首页 < 枯萎病
知识图谱:全部
-
-
报告甘蓝型油菜抗病毒
病 相关基因的初步研究出版时间:2007本文以甘蓝型油菜一个抗病毒品种和一个感病毒品种为试材,利用转基因手段进行了油菜抗病毒病相关研究。利用乙烯、甲基茉莉酸、水杨酸类似物苯丙噻重氮3种化学物质诱导处理油菜叶片,提取处理前后各材料的RNA,标记探针后与拟南芥芯片进行杂交,通过对基因表达谱的分析,获得与抗病性相关的基因,从中选择3个与病毒抗性相关的基因BNP5、BNP7和BNP10。其中BNP7和BNP10为全长序列,BNP5 5'端部分序列缺失,通过5'-RACE的方法获得该基因全长序列,分别构建3个植物过表达载体pGA5、pGA7和pGA10和3个RNAi载体pGR5、pGR7和pGR10(过表达和RNAi载体均带有除草剂抗性基因bar)。采用本实验室发明的高通量花蕾原位转化法分别对所选材料进行转化。转基因当代植株收获的种子播种以后,幼苗期喷施除草剂进行筛选,并经PCR鉴定,存活幼苗80%以上为阳性植株。目前正在进行阳性植株T1代幼苗病毒抗性鉴定及相关的后续实验。 -
报告观赏海棠轮纹
病 病原的初步研究出版时间:2007多数苹果属植物野生种或栽培种的花和果都具有观赏价值,在观赏园艺花卉树木中占有重要地位。20世纪以来,国外植物学家从我国引种并进行了大量杂交选育工作,培育了一系列具观赏用途的海棠品种,统称为观赏海棠(Malus spp.)。近年来,国内学者从国外引进的观赏海棠品种几十个,它们姿态各异,色彩斑斓,大量果实点缀枝头直到深冬,丰富了景观内容。但是,这些观赏海棠不少品种的植株枝干上往往产生大量轮纹状、马鞍形的瘤状突起,严重时,病斑相连,导致树皮粗糙,严重影响树势甚至引起枝干坏死。本研究对其病原进行了初步研究,以期为进一步研究其发生发展规律和防治技术奠定基础。观赏海棠(M.spp.)植株为山东省泰安市区栽植树种。在6月份从病树上采集病斑,显微切片观察其病原形态,并对其大小进行测定。按常规方法,进行分离培养并纯化。观察其培养性状和产孢特征。在6月底,将分离纯化的病原菌分别采用烫伤接种法、针刺接种法、喷雾接种法对健康的海棠枝条进行接种,定期观察其发病情况,确定其致病性。设置不同温度条件(5℃、15℃、25℃、28℃、37℃、40℃)、不同pH值条件(pH值4.0、5.0、6.0、7.0、8.0)、不同培养基条件(琼脂、蛋白胨、LB、BPY、PMA、PSA、PDA),用菌碟法分别测定不同条件下病原菌的菌丝生长状况;并在以上不同温度、不同pH值条件以及不同营养条件(0.5%、1%、2%葡萄糖,0.5%、1%、2%蔗糖)下,采用凹穴法测定病原菌孢子萌发情况。受害海棠枝干从皮孔开始发病,以皮孔为中心形成近圆形斑点,暗褐色,凹陷,边缘稍隆起;随后病斑中央突起,呈瘤状,质地坚硬,成为灰白色;病健交界处发生龟裂,病皮翘起,有点呈马鞍状,或呈轮纹状;病斑表面产生黑色的小粒点。严重时,病斑相连,病皮粗糙,导致部分枝干死亡。对病斑上黑色粒点切片镜检,发现:子座扁球形,其上分生孢子器1~3个,分生孢子器扁圆形或椭圆形,大小为(142~284)μm×(162~289)μm;内壁密生分生孢子梗,分生孢子梗棍棒状,单胞,顶端着生分生孢子;分生孢子单细胞,无色,纺锤形或长椭圆形,一端钝圆,一端截平,大小为(20.1~32.9)μm×(7.6~9.8)μm。从发病枝干上分离培养获得病原菌纯培养,菌落初灰白色,逐渐呈灰黑色,气生菌丝浓密,呈絮状隆起,后期菌落中产生灰黑色子座。对病原菌进行致病性测定,通过不同方法对海棠进行接种试验,发现烫伤接种法和针刺接种法处理的海棠发病率为100%,而喷雾接种法处理的海棠则几乎没有发病。其症状表现为,伤口先凹陷变黑,后形成褐色小突起。同时发现,在山东省泰安市,在6月底接种,该病原菌侵染的潜伏期为7~10天。经鉴定,认为该病害的病原为Botryosphaeria berengeriana,病害为观赏海棠轮纹病。25~28℃、pH值4.0~7.0、BPY和PDA培养基等条件,最适合菌丝生长,菌落生长快,且菌丝白色浓密呈絮状隆起,易产生黑色分生孢子器。28℃、pH值7.0、1%蔗糖条件最适合病原菌分生孢子萌发,12h观察孢子萌发率能达到80%左右,孢子萌发芽管较短、粗,多数两端萌发。观赏海棠轮纹病发病严重,目前对其病原鉴定方面未见报道。本研究初步确定其病原为Botryosphaeria berengeriana,并测定了其部分生物学特性。结果也显示该病原菌从形态和生物学特性上与引起苹果轮纹病的病原菌[1]和梨轮纹病[2,3]的病原菌有一定的差异。该菌的寄主范围、对苹果属、梨属植物的致病性、ITS的序列测定等工作正在开展中,这些信息对于该菌分类地位的进一步确定有重要价值。 -
报告五、黑松枝枯
病 的防治技术出版时间:2015调查前海一线黑松,查明黑松生长衰弱的原因后,研究以黑松复壮为主的综合防治技术,采取地上与地下共同治理技术。“树上生长看树下”,只有树下根系生长好了,才能给树上部分提供营养元素,使其健康生长。2009年3月在鲁迅公园进行试验示范性研究,观察分别施用含微量元素的有机肥、根外菌根剂、更换土壤并使用含微量元素的有机肥3种方法对黑松生长势的影响。经过一个生长周期后,从实验点采取复壮措施的黑松中随机选取30株作为实验对象,周边不采取任何措施的黑松作为对照,详见表2~表5。(1)施用有机肥 在每株黑松树冠投影垂直约2/3处即距主干1.5~2m处环绕树体挖复壮沟3处,宽度30~40cm,深度为40~60cm,每株施“八福仙”牌高级动植物有机肥料(动植物有机质占30%以上,含有30%以上的氮、磷、钾大量元素,还含有钙、镁、锌、硼等多种微量元素及微生物菌群,土壤有益菌≥2亿/g)5~10 kg与挖出的表土混匀,培土浇水,施肥1 000株。为防止一次性伤根过多,每棵树分3年完成。并在相邻区域选取生长状况相近10株黑松作为对照。(2)使用菌根菌制剂 对部分生长衰弱的黑松接种中国林科院生产的菌根菌制剂——丰林菌根菌衣剂(是一种由菌根真菌菌体为主,吸水剂、黏着剂、膨胀剂、稳定剂和湿润剂组成的具有黏着和包裹植物材料特性和促进植物生长作用的菌根菌制剂),将该制剂稀释1 000倍,与上述土壤快速而平稳地混合1~2min,每株施用100 g,挖到黑松的毛细根处灌根,最好涂抹在毛细根处,处理100株。并在相邻区域选取生长状况相近10株黑松作为对照。(3)砌筑鱼鳞坑 对坡度较大的鲁迅公园部分黑松在坡地上砌筑“鱼鳞坑”,大约1~1.5m3,添加种植土与八福仙”牌高级动植物有机肥(混合比例5 ∶ 1),处理120株。并在相邻区域选取生长状况相近10株黑松作为对照。新发枝条越长,黑松的生长越旺盛;针束是黑松主要的光合作用器官,松针越长越多对植物的光合作用越有利,越利于促进植物的生长势;根系是黑松吸收水分和养分的主要器官,单位面积的根系越多其吸收作用越强,越有利于黑松生长状况的改善。故从新发枝条、新生针叶长度、黑松根干重3个方面调查黑松生长势的变化,黑松生长势变化与黑松枝枯病的相关性。表2 新发枝条的长度 (单位:cm)表3 新生针叶长度 (单位:cm)表4 黑松根干重 (单位:g)表5 黑松枝枯病的发病情况表2~表5表明,采取复壮措施后,黑松新梢的生长量、针束长度、单位面积的根干重都比以前有不同程度的增加,其中,建鱼鳞坑(图61-1 已建成的鱼鳞坑)换土掺加有机肥料复壮效果最好,但费用是3种复壮措施中最高的,主要适用于坡度大、水土流失严重的区域。换土与“八福仙”牌高级动植物有机肥料混合施用比单一采用一种复壮措施更有利于恢复黑松长势的结果显示,有机肥料与菌根肥结合施用或换土、有机肥料与菌根肥三者混合施用将比单独采用一种复壮措施效果要好得多。3种不同的复壮措施均能产生一定的防治效果,平均病情指数下降37.5~50.1,相对防效在71.0%~94.9%(图61-2 关于黑松施基肥的报道)。图61-1 已建成的鱼鳞坑图61-2 关于黑松施基肥的报道在八大关、栈桥、东海路绿地等前海一线黑松林推广使用复壮沟时发现,土壤板结重的区域在雨季复壮沟易成为积水沟,反而导致黑松根部受损。由于青岛为丘陵地区,土层浅,复壮沟大部分仅能挖到30~40cm,再往下沙石较多,需要投入的人力、物力更多,成本比较高,难应用于黑松的日常养护中。听过北京植物园熊德平博士的讲座后,认为其复合渗水透气井理念比较适合青岛地区,操作简单,多用途(可以是透气孔、深层浇水孔、施肥孔、注药孔等),成本较低,污染小,应用前景广阔。我们根据青岛的地形地质特点对复合渗水透气井进行改良,打孔深度随地形地质灵活掌握,一般控制在50~80cm,复合渗水透气井设计高度分为4种型号,50cm、60cm、70cm、80cm(图62~图63复合渗水透气井的结构与原理)。专用基质的配方:有机羊粪(来自内蒙古大草原天然羊厩肥)、松针土、发酵过的树叶(园林绿化废弃物再利用)、外生菌根(外生菌根存在于健康松林下的新鲜腐殖土中,当天采集的菌根土,掺加一定量的玉米面有利于外生菌根的繁殖)、功能菌群(芽孢杆菌、酵母菌群、乳酸菌群、双歧杆菌、革兰氏阳性放线菌群、光合菌群、丝状菌群、硝化细菌等)(图64~图67 专用基质混配)。2014年11月~12月在百花苑公园进行试验研究,使用地钻和洛阳铲在每棵树的树冠投影附近打孔4个(图68~图76 复合渗水透气井的应用),观察复合渗水透气井对生长虚弱的黑松影响。结合黑松休眠期使用3~5波美度的石硫合剂2次,2015年4月10日通过复合透气井灌50%多菌灵可湿性粉剂300倍液1次。经过一定生长期后,从实验点采取复壮措施的黑松中随机选取8个复合透气井的根系,观察不同土层根系的生长状况,测定复合渗水透气内土壤。详见表6和表7。图62 复合透气井结构与原理解析 (摄于熊德平讲座)图63 复合透气井结构图64 功能菌群图65 玉米面填加剂图66 采集健康松林下的根外菌根图67 功能菌、玉米面、根外菌根与发酵过的落叶混合为基质图68 打孔机图69 洛阳铲图70 打孔机打孔图71 洛阳铲破砂砾层图72 孔内土层黏重少根图73 打好的孔图74 向复合透气井内填充基质图75 捣实基质图76 清理现场表6显示,根茎径级越大,根越少,毛细根(根直径0.1~0.2mm)较多,占测量根系43.09%,黑松吸收养分和水分的能力加强了。表6还说明根量随着深度的增加而增加,说明通过增加复合渗水透气井达到了纵向深层引根的效果。表7与表1比较,说明复合渗水透气井基质可改善周边土壤的营养成分,加入的功能菌改善土壤结构,进而促进根系的健康生长。采取治疗与复壮相结合的措施,平均发病率为3%,平均病情指数为0.1,病情指数下降了52.7,相对防效高达99.8%。表6 黑松不同地表深度和根茎径级内根系数量 (单位:根)表7 黑松复合透气井专用基质测定结果在鲁迅公园、东海路公共绿地选取黑松集中的地块,2009年4月10~15日分别疏密、修枝、间伐和剪除被害干梢、虫果,及时清理枯枝落针。修枝强度以树冠长度与树高之比作为修枝强度指标,初次修枝强度不要超过树高的1/3。间伐本着留优去劣、留大砍小、留稀去密相结合的原则进行,病虫为害严重和枯死木应首先作为间伐首选对象。处理100株,随机选取30株标记观察,对照区设在距防治区500m外,不采取任何措施,于2010年春季4月20日调查发病率(表8)。表8 黑松枝枯病疏密与修枝防治效果相关调查结果表明,黑松及时修剪病枯枝、轮生枝、过密枝等措施,增加通光透气和减少黑松枝枯病的菌源也是一种有效的防治措施,病情指数下降了11.3~24.4,相对防效达到40.5%~87.5%(图77~图79 黑松疏枝、修枝、清理落针)。图77 黑松疏枝图78 清除黑松枯枝图79 清理黑松枯枝落针在八大关黑松枝枯病暴发的3~4月,在2009年4月2日、4月12日、4月22日,喷药3次,间隔10天。随机选取90株黑松,在第一次喷药后4月29日(即第27天)对不同药剂进行防效调查,对照区设在距防治区800m外,不采取任何措施(表9)。表9 黑松枝枯病化学药剂防治效果表9表明,50%多菌灵可湿性粉剂500倍液防治效果较好,相对防效为88.2%。50%多菌灵可湿性粉剂500倍液与0.3%尿素混合喷洒防治效果更好,相对防效为90.1%,也可与0.2%磷酸二氢钾混合,即50%多菌灵可湿性粉剂500倍液与0.3%尿素或与0.2%磷酸二氢钾交替喷洒。同样50%多菌灵可湿性粉剂500倍液也可以用70%甲基托布津可湿性粉剂1 000倍液交替与叶面喷肥混合喷洒,防治效果明显。由于黑松林郁闭度较大(58%~100%),栽植常绿草坪生长虚弱,越来越多的黑松林下改种丹麦草、扶芳藤、常春藤、小蔓长春花等,避免了常绿草坪生长期经常浇水,黑松根系生长不良的弊端(图80~图82 黑松林下植被)。图80 常春藤图81 小蔓长春花图82 丹麦草地被黑松地势低的区域需逐年撒土抬高地势,雨季及时排水,防止黑松树穴周边积水。 -
报告苹果抗炭疽菌叶枯
病 基因的SSR标记筛选及遗传定位出版时间:2019培育抗病品种是一种经济有效的手段,成为解决苹果炭疽菌叶枯病的首选。传统的抗病育种主要依赖于植株的表现型选择 (P he-notypical selection),但是由于环境条件、基因间互作、基因型与环境互作等多种因素大大影响表型选择效率。如抗病性的鉴定就受发病的条件、植株生理状况、评价标准等条件的影响。一个优良抗病品种的培育往往需要花费7~8年甚至十几年时间。随着分子生物技术的快速发展,以DNA多态性为基础的分子标记技术以其表现稳定、数量多、多态性高等优点已被广泛的运用于植物遗传图谱的构建、控制重要农艺性状基因的标记遗传定位、种质资源的遗传多样性分析以及品种指纹图谱的绘制等方面,尤其是分子标记辅助选择 (molecular marker-assisted selection,MAS) 育种,相较传统育种能极大地提高育种的选择效率与育种预见性,受到人们的高度重视。简单重复序列 (simple sequence repeats,简称 SSR) 又称微卫星(microsatellite) 广泛地分布于果树基因组的不同位置。SSR位点多态性的形成是基于基本单元重复次数的不同。由于每个SSR位点两侧一般都具有相对保守的单拷贝序列,所以可以根据此特点在SSR两侧序列设计一对特异引物来扩增 SSR 序列。通过对 PCR 产物进行聚丙烯酰胺凝胶电泳或琼脂糖凝胶电泳来显示不同 SSR 标记的分子多态性。由于SSR标记具有大量的等位差异、多态性好、操作简便、稳定等特点,已被广泛应用于作物的遗传图谱构建、指纹图谱绘制、目标性状基因的标记定位、物种起源进化及品种纯度鉴定等 (Hemmat,1994)。本试验利用SSR标记与集团分离分析法BSA (bulk segregant anal-ysis) 相结合,快速有效地寻找与质量性状遗传的目标基因紧密连锁的SSR标记,用于分子标记辅助育种及抗病性的早期鉴定。本试验选择青岛农业大学苹果试验基地 (山东省胶州市) 2009年种植的,经过室内离体接种鉴定的 ‘金冠’ב富士’ 的207 株F1杂交群体实生树为材料,于2015 年4 月底,每株采摘幼叶 5~6 片,用液氮处理后,置于-70℃冰箱保存。参考Doyle和Doyle (1987) 及 Cullings (1992) 提取基因组DNA的CTAB法,并加以改进 (附录一)。(1) 利用1%琼脂糖凝胶电泳检测。取 4μl DNA 样品与 2μl 6×Lodding buffer 混匀,在 1%浓度的琼脂糖凝胶中电泳 (120V,30min),最后在紫外凝胶成像系统中成像并记录保存。若成像为一条整齐、单一、清晰的 DNA 条带,且点样孔没有亮光,则表明所提样品较纯;若条带不清晰、拖尾或出现涂抹带,则表明 DNA 发生了降解,降解严重会看不到条带;若在胶片下部有弥散的荧光区出现,则表明样品中存有 RNA 杂质;若点样孔处有明显的亮光,则说明样品中含蛋白质和大分子杂质。琼脂糖凝胶电泳检测方法见附录二。(2) 分光光度计检测。运用分光光度计NanoDrop 2000 进行 DNA纯度及浓度的量化测定。若 OD260/OD280 值在 1.8~2.0,并且 OD260/OD230 值大于2.0,则表示此样品DNA纯度适宜。将提取、纯化的基因组 DNA,稀释到浓度为10ng/μl。根据该组合群体的离体接种鉴定结果,将杂交后代单株分为抗病和感病两大类型。按照BSA分析方法的要求,选取 10 份高抗单株 (无任何病斑)的DNA,等量混合构建DNA抗池;选取10份高感单株 (病斑个数大于20) 的DNA等量混合构建DNA感池。两个基因池用于筛选与目标基因连锁的分子标记。从网站 https://www.rosaceae.org/gb/gbrowse/malus_x_domestica/下载目标区域的 contig 序列,然后通过网站 http://archive.gramene.org/db/markers/ssrtool搜索该区域碱基序列中所有的 SSR 位点。搜索参数设置为:碱基重复单位为 2、3、4、5、6 个碱基,相应的重复次数依次为 8 次、6 次、4 次、3 次、3 次。利用 Primer 3.0 P lus软件设计SSR引物,引物设计时应注意:引物与SSR位点间的距离一般大于50 bp 个碱基序列。引物 GC 含量为40%~70%,最适值为50%;引物长度在18~24 bp;退火温度50~65℃,左右引物退火温差小于 5℃;扩增产物片段大小在 150~350 bp。引物的评估利用Oligo软件进行,避免引物二聚体、发夹结构和错配等情况的发生。引物序列 (附表1)。所有引物由生工生物工程 (上海) 股份有限公司合成。SSR反应体系为15 μl,内含10 ng/μl基因组DNA 2 μl,1×Master Mix 7.5 μl,0.2 μmol/L左右引物各0.8 μl。进行初步筛选时的 PCR扩增程序为:94℃预变性 5min,然后按 94℃变性 30 s,55℃退火40 s,72℃延伸30 s的程序进行 10 个循环,每个循环的退火温度降低0.5℃,然后按94℃变性30 s,50℃退火40 s,72℃延伸30s的程度进行25个循环,最后72℃延伸8 min,筛选能扩增出有差异条带的SSR引物。最终筛选的 PCR 扩增程序为:94℃预变性 5min,然后按94℃变性30 s,相应的退火温度40 s,72℃延伸30 s的程序进行35个循环,最后72℃延伸8 min,4℃保存。PCR产物使用3.5%的琼脂糖凝胶电泳,或者聚丙烯酰胺凝胶电泳。聚丙烯酰胺凝胶电泳的方法见附录三。从 HiDRAS 网站 (http://www.hidras.unimi.it/) 和 GenBank (http://www.ncbi.nlm.nih.gov/genbank) 网站下载了 300 对均匀分布于苹果17条染色体上的已发表的 SSR 引物,在亲本及抗感池中进行初步筛选,选出在抗亲、抗池与感亲、感池中有多态性条带的引物,然后在207个做图群体上进行筛选。最终选出与抗性基因位点连锁的标记,根据所筛选出的SSR标记的已知信息,确定其所在的染色体,然后将 SSR 标记序列与苹果基因组数据库 (http://www.rosaceae.org) 进行BLAST比对,将其定位在染色体的具体位置上。初步定位后,从网站 https://www.rosaceae.org/gb/gbrowse/malus x domestica/下载与目标基因位点连锁的 SSR 标记间的 contigs序列,根据SSR标记设计的方法,设计了 276 对新引物。这些引物首先在抗亲、抗池与感亲、感池中进行筛选,将产生多态性条带的引物再进行群体验证。对检测群体中各单株的 SSR 标记基因型分别赋值并记录,与抗池带型相同的记为 “A”,与感池带型相同的记为 “B”。将这些SSR标记在群体上的基因型数据进行孟德尔1R∶1S遗传符合度的卡方检验。并将表型抗性鉴定结果与标记基因型数据相结合,采用 JoinMap 4.0软件,对标记及抗性基因 R gls位点的连锁关系进行分析。利用软件中的Kosambi函数功能将重组率转化为遗传距离,其他参数设置为默认值。将筛选获得的与抗性基因 R gls位点最近的两个 SSR 标记,在两个亲本上进行PCR扩增。将差异片段进行胶回收。回收产物连接到载体pMD-19T simple,然后转化到大肠杆菌进行扩繁。将菌液PCR检测为阳性的克隆送生工生物工程 (上海) 股份有限公司测序。每个样挑取3个单菌落作为测序重复。测序结果用 DNAMAN 软件进行比对分析。具体操作方法见附录四。用CTAB法提取的苹果叶片基因组 DNA经1%的琼脂糖凝胶电泳检测,结果表明,DNA条带清晰,完整无降解 (附图3-1)。可以用于后续的研究。从 HiDRAS 网站 (http://www.hidras.unimi.it/) 下载的 300 对均匀分布于苹果17条染色体上的已发表的 SSR 引物在亲本及抗感池中进行初步筛选,选出54 对在抗亲、抗池与感亲、感池中有多态性条带的引物。再将这54 对引物用于作图群体的207 个单株以筛选与抗性基因位点连锁的 DNA 标记。最终筛选出2 个可以清晰区分抗感双亲、抗感池和杂交群体抗感单株的 DNA 标记,CH01d08 和CH05g05。引物序列如表3-1中所示,因为这两个标记已被报道位于苹果15号连锁群上 (Liebhard et al.,2002),所以将苹果炭疽菌叶枯病抗性基因 (命名为Rgls) 位点定位于15号连锁群上。连锁分析表明这两个标记分别位于Rgls基因位点两侧,通过 BLAST算法与苹果基因组数据库 (http://www.rosaceae.org) 进行比对,SSR 标记 CH01d08位于15 号染色体的 Contig MDC021953.346 上,标记 CH05g05 位于MDC016699.237 上,物理位置分别位于染色体的 2343 kb 和13699 kb处,两个标记覆盖了染色体上11.3Mb区域 (表3-1)。根据苹果基因组 CH01d08 和 CH05g05 标记之间的核苷酸序列,自行设计了276对SSR引物。按照上述方法进行筛选,最终筛选出9对引物能够扩增出清晰稳定的多态性条带的引物 (附图3-2、附图3-3),分别为 S0607039、S0607001、S0506206、S0506001、S0506078、S0405195、S0405127、S0304673、S0304011 (表3-1)。连锁分析表明,标记S0405127和S0304673与Rgls基因位点的距离最近,位于该基因两侧,分别存在2个、4个重组个体。通过对这11个SSR标记在做图群体上的基因分型比例分析,符合 1R∶1S 的理论比值, P 值大于0.05 (表3-2)。SSR编号引物序列重复基序产物长度/bp退火温度/℃位点CH01d08aF:5′-CTCCGCCGCTATAACACTTC-3′R:5′-TACTCTGGAGGGTATGTCAAAG-3′ag29056MDC021953.346chr15∶13688903..13699651CH05g05aF:5′-ATGGGTATTTGCCATTCTTGC-3′R:5′-CCTGAAGCAAGGGAAGTCATAC-3′ag14356.5MDC016699.237chr15∶2343805..2349433S0607039F:5′-AACGCACCGACCCATTTC-3′R:5′-CCAGCTCGCATAACCACC-3′ct18654MDC011529.272chr15∶6103161..6122652S0607001F:5′-ATGAAAGCGAGTCGGAGTG-3′R:5′-GGGGAGGGTTGGTGGTTA-3′caggtcaggt26956MDC004171.329chr15∶5986277..6005012S0506206F:5’-GCTGAGATTTCCCCCATT-3′R:5′-GCTGCGGACACTGCTTAG-3′ttggatgtg24354MDC007696.347chr15∶5714203..5748693S0506078F:5’-AGAAAGGCCCTCAAACAG-3′R:5′-CTGCAGAAGGTGGGTATG-3′aaaagc30455MDC002692.183chr15∶5005415..5011924S0506001F:5′-CATGAAAAGGTAGGCAGTGG-3′R:5′-GAGGTTCTTGGGCAAGTGTT-3′acaaccaa30454MDC013564.245chr15∶5006247..5017709S0405195F:5′-AGACGGGCAAATTAGTTGAGAT-3′R:5′-TCCCTTCTATGATGAATGACACC-3′tg25853MDC016041.193chr15∶4672532..4691912S0405127F:5′-GGCACAATGTAGGAGGGATA-3′R:5′-GCTATGAGGAAATTGGCTCT-3′at33055MDC043871.6chr15∶4622388..4626535S0304673F:5′-GTTTGCACATTGTAATGCTG-3′R:5′-CAGTTTTCTAGTGATGTCGTTG-3′tg(ga)33353MDC013859.580chr15∶4121053..4135560表3-1 定位在15号连锁群上与Rgls基因连锁的SSR标记序列及引物SSR编号引物序列重复基序产物长度/bp退火温度/℃位点S0304011F:5′-GCCGAATCTGCGGAATTG-3′R:5′-TCCCACTTCCTCACCGTCTC-3′ag21056MDC015994.315chr15∶3183972..3196801表3-1 定位在15号连锁群上与Rgls基因连锁的SSR标记序列及引物(续)-1SSRmarkerObservedratio(R∶S)Expectedratio(R∶S)x2PS030401184∶123103.5∶103.53.670.06Ch05g0590∶117103.5∶103.51.760.18S030467393∶114103.5∶103.51.070.30S040512791∶116103.5∶103.51.510.22S040519588∶119103.5∶103.52.320.13S050607894∶113103.5∶103.50.870.35S050600192∶115103.5∶103.51.280.26S060700188∶119103.5∶103.52.320.13S060703998∶109103.5∶103.50.290.59S050620695∶112103.5∶103.50.70.40Ch01d08104∶103103.5∶103.500.96表3-2 SSR标记在207株 ‘金冠’ב富士’ F1 群体中的分离将Rgls位点附近的11个SSR标记在 ‘金冠’ב富士’ 杂交组合F1 群体的207个单株上进行连锁分析。将表型抗性鉴定结果与标记基因型数据相结合采用 JoinMap ver.4.0软件计算出重组率和遗传距离如附图3-4 所示。连锁图谱上标记的顺序依次为 S0304011、CH05g05、S0405195、S0304673、S0405127、S0506078、S0506001、S0506206、S0607001、S0607039、CH01d08,重组率分别为:13.0%、8.7%、5.3%、1.9%、1.0%、6.8%、6.8%、7.2%、7.7%、8.7%、24.6%。遗传距离分别为15.4 cM、7.2 cM、3.1 cM、0.9 cM、0.5 cM、3.0 cM、4.8 cM、6.4 cM、8.2 cM、10.7 cM和33.8 cM。 Rgls基因被定位于 S0304673 和S0405127之间。距离目标基因最近的标记为 S0405127,在抗性基因Rgls位点与S0405127标记之间仅发现两个重组个体,遗传距离为0.5 cM。S0304673 的遗传距离为 0.9 cM。在 ‘Fiesta’בTotem’-15 (F×T) (Fernández-Fernández et al.,2008) 的遗传图谱中,SSR标记CH05g05与Ch01d08的遗传距离为33.7 cM,而在本研究中二者之间的遗传距离为41.0 cM (附图3-4)。为了确定抗性基因Rgls位点的物理位置,将11 个标记序列与金冠苹果染色体基因组序列 (http://www.rosaceae.org) 进行 BLAST 比对,确定这些标记位于15号染色体上的2.3~13.6 Mb。 Rgls被定位于标记S0405127和S0304673之间,跨度为4.1~4.6 Mb,两标记间的物理距离为500 kb (附图3-5)。对S0304673 和 S0405127 进行测序分析。S0304673 标记能够在双亲中扩增出差异条带,而 S0405127 标记只在 ‘金冠’ 上扩增出一条带,所以对S0304673 标记在双亲中的扩增产物进行了测序,而只对S0405127标记在 “金冠” 上的扩增产物进行了测序 (附图 3-6、附图3-7)。测序结果表明,SSR标记 S0304673 和 S0405127 的扩增片段大小分别为333 bp和330 bp。标记S0304673在 ‘富士’ 中的扩增片段比在 ‘金冠’ 中的扩增片段存在三处8~10 bp的碱基缺失,分别是 CT-CAGTGTGT、AGAGAAAG、CTTCTTACTT,另外还存在着一处两个碱基差异和六处单碱基差异。在 ‘金冠’ 中的扩增片段与参考基因组序列比对发现,有两处单碱基的差异,分别为 A/T和 G/A的碱基变化。标记S0405127在 ‘金冠’ 中的扩增片段与参考基因组序列比对发现,除在参考基因组中有两未知碱基以外,其余完全一致。本次测序确定了参考基因组序列的两处未知碱基分别为G和A。集团分离分析法 (BSA法) 是分子标记研究中的最经典的研究方法之一。其最大的贡献在于能够快速、有效地检测到与目的基因相连锁的分子标记,能够在连锁图谱中标记稀疏区或末端寻找到新的标记,并以此作为侧翼标记 (flanking marker),为继续寻找更紧密的连锁标记、构建高分辨率的连锁群、物理图谱和进行基因的图位克隆奠定基础 (廖毅,2009)。其原理简单、操作方便,而且克服了许多物种没有或者难以创建近等基因系的限制,被广泛地应用于作物育种中。同时必须注意到,物种基因组大小对标记与目标基因连锁距离是有影响的,一般来说基因组大,多态性少的物种,获得与目标基因紧密连锁标记的可能性也比较小。BSA法所能检测到的分子标记与目标基因的可信遗传距离一般在 15~25 cM,所以此法并不是在每一物种上都能获得所需要的目的标记 (Mackay and Caligari,2000)。DNA池的质量对BSA法的检测效率也有很大的影响。所以在实验过程中一定要注意,一是保证DNA 的纯度和浓度。杂质会影响紫外光的吸收率,高浓度的 DNA 溶解不均匀。因此混池时,尽可能使用高纯度 DNA,并适当稀释,否则会影响分池的精确性。二是避免 DNA 池污染。DNA 污染的原因有多方面,包括基因重组率、本身的表型效应、性状鉴定误差、DNA 混合误差、PCR 效率不均等。我们可以通过减少PCR 循环次数、减少混池单株数、构建多池、重复实验等方法来降低实验误差,否则这些误差将会导致多态性被覆盖而找不到目标标记。随着分子生物学技术的快速发展,许多分子标记被成功的应用于控制农艺性状的重要基因的遗传定位及遗传图谱的构建。如 RAP D标记、RFLP 标记、SCAR 标记、CAPs 标记、SSR 标记、SNP 标记等。在这些标记中,SSR标记具有重复性好、可靠性高、共显性和适合自动化操作等优点,成为基因定位和遗传图谱构建的首选。而且,SSR标记广泛从布于整个基因组。据统计,大约有163426个 SSR 位点公布在苹果17条染色体上 (关玲等,2011)。苹果基因组序列的公布,使SSR标记的批量开发及相应引物的设计变的更加便捷 (Guan et al.,2011)。人们可以利用已有的 SSR标记对整个基因组进行筛查,快速的将目标基因所在区域进行锁定。然后在该区域查找SSR并设计合成新的引物,进一步缩小基因所在范围。在本研究中,576 个 SSR 标记,包括300对以前发表的标记和276 对新开发的标记被首次应用于抗炭疽菌叶枯病基因位点的定位。从300对已发表并定位的SSR标记中成功的获得了2 个与抗性基因 Rgls位点连锁的 SSR 标记,CH01d08和CH05g05。这两个标记被定位于 ‘Fiesta’בTotem’ 遗传图谱的第15条染色体上的基因组序列 MDC021953.346 和 MDC016699.237上,位于抗性基因 R gls位点的两侧。这一初步定位的结果为后续标记的开发提供了非常重要的信息,明确了 R gls基因所在的染色体及区域范围。随后9个位于CH01d08和CH05g05之间与Rgls位点连锁的新标记被开发出来。最近的标记与抗性基因 R gls位点间的遗传距离为0.5 cM。在前人的研究中,SSR标记 CH01d08 和 CH05g05 被定位在 ‘Fi-esta’בTotem’ 的遗传图谱中,遗传距离为 33.7 cM.而在本研究中,它们间的遗传距离为41.0 cM。这种类似的现象Paolo等 (2013)也报道过。他们在利用四个分离群体构建与柱型基因 Co位点紧密连锁的遗传图谱时发现,特定标记间的遗传距离会因不同群体,甚至同一群体不同群体大小而不同。这有可能是由于采样不同或遗传因素控制的局部的和全基因组的重组频率不同造成的 (Doligez et al.,2006;Vezzulli et al.,2008;Moriya et al.,2009)。理论上,标记在基因组上的遗传位置与物理位置应该是对应的。但是在本研究中发现,部分标记的遗传位置与物理位置并不是一一对应的。从附图3-4和附图3-5中可以看出,共有8个SSR标记的连锁图谱上的位置与在 ‘金冠’ 基因组序列中的物理位置是一致,另外3个标记,S0506078、S0405195 和 S0304011在遗传图谱上的位置与物理图谱上的位置不一致。这有可能是由于当前的苹果基因组重叠群序列产生装配错误,也有可能是苹果基因组中染色体结构的变异造成的。对引物S0405127 和 S0304673在亲本金冠的扩增片段进行测序发现,所测序列中有四处碱基与参考基因组存在差异。这四个差异碱基及上述的三个与理论顺序不符的标记有可能会纠正基因序列组装错误。在本研究中位于抗性基因 Rgls位点两侧的标记 S0405127 和S0304673间遗传距离与物理距离的对应关系显示,1.4 cM 对应着500 kb个碱基 (物理距离/遗传距离=357 kb/cM)。在对苹果抗黑星病基因Vf位点的分子标记遗传定位的研究结果中显示,每cM 的遗传距离对应423~857 kb的物理距离 (Patocchi et al.,1999)。而在对控制苹果柱型基因 Co位点的遗传定位研究中,每 cM 的遗传距离对应702 kb的物理距离 (Paolo B et al.,2013)。这与本研究中所得出的结论不相符。这有可能与研究材料的群体大小、DNA提取的纯度及表型鉴定的准确性有关。本研究中所利用的SSR标记,特别是新设计的276 对引物,有很大比例在亲本间能扩增出多态性条带,而在抗感池间无差异。虽然这部分标记与抗性基因 R gls不存在连锁关系,但仍可用于群体遗传图谱的构建,以及其他性状标记的筛选。在对PCR产物的检测中,使用了3.5%的琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳两种方式。采用3.5%的琼脂糖凝胶电泳条带清晰,分辨率高,可以清楚的显示差异条带,而且操作简单,电泳速度快,但是存在显示的条带少的缺点。而聚丙烯酰胺凝胶电泳产生的条带很多,分辨率极高,甚至能分离1 bp的碱基差别,但是制备和操作复杂。本试验主要采用3.5%的琼脂糖凝胶电泳,所以可能会导致一些引物因产生的多态性条带间差异小,没有显示出来而被淘汰。本研究首次开展了与抗炭疽病叶枯病基因 R gls位点紧密连锁的分子标记的筛选,并构建了第一张与抗性基因 R gls位点紧密连锁的分子标记遗传图谱。通过对207株 ‘金冠’ב富士’ 杂交组合F1 群体的验证,11个与Rgls位点连锁的标记将该基因定位在苹果基因组第15条染色体上,覆盖了49.2 cM的遗传距离,标记S0405127 和 S0304673分别位于抗性基因位点的两侧,遗传距离分别为 0.5 cM 和 0.9 cM,对应于 ‘金冠’ 苹果基因组的物理距离为500 kb。这两个标记可以应用于抗炭疽菌叶枯病分子标记辅助育种,在定植前对幼苗进行抗性筛选。这将会显著的降低苹果抗炭疽菌叶枯病育种的成本,缩短育种时间。本研究结果对深入开展抗炭疽菌叶枯病的遗传机理和分子机制研究有重要的意义,并为进一步的抗性基因的图位克隆和基因功能验证奠定基础。 -
报告苹果腐烂
病 的流行原因分析与防治关键技术探讨出版时间:2007苹果是我国种植面积最大的水果,目前全国苹果种植面积达190万hm2以上,产量达2110万t,居世界前列[1]。近几年来,苹果腐烂病在我国尤其是冀北地区,连续多年中偏重到大发生,已成为对苹果生产影响最大的病害,严重制约着我国苹果产业的健康发展。虽然目前针对苹果腐烂病的研究较多,但始终未能找出解决问题的根本措施,致使该病发生势头有增无减,蔓延十分迅速,甚至在新栽果园内都能找到大量病株。因此对该病的流行原因进行系统分析、对防治关键技术进行深入探讨势在必行。苹果腐烂病又称串皮湿、臭皮病、烂皮病,是一种发生范围广、为害程度重、损失极大的苹果树病害,全国各苹果产地均有发生,尤其是近10多年来在全国各地蔓延较迅速。该病轻者造成枝干枯死、结果能力锐减、产量和品质下降、结果年限缩短,重者可导致整树枯死,甚至毁园。据笔者近5年来调查,冀北地区苹果园苹果腐烂病感染率几乎达到100%,成龄果树病株率35%以上,严重的果园达到80%以上,幼树病株率也有10%左右,目前已有20%苹果园因此病而毁园。通过对产量损失率的调查,仅该病就达到20%左右,占苹果树整个病虫损失率的50%以上。苹果腐烂病的病原物是苹果黑腐皮壳,属子囊菌亚门真菌。苹果腐烂病菌是一种寄生性很弱的兼性寄生菌,具杀生寄生性。该病侵入寄主后,先处于潜伏状态,不立即致病,当树体或局部组织衰弱,或果树进入休眠期,生理活动减弱、抗病力降低时,病菌才由侵入部位向外扩展,进入致病状态[2]。因此,苹果树本身的抵抗能力强弱是该病能否发生的前提条件。2.1.1 施肥水平明显不足 据调查,20世纪80年代和90年代初期,苹果是冀北地区许多农户的主要收入来源,因此管理比较精细,平均每年每株果树施优质农家肥50 kg以上,夏季还要进行压青草、扩水盘、改良土壤、追施肥料等措施,冬季一般都要进行树干涂白。另外在病虫防治上,也基本上做到了及时防治、统一防治。因此,果树树势较强,各种病害发生均较轻。20世纪90年代后期尤其是近5 年以来,随着果品价格下降,果农积极性下降,管理比较粗放。据调查,目前有90%以上的苹果树不施用有机肥,50%以上的苹果树不追施肥料,20%以上的苹果树不施任何肥料,即使是施肥的,也多是在春季每株基施磷酸二铵等0.5 kg左右,不但养分含量单一,而且施肥量明显不足。2.1.2 掠夺式生产现象比较严重 大多数果农只追求眼前利益,一是不舍得疏花疏果,使果树负担过重,大小年现象严重,使树体过早衰弱,抵抗力下降;二是为了争取多挂果,普遍采取环剥措施,尤其是主干环剥现象还比较常见,造成环剥就有花芽、不环剥就没有花芽的恶性循环,不但造成树体衰弱、抵抗力下降、各种病害泛滥,而且使果树结果高峰期明显缩短。另外,近几年天气干旱,有的果园不能及时灌水,也是粗放管理的一个重要方面。防治不当主要表现在5个方面:一是施药次数不足。部分果农对苹果树重视不够,有的全年只施一、两次药,甚至有的果农完全不施药,也不进行其他管理,早期落叶病、瘤蚜等病虫害发生严重,造成树势极度衰弱,进而促使腐烂病大发生,提供了充足菌源,也危及到了整个果园;二是施药时期把握不好。苹果腐烂病萌芽前用药消灭枝干上的菌源十分重要,许多果农不重视此次施药,萌芽后刮除病斑必须进行,而多数果农到了花期以后病斑明显时才刮除,病斑扩展迅速,还会使病原菌大量传播;三是病斑刮除不彻底。发现病斑后,应刮除至木质部,边缘要超过病部1cm左右,而有的果农刮得浅或刮得范围小,造成病斑复发率较高,还有的果农不将刮下的病皮带走,再次形成侵染源;四是药剂选择不合理。目前用于防治腐烂病的药剂较混乱,许多果农选择不当,也是造成防治效果不好的重要原因;五是不注重夏秋季施药。多数果农只注重春季涂药,不注重夏秋季喷药保护和秋季涂药保护,形成新增病斑。20世纪80年代之前,冀北地区苹果主要品种是国光,其次是金冠、元帅、红星、白龙、倭锦、鸡冠等,苹果腐烂病很少发生,但随着品种间异地交流的广泛进行,富士等新品种开始传入,腐烂病也开始迅速发生。随着果农不断栽植和对老树进行改接换头,几乎所有果园均有外来接穗不断引入,目前这些已成为当地的主栽品种,在一定程度上造成菌源的不断传入,因此,品种间异地交流是苹果腐烂病发生的原因之一。苹果腐烂病的防治必须贯彻以加强栽培管理为中心内容的“预防为主、综合防治”的方针。健身栽培是指在苹果生产过程中,利用农业和物理等措施促进植株生长,增强植株对病虫的抵抗能力,减少病虫害的发生率,从而增加苹果的产量,提高品质。健身栽培是目前生产无公害苹果最有效、最根本、最安全、最经济的手段,也是防治苹果腐烂病的最重要手段。3.1.1 加强水肥管理,提高树势 在秋季落叶后至早春萌芽前,增施以有机肥为主,N、P、K、微肥配合的基肥,适时追肥,叶面喷施氨基酸叶肥、沼渣沼液等,要根据不同树龄、不同土壤条件、不同时期采取平衡施肥措施,通过增施有机肥和磷钾肥、补充叶肥等手段,增强树体对腐烂病的抵抗能力;萌芽前、春梢生长期、果实膨大期、采果后和封冻前要及时根据灌水指标灌水,保证土壤的田间持水量,尤其要防止春旱,但也要注意雨季及时排水,保证树体含水量正常,降低病菌扩展能力,促进伤口愈合。3.1.2 及时修剪,合理负担 大小年现象是造成树势衰弱的重要原因,因此要通过疏花疏果、修剪等措施,合理负担,避免树体消耗过大;适时冬剪和夏剪还可剪去病虫枝、枯死枝、内膛过密枝,改善树体通风透光条件,以减轻其他病虫害的为害,从而提高树势。3.1.3 及时清理病虫及残体,减少菌源 病枝、病树皮中有大量的腐烂病菌,因此要及时剪除病枝和病果、及时清理将刮下的树皮,带出园外深埋或焚烧处理,防止孢子飞散传播。3.1.4 减少环剥,避免树势衰弱 环剥在一程度上可以提高花芽分化率,从而增加挂果量,但也会造成树势衰弱,尤其是主干环剥,后果更严重,因此,应优先选用施沼渣沼液、喷芸薹素内酯等植物生长调节剂、涂抹促花剂等方法,尽量少环剥。3.1.5 增加保护,防止冻害发生 冻害是诱发腐烂病的重要因素,在冬季温度较低的地区,要通过树干涂白等措施,防止冻害发生。苹果腐烂病刮除病斑工作应根据其发生规律,及时进行。当春季气温回升后,树液开始流动,营养向生长点转移,造成树体枝干营养水平相对较低,导致抗病能力迅速降低,病菌则乘机扩展蔓延,形成春季发病高峰。另外,秋季果实迅速膨大,营养向果实大量转移,也会造成树体枝干营养相对缺乏,形成秋季发病高峰。因此,刮除病斑应在每年春、秋季分别进行。通过实践表明,每年进行3次比较合适,第一次在萌芽期,此时病斑尚未蔓延;第二次在苹果花期,尤其是降过一场春雨过后,此时病斑最容易辨别,可及时发现第一次未发现的病斑;第三次是在9月份,此时是该病蔓延的另一个高峰。刮病斑时,要刮至露出木质部,边缘要超过病部1cm左右,刮好后及时涂药保护。通过笔者调查和试验,目前防效较好的涂抹药剂有:3.315%甲硫·萘乙涂抹剂(灭腐新)原液、2.12%腐殖酸铜水剂(腐烂净)原液、4%腐殖酸铜水剂(843康复剂)原液、21%过氧乙酸水剂(果富康)5倍液、精制木酢液原液、40%氟硅唑(杜邦福星)15倍液等,一般防治效果可达80%~90%。病斑涂药保护时,有一些不易发现的病斑往往被忽略,造成年年涂药年年有新发病斑。因此,全树喷药防治是必不可少的措施,可有效消灭树皮浅层病菌,预防发病。可在萌芽前、谢花后2~4天、落皮层形成期(7月份)、果实生长中后期(8月下旬~9月上旬)各喷一次药,尤其是萌芽前施药尤为重要,可有效消除树体上潜伏的病菌。萌芽前喷施药剂可选用18%过氧乙酸水剂200倍液、石硫合剂5波美度、2.12%腐殖酸铜水剂100倍液、45%代森铵(施纳宁)水剂300~400倍液等;萌芽后喷施药剂可选用18%过氧乙酸水剂500倍液以及腐殖酸铜水剂等;秋季涂抹药剂可选用3.315%甲硫·萘乙涂抹剂(灭腐新)原液、腐殖酸铜类药剂等。另外,在苹果腐烂病发生高峰期,还可用21%的过氧乙酸200倍液进行树干淋洗或3~5倍液涂刷树干及骨干枝、45%代森铵(施纳宁)水剂100~200倍液涂刷树干及骨干枝,可收到很好的效果。在5~9月份,其中以5~6月份最好,用锋利的刀将所有的病皮、粗翘皮全部刮除,露出白绿或黄白色皮层为止,不要触及形成层,皮层中若有坏死病斑也一律刮除。重刮皮可将多年积累的各种类型病变组织和侵染点彻底清除,且可刺激树体产生愈伤组织,增强抗病力。对于主干上病疤较大、为害较严重的果树,要及时采取桥接或脚接的方式,促进树势恢复。 -
报告葡萄综合性病害——葡萄酸腐
病 出版时间:2018葡萄酸腐病由多种因子、多种病原引起或造成的。葡萄酸腐病近十年在我国逐渐成为重要的病害之一,很多人把酸腐病与炭疽病或白腐病相混淆,使用防治炭疽病或白腐病的药剂,不但没有防治效果,照样造成果实的腐烂,而且增加了成本,威胁食品安全(容易造成农药残留超标)。根据有关资料,并依据作者近8年的实际监测和试验,详细介绍葡萄酸腐病,为葡萄种植者正确防治提供参考,供同行商榷和批评指正。1999年,在山东省烟台市,作者首次在国内见到酸腐病,并开始收集资料。当时,由于对酸腐病比较陌生,没有足够重视。2000年,开始对葡萄酸腐病进行调查,发现酸腐病在我国的北京、河北、山东、河南、天津等地普遍发生,有些葡萄园损失非常大,达到80%。2004年有几个葡萄园全军覆没。我们对品种间的发病差异情况进行了调查,发现品种间对酸腐病的抗病性有较大差异。酸腐病是后期病害,基本上是果实成熟期的病害。为害最早的时期,是在封穗期之后。酸腐病的症状可以概括为以下几方面。有烂果,即发现有腐烂的果粒;套袋葡萄,如果在果袋的下方有一片深色湿润(习惯称为“尿袋”),就表明该果穗上有酸腐病;有类似于粉红色的小蝇子(醋蝇,长4毫米左右)出现在烂果穗周围;有醋酸味;正在腐烂的果粒,在烂果内,可以见到灰白色的小蛆;果粒腐烂后,腐烂的汁液流出,会造成汁液经过的地方(果实、果梗、穗轴等)腐烂;果粒腐烂后干枯,干枯的果粒只是果实的果皮和种子(彩图10-1-1至彩图10-1-4)。果实腐烂、降低产量;果实腐烂造成汁液流失,造成无病果粒的含糖量降低;鲜食葡萄受害到一定程度,即使是无病果粒,也不能食用;酿酒葡萄受酸腐病为害后,汁液外流会造成霉菌滋生,干物质含量增高(受害果粒腐烂后,只留下果皮和种子并干枯),使葡萄失去酿酒价值。首先是有伤口,机械伤(如冰雹、风、蜂、鸟等造成的伤口)或病害(如白粉病、裂果等)造成的伤口;第二是导致果穗周围和果穗内的高湿度;第三,醋蝇的存在。此外,树势弱会加重酸腐病的发生和为害。酸腐病是真菌、细菌和醋蝇联合为害。严格讲,酸腐并不是真正的一次性侵染病害,应属于二次侵染病害。首先是由于伤口的存在,从而成为真菌和细菌的存活和繁殖的初始因素,并且引诱醋蝇来产卵。醋蝇在爬行、产卵的过程中传播细菌。引起酸腐病的真菌是酵母菌。空气中酵母菌普遍存在,并且它的存在被看作对环境非常有益。所以,发生酸腐病的菌源之一“酵母菌”来源不是问题。引起酸腐病的另一病原菌是醋酸菌。酵母把糖转化为乙醇,醋酸细菌把乙醇氧化为乙酸;乙酸的气味引诱醋蝇,醋蝇、蛆在取食过程中接触细菌,在醋蝇和蛆的体内和体外都有细菌存在,从而成为病原细菌的携带者和传播者。醋蝇是酸腐病的传病介体。传播途径包括:外部(表皮)传播,即爬行、产卵过程中传播细菌;内部传播,病菌经过肠道后照样能成活,使醋蝇幼虫取食等活动,具有很强的传播病害的能力。醋蝇属于果蝇属昆虫,据报道,世界上有1000种醋蝇,其中法国有30种,是酸腐病的传播介体。一头雌蝇一天产20粒卵(每头可以产400~900粒卵);一粒卵在24小时内就能孵化;蛆3天可以变成新一代成虫;由于繁殖速度快,醋蝇对杀虫剂产生抗性的能力非常强,一般一种农药连续使用12个月就会产生很强的抗药性。在我国,作为酸腐病介体醋蝇的种类及它们的生活史还不明确。从国外有关资料上看,首先有伤口,而后醋蝇在伤口处产卵并同时传播细菌,醋蝇卵孵化、幼虫取食同时造成腐烂,之后醋蝇指数性増长,引起病害的流行。品种间的发病差异比较大,说明品种对病害的抗性有明显的差异。美人指受害最为严重,其次为里扎马特、酿酒葡萄(如赤霞珠)、无核白(新疆)、白牛奶(张家口的怀来、涿鹿、宣化)等发生比较严重,红地球、龙眼、粉红亚都蜜等较抗病。不管品种如何,为害严重的果园,损失在30%~80%,甚至全军覆没。品种的混合栽植,尤其是不同成熟期的品种混合种植,能增加酸腐病的发生。据作者观测和分析:酸腐病是成熟期病害,早熟品种的成熟和发病,为晚熟品种醋蝇数量的积累和两种病原菌的菌势创造了条件,从而导致晚熟品种酸腐病的大发生。防治原则:以防病为主,病虫兼治。药剂的筛选原则:①同时能防治真菌、细菌。②能与杀虫剂混合使用。③因为酸腐病是后期病害,必须选择能保证食品安全的药剂。具体防治措施和方法如下。尽量避免在同一果园种植不同成熟期的品种;增加果园的通透性(合理密植、合理叶幕系数等);合理使用或不使用激素类药物,避免果皮伤害和裂果;避免果穗过紧,造成果粒挤压破裂;合理施用肥料,尤其避免过量使用氮肥;合适的水分管理,避免水分的供应不平衡造成裂果等。早期防治白粉病等病害,减少病害裂果造成的伤口;幼果期使用安全性好的农药,避免果皮过紧或果皮伤害;防控鸟害对果实的伤害等。这些防治措施对酸腐病的防治有积极的意义。成熟期的药剂防治是防治酸腐病的最为重要途径。根据国外的资料和我们近几年的农药筛选,将80%水胆矾石膏WP和杀虫剂配合使用,是目前化学防治酸腐病的推荐办法。转色期前后使用1~3次80%水胆矾石膏WP,10~15天一次。80%水胆矾石膏WP使用400倍液,使用量一般为400~600克制剂/亩(如果注意重点喷洒穗部,200克/亩可以有效控制酸腐病)。杀虫剂的选择:选择低毒、低残留、分解快的杀虫剂,这种杀虫剂要能与水胆矾石膏混合使用,并且1种杀虫剂(化合物)只能使用1次。可以使用的杀虫剂有10%高效氯氰乳油(3000倍液)、50%辛硫磷(1000倍液)、80%或90%敌百虫1000倍液等。发现酸腐病要立即进行紧急处理:剪除病果粒,用80%水胆矾石膏WP 400倍液+10%高效氯氰2000倍液涮病果穗。对于套袋葡萄,处理果穗后套新袋,而后整体果园施用(立即喷)一次触杀性杀菌剂。美国加利福尼亚大学农学院1984年编写出版的《葡萄病虫害综合防治》一书中,就介绍了酸腐病(sour rot),被划分到次生或二次侵染病害,属于穗部病害(bunch rot)。法国有关资料称酸腐病为acid rot,近十几年在法国已成为重要病虫害之一,如果防治不力,可造成30%~80%的损失。在我国,葡萄酸腐病有进一步发展的趋势,希望引起广大葡萄种植者高度重视。 -
报告绿色木霉菌Tr9701的抑
病 机理及其在黄瓜叶片、根部定殖初探出版时间:2007木霉菌(Trichoderma spp.)广泛存在于土壤及其他基物中,作为生防菌以其生长速度快,产孢量大、作用谱广、作用机制多样、能在植株、土壤中增殖并形成有效群体等诸多优势而备受关注。我们针对蔬菜上常见病害,从土壤中分离、筛选获得对蔬菜病原菌具有较强抑菌活性的绿色木霉菌株Tr9701,通过对其产几丁质酶活性等对其抗病机理进行了初探,同时试验了其在黄瓜叶片、根部的定殖能力,为今后开发可替代某些化学农药的微生物杀菌剂做了基础性工作,现将初步研究结果记述如下。1.1.1 供试菌株 绿色木霉Tr9701(Trichderma viride),由天津市植物保护研究所生防室筛选、鉴定。供试病原菌立枯丝核菌(Rhizoctonia solani)、番茄灰葡萄孢霉(Botrytis cinerea),由天津市植物保护研究所病害室分离、鉴定。1.2.1 绿色木霉菌制剂几丁质酶检测据Harman等的方法[1],在胶体几丁质培养基中培养绿色木霉菌,进行产几丁质酶预试验,然后将绿色木霉菌分生孢子液接种到合成诱导液体培养基中诱发几丁质酶产生,以不加胶体几丁质为阳性对照,在28℃,150r/min振荡培养,连续提取培养液制备几丁质酶粗提液。检测采用还原糖法[2]处理,在试管中加入几丁质酶粗提液、10g/L胶态几丁质各1ml,37℃恒温水浴30min,加入DNS10ml,混匀后沸水浴10min,用水冷却至室温,观察颜色变化,以100℃高温灭活处理15min几丁质酶粗提液为对照,试验重复3次。1.2.2 绿色木霉几丁质酶粗提液对病菌的抑菌活性测定 将黄瓜立枯丝核菌、番茄灰葡萄孢霉菌菌丝块转移到平板上,每平皿接种4块,分布于4角,平皿中心放滤纸片并加入100μl几丁质酶粗提液或阳性对照液,重复3次,空白加入等量无菌水,定期观察抑菌圈大小。1.2.3 绿色木霉菌对立枯丝核菌重寄生作用的显微观察 将灭菌赛璐玢膜置于直径90mm的水琼脂培养皿上,在平板两侧各植入经活化培养的绿色木霉和立枯丝核菌菌丝块,25℃下对峙培养,待菌丝接触后置于光学显微镜下观察。1.2.4 绿色木霉菌在黄瓜叶片和根部的定殖 取菜田表层10cm深处土壤,混腐熟的猪粪和蛭石(按3:1:1比例),过筛后,用150倍甲醛液消毒,边喷边混,喷匀后堆起,盖塑料布闷5天,然后晾晒14天,待残药挥发后铺于苗床待用。同时将冰箱保存的绿色木霉菌活化,转接到小麦粉培养基上,在25℃温度下培养7天,培养基上长满菌丝和孢子后,在组织捣碎机中捣碎、过滤,配成绿色木霉菌孢子悬浮液(5×106个孢子/ml)备用。木霉菌叶面定殖:将培养制成的孢子悬浮液用消过毒的手持喷雾器喷雾,均匀喷至黄瓜叶面正反两面,直到叶面上均匀布满一层细微水珠而不流淌为止。喷雾后1h取第一次样,以后每隔一周取一次样,共4次。每次每处理取的叶片剪成0.5cm见方小片,称量取样叶片加入10倍无菌水中振荡(120r/分)15min。取稀释液0.1ml涂布于木霉选择性培养基上,25℃下培养3~4天,5皿重复,计菌落数。以第一次取样所检测到的菌量为接种量,菌量以cfu/g叶表示。木霉菌根际定殖:将培养制成的孢子悬浮液,均匀浇灌至黄瓜根部,直至黄瓜苗根部土壤全部浸润为止。浇灌后1h取第一次样(地下1~2cm处根围土壤),以后每隔3天取一次样,共4次。检查时,分别称取根围土壤1g,加入无菌水20ml中振荡(120rpm)15min。取稀释液0.1ml涂布于木霉选择性培养基上,25℃下培养3~4天,5皿重复,计菌落数。以第一次取样所检测到的菌量为接种量,菌量以cfu/g叶表示。通过预试验,绿色木霉菌Tr9701在胶体几丁质培养基上生长可以形成显著几丁质酶解透明圈,因此进行了绿色木霉菌几丁质酶的诱导试验。诱导条件下几丁质酶粗酶液加入DNS后变为深棕红色,与阳性对照相比有显著差异,说明绿色木霉菌菌株产生几丁质酶,且经诱导处理的绿色木霉菌几丁质酶产生量明显提高,经检测,在培养第5d时达到最大值。绿色木霉菌Tr9701几丁质酶粗提液对立枯丝核菌、灰葡萄孢霉的抑菌活性在平皿接种后2天内,立枯丝核菌、灰葡萄孢霉菌丝生长迅速,但菌丝接近木霉几丁质酶粗提液接种点周围时,生长缓慢,最后停止,从而形成明显抑菌圈。空白对照无抑菌圈,立枯丝核菌菌丝长满平皿,灰葡萄孢霉菌丝长满平皿并形成大量菌核。试验表明,绿色木霉Tr9701的几丁质酶粗提液对立枯丝核菌、灰葡萄孢霉的抑菌圈直径分别为28mm和15mm,比阳性对照的抑菌圈直径大,其差异达到了显著水平。显微观察显示绿色木霉菌对立枯丝核菌具有较强的寄生能力,绿色木霉菌丝与立枯丝核菌菌丝接触后并列生长或缠绕,有时以钩状结构入侵立枯丝核菌菌丝。在接触后期则观察到被寄生的立枯丝核菌菌丝断裂和消解的现象。2.4.1 绿色木霉菌在黄瓜叶面的定殖 绿色木霉菌在叶面上的定殖动态见表1。由结果可知,绿色木霉菌在叶面环境中由于各种条件的影响,第一周内的菌量比初始菌量降低。此后绿色木霉菌适应了叶面环境,菌量逐渐回升,第14天检测菌量为1.02×104cfu/g叶片。21天后菌量持续下降,尤其是第28天菌量降至0.12×104cfu/g叶片。镜检观察绿色木霉菌Tr9701在叶面喷雾后,主要定殖于叶面气孔周围、腺毛基部及叶面凹陷处。这些位点或是分泌物产生处,或是叶面水分分布较多处,能为绿色木霉菌的生长繁殖提供适宜的条件。同时,这些位点也是其他病原菌的竞争位点,通过绿色木霉菌的人工接种,相比病原菌具有种群数量大,出现早的特点。因此,绿色木霉菌对这些位点的抢先占领,不仅有利于本身的生存,而且使黄瓜叶面受到保护,免于病原菌的侵染。重复调查时间1h3天7天14天21天28天11.241.210.941.150.830.1820.960.950.810.920.660.0831.151.080.860.980.790.1441.371.400.951.030.720.10平均1.181.160.891.020.750.12表1 绿色木霉菌孢子在黄瓜叶片上定殖情况(孢子着生量×104个孢子/g)2.4.2 绿色木霉菌在黄瓜根际的定殖 绿色木霉菌在黄瓜根际土壤中定殖结果见表2。由结果可知,第一周内土壤的菌量比初始菌量降低,可能是在根际土壤环境中,由于各种因素的影响,木霉菌受到一定抑制,此后绿色木霉菌适应了土壤环境,菌量逐渐回升,第14天检测菌量为2.64×104cfu/g叶片。21天后菌量持续下降,尤其是第28天菌量降至0.68×104cfu/g叶片。在调查中发现,绿色木霉菌定殖黄瓜根部能力受水分含量和pH值影响明显,水分偏高或偏低都影响绿色木霉菌菌株在黄瓜根部的定殖,pH偏酸性条件下的定殖量明显高于偏碱性条件下的定殖。重复调查时间1h3天7天14天21天28天12.432.371.852.521.090.6422.692.592.032.731.240.7232.362.321.892.611.080.6542.842.561.942.701.110.71平均2.582.461.922.641.130.68表2 绿色木霉菌孢子在黄瓜根部定殖情况(孢子着生量×104个孢子/g)木霉菌腐生性强,适应性广,生长和繁殖快,可迅速利用营养和占据空间,是当前微生物菌剂控制病害的研究热点[3]。本试验结果表明,我们所筛选的绿色木霉菌Tr9701有较强的产几丁质酶活性,且经诱导处理酶产量明显提高,其酶粗提液经试验对立枯丝核菌、灰葡萄孢霉有显著抑制作用,通过诱导产生的木霉几丁质酶在对于抑制病原菌的生长具有重要意义。经显微观察发现,绿色木霉Tr9701对于立枯丝核菌是通过趋向生长、识别、接触缠绕和穿透,寄生于病原真菌之上,对立枯丝核菌具有较强的寄生能力。此现象证明,当绿色木霉菌遇到立枯丝核菌等病原菌时,受到刺激和诱导,产生溶菌酶,抑制立枯丝核菌等的生长,并可降解菌丝。生防菌在植物表面的定殖能力反映了生防菌在植物表面与病原菌竞争空间和营养的能力。本研究表明,绿色木霉菌可以在黄瓜叶面和根部定殖。据Darah(1991)报道,根圈微生物的分布与沿根的可溶性碳的分布距离有关,微生物量的积累有赖于根分泌物的释放,因此添加一定的营养可以促进绿色木霉Tr9701的定殖。本研究进一步证明,绿色木霉Tr9701产几丁质酶、寄生、定殖能力强,是较好的生防材料。当前由于生防微生物控制植物病害具无污染、价格低廉的优点,具有广阔的应用前景。因此对绿色木霉菌Tr9701的发酵工艺、田间应用范围等有待进一步研究。