表型鉴定误差,导致遗传距离计算的偏差。四是在精细定位中,需要应用更大的群体筛选重组的单株以完成对目标基因的精细定位。而由于实验材料的限制,所用群体规模不是很大,所以可能导致定位结果的误差。这些问题尽管在实验中是不可以避免的,但是在以后进行更精细的遗传定位研究中,以更大规模的群体和更严谨的实验操作来进一步验证,可以减少这些误差的产生,提高遗传作图的精度。