您好,欢迎来到苹果植保专题库

苹果植保专题库

热门搜索:
苹果锈病
防治方法
首页 < Application of Molecular Marker Technology in the Studies of Phytophthora Infestans on Patato

Application of Molecular Marker Technology in the Studies of Phytophthora Infestans on Patato

所属图书:植物病理学研究进展 作者:王琦;姜道宏;冯凌云 出版时间:2007-10
字号:

Application of Molecular Marker Technology in the Studies of Phytophthora Infestans on Patato

马铃薯晚疫病是一种毁灭性病害,从20世纪在欧洲暴发引起大饥荒以来,在全球范围内绝大多数马铃薯栽培地区广泛传播。1996年,据CIP(国际马铃薯中心)估计,全球因晚疫病造成的直接经济损失达到170亿美元,发展中国家的损失53亿美元。晚疫病的危害性、防治难度及对社会的影响早已超过水稻稻瘟病和小麦锈病,被视为国际第一大作物病害。近几十年随着分子生物学技术的发展,各国科学家都对马铃薯晚疫病病菌的分子遗传学进行了深入的研究。本文仅对分子标记技术在晚疫病病菌研究中的应用进行简要的综述。

1 RFLP技术在马铃薯晚疫病病菌研究中的应用

1.1 RFLP技术的原理及特点

限制性片段长度多态性(Restriction Fragment Length Polymorphism,简称RFLP)。RFLP是出现最早,现在依然使用最普遍的DNA标记。RFLP技术的基本原理是:不同材料的DNA用已知的限制性内切酶消化后,产生许多大小不等的DNA片段,电泳分离、Southern印迹转移到硝酸纤维膜上,用放射性标记的探针与膜上变性的酶切DNA进行杂交,放射自显影,即可显示出不同材料的多态性图谱,即显示出所分析的DNA序列间的RFLP。目前,有两种方法可进行DNA的RFLP分析:①如原理中所述,其中用作RFLP的探针可以是特殊基因的DNA克隆、cDNA克隆、随机的基因组DNA克隆和合成的低聚核苷酸克隆。②对那些分子量较小的DNA样本(如线粒体DNA、核糖体DNA等),可在酶切后对其产物直接电泳,将不同大小的限制性酶切DNA片段分离,从而得到该DNA的RFLP图谱。RFLP反映了DNA水平上的差异,而差异往往是由变异造成的,变异分为单碱基突变型和结构重排型两大类。单碱基因突变发生在限制性内切酶的位点上,致使酶切位点增加或丢失而产生多态性,这称为点多态性。结构重排型是指DNA序列内部发生了较大的变化,如插入或缺失,从而使酶切位点间的长度发生改变,造成了片段长度的多态性。这些变异经酶切、分离、杂交、放射自显影就会使RFLP带的特征发生改变,由此对生物的变异进行分析。

1.2 RFLP技术在马铃薯晚疫病病菌研究中的应用

目前,在晚疫病病菌的研究中,RFLP技术主要用于病菌群体的遗传分化,如:分析一个国家或地区致病疫霉种群的基因结构及变化;有性生殖的发生情况等。1992年Stephen等利用RG57探针分析了墨西哥中北部的晚疫病病菌遗传结构,发现墨西哥中部病菌的遗传多样性非常明显,这也充分说明这个地区由于A2交配型的存在有性重组率高于其他地区[1];1993年Drenth等将采自荷兰6个地区的153个菌株分为35个RG-57基因型,明确了荷兰不同地区基因型的分布情况[2];1998年Lionel等利用RG57探针和同工酶基因型研究发现采自番茄和马铃薯上的晚疫病病菌基因型明显不同,说明晚疫病病菌有寄主专化作用[3]。目前利用该标记对来自全世界的成千上万的马铃薯晚疫病病菌建立了指纹图谱数据库。

2 RAPD技术在马铃薯晚疫病病菌研究中的应用

2.1 RAPD技术的原理及特点

1990年Williams等人首次应用随机引物扩增寻找多态性DNA片段作为分子标记,并将此法命名为随机扩增多态性DNA(Random amplified polymorphism DNA,RAPD)[4]。RAPD技术是建立在PCR技术基础上的,利用随机的短的脱氧核苷酸序列作为PCR引物(通常为十聚体)以基因组DNA为模板进行PCR扩增。通过凝胶电泳分离得到扩增产物DNA片段的多态性。RAPD所用的一系列引物DNA序列各不相同,但对任一特定的引物,它同基因组DNA序列有特定的结合位点。如果基因组在这些有特定位点的区域发生DNA插入,缺失或碱基突变就可导致这些特定结合位点发生相应的变化。通过对PCR产物的检测可测出基因组DNA在这些区域的多态性。在RAPD分析中可用一系列的引物使检测区域扩大至整个基因组。因此,RAPD可以对整个基因组DNA进行多态性分析,适于研究生物的遗传多样性及生物的遗传关系,进行遗传作图和基因定位等。

2.2 RAPD技术在马铃薯晚疫病病菌研究中的应用

在晚疫病病菌的研究中,RAPD技术一般多用于研究种内群体遗传分析。如:Mahuku[5]对1994~1996年采自加拿大的141个菌株进行RAPD分析,将其分为21个组,分析表明97%的变异来自于种群内,3%的变异来源于种群间。2001年朱杰华等利用RAPD方法研究了马铃薯晚疫病病菌DNA多态性与A2交配型的关系[6]。2005年侯淑英等使用178个10bp随机引物对晚疫病病菌的甲霜灵抗性性状进行RAPD分析,得到一个相对稳定的与甲霜灵抗性连锁或相关的标记S500,为晚疫病的有效防治和病原菌的抗药性治理提供了理论依据和实践方法[7]

3 AFLP技术在马铃薯晚疫病病菌研究中的应用

3.1 AFLP技术的原理及特点

AFLP是1993年由荷兰keygene公司科学家Zabeau等人发明的一种DNA分子标记技[8],该技术的基本原理是:对基因组DNA进行限制性酶切片段的选择性扩增。主要步骤是:将基因组DNA进行限制性酶切后,将特定的接头连接在DNA酶切片段的两端,从而形成一个带接头的特异片段,通过接头序列和PCR引物3'端的识别,进行PCR扩增,最终经过变性的聚丙烯酰胺凝胶电泳分离,通过银染或放射自显影检测。

AFLP技术实际上是将RFLP和PCR相结合的一种技术[9~10]。该技术既继承了RFLP的稳定性,又具有PCR反应快速、灵敏的特点,同时克服了RFLP和RAPD的缺点,且扩增的带纹多(50~100条)。AFLP的大多数扩增片段与基因组的单一位置相对应,实验重复性高,该标记为孟德尔式遗传。

3.2 AFLP技术在马铃薯晚疫病病菌研究中的应用

目前,AFLP 技术主要用于构建晚疫病病菌的基因连锁图谱,此外也被用来检测病菌的基因型。1997年,Van de Lee[11] 等完成了一张比较完整的致病疫霉基因连锁图谱,这张图谱包括183个AFLP标记,7 个RFLP 标记和交配型基因座,包括10个主要的连锁群和7个次要的连锁群,共827cm,并证明主要连锁群中的标记来自于两个亲本,而次要连锁群中的标记来自A1 交配型的亲本或来自A2 交配型的亲本。同时还证明了致病疫霉是同核型的二倍体[12]。Cooke[13],Flier等[14]以及Knapova等[15]利用AFLP对来自墨西哥和欧洲的病菌研究发现,墨西哥的菌株几乎每个都具有其特异的AFLP基因型,而欧洲的菌株平均每两个就具有一个特异的AFLP基因型。AFLP带型在分裂中能够保持稳定,并遵循孟德尔遗传规律[16]。交配型及其所在的连锁群的其他标记均不遵循孟德尔遗传规律。AFLP技术用于构建基因连锁图谱,使我们可以从基因水平了解晚疫病病菌,为更好地研究晚疫病病菌、防治晚疫病提供理论依据。

4 SSR技术在马铃薯晚疫病病菌研究中的应用

4.1 SSR技术的原理及特点

短序列重复即SSR(Short sequence repeat)、又称微卫星DNA或短串联重复(Short tandem repeat,STR),这是一类由1~5个核苷酸为重复单位组成的长达几十个核苷酸的串联重复序列[17]。同一类的微卫星DNA可分布于整个基因组的不同位置上,由于基本单元重复次数的不同以及重复程度的不完全而造成了SSR位点的多态性,这种多态性有比较丰富的信息量。由于在每个微卫星DNA两端的序列是相对保守的单拷贝序列,因而可根据两端的序列设计一对特定的引物,扩增每一位点的微卫星序列,再经凝胶电泳比较扩增产物的长度变化,即可显示不同基因型个体在微卫星DNA位点上的多态性[18~19]。SSR技术的特点是:呈共显性遗传;在数量方面没有生物学上的限制;其标记带型简单,记录的条带一致、客观、明确;采用PCR技术进行检测只需少量DNA样品,且质量要求不高,即使是部分降解的样品也可进行分析;每个位点均有许多等位形式;另外,它还具有多态性高、实验程序简单等优点[19~20],所以自1989年SSR技术产生以来,被广泛应用于基因定位和QTLs分析、DNA指纹和品种鉴定、种质资源保存和利用、系谱分析和标记辅助育种[18]

4.2 SSR技术在马铃薯晚疫病病菌研究中的应用

2001年Knapova [21]等首次利用SSR技术研究了瑞士和法国的马铃薯和番茄的晚疫病病菌群体的遗传多样性,同时分析了致病疫霉有性杂交F1代的分离情况,结果发现被测菌株群体具有丰富的遗传多样性。试验中6个SSR位点被鉴定出来,其中的3个SSR位点具有多样性,他们又从3个SSR位点中选择了2个SSR位点的引物(Pi4G和Pi4B)对来源于瑞士和法国的176个菌株进行了鉴定,分别得到4种和6种不同长度的等位基因片段(共21个组合)。2002年G.Knappva [22]等再次报道了法国和瑞士的晚疫病病菌的表型和基因型结构,他们研究的马铃薯晚疫病病菌株中存在11个SSR基因型,其中以A-03和A-06为主,另有1/9的菌株是其他SSR基因型;但尚未发现SSR基因型与菌株的交配型、对甲霜灵的敏感性和菌株来源的地域性有相关关系。

Knappva[21~22]等的研究揭示了SSR分子标记适用于分析晚疫病病菌的群体结构,同时也指出了SSR标记技术在病菌应用的潜力和存在的问题,如stutter bands、非特异扩增等。但同其他分子标记相比,SSR技术具有位点特异的优点,有利于分析全球马铃薯晚疫病病菌的种群结构。若能对SSR标记技术进行大量人力、物力的投入,获得更多理想的SSR标记,这种技术将具有巨大的应用潜力。

5 我国分子标记技术在马铃薯晚疫病病菌研究中的应用

2004年朱杰华用AFLP分子标记研究了河北、云南、四川及黑龙江省的50个晚疫病病菌株的DNA指纹,当欧式距离为10时,50个菌株被聚类为4组,分组情况与菌株来源的地理位置相关,表明马铃薯晚疫病病菌的DNA的AFLP分子标记多样性与病菌的地理来源及病菌对甲霜灵的抗性有一定相关性,但未发现和生理小种及交配型有相关性[23]。2004年魏长拴用RAPD分子标记分析了我国马铃薯主产区的晚疫病病菌的亲缘关系和遗传相关性[24]。2005年郭军等利用SSR、AFLP和线粒体DNA单倍型技术分析了内蒙古地区马铃薯晚疫病病菌的遗传多样性。2006年姚国胜等利用SSR技术测定出中国菌株中存在7种SSR基因型[25]。总的来说,分子标记技术在我国马铃薯晚疫病病菌的研究中应用还很少,今后应进一步将各种分子标记技术应用到马铃薯晚疫病病菌的研究中。

6 问题与展望

综上所述,DNA分子标记技术在马铃薯晚疫病病菌遗传研究上具有重要应用价值,并已取得了可喜的进展,展现了广阔的应用前景。现已研究了晚疫病病菌发源和墨西哥以外地区A2交配型的来源,为晚疫病的防治提供理论基础;明确了一个地区不同菌株之间的基因结构变化,遗传结构差异。利用DNA分子标记技术绘制晚疫病病菌的连锁图谱,使两个标记间距离足够小;借助高密度标记对一些性状基因进行准确定位,从而为抗病育种研究提供科学依据;并运用分子标记找到与目的基因紧密连锁的标记,如在致病疫霉中找到与抗瑞毒霉基因连锁的标记,与毒力基因连锁的标记,从而指导晚疫病的防治。由于上述几种分子标记都各有优缺点,任何一种均不能满足晚疫病病菌遗传研究的所有要求。所以如何更好地利用各种分子标记研究马铃薯晚疫病病菌,预防和控制马铃薯晚疫病,仍需不断研究。