首页 <
知识图谱:全部
-
报告(三十三)高粱芒蝇(Sorghum Shoot Fly)
出版时间:2013高粱芒蝇(Atherigona soccataRondani),别名高粱秆蝇,俗称蛀秆蝇,属双翅目(Diptera),蝇科(Muscidae)。在南欧、北非、西非、南亚、东南亚(缅甸、泰国)等热带和亚热带地区广为分布。中国分布于湖北、湖南、四川、贵州、云南、广东和广西等地。高粱芒蝇以幼虫为害。被害典型症状为植株死心、死苗、分蘖增多,不能正常抽穗和结实。初孵幼虫由心叶间隙钻入生长点附近取食,造成幼苗生长点坏死,导致心叶枯萎和死亡,成“死心”状。枯死心叶易从心叶基部断裂,易拔出,并有腥臭味。在高粱出苗后1~4周是芒蝇严重为害期。高粱苗期被害后,生育期推迟,植株矮小,分蘖增多,致成株期失去授粉时机,严重影响繁育。高粱芒蝇主要为害高粱和野生高粱。图3-97 高粱芒蝇田间为害状成虫体长4mm左右,体黄褐色、灰黄色,背面有3条灰黑色纵纹。雌成虫前足腿节的基半部黄色,端半部黑色,腹部可见节的第2~4节背面各有1对黑色斑;雄虫腿节全为黄色,或端部部分黑色,腹部仅第2~3节各有1对黑斑。雄虫腹部尾节隆起略呈枕状,两侧突呈短扁柱状,腹部尾节隆起略呈枕状,两侧突呈短扁柱状。卵白色,椭圆形,大小0.8~1.2mm×0.2mm,中央纵行隆起,具网状纹。成熟幼虫(3龄)体长8~10mm,蛆形,初浅黄白色半透明,腹末色暗,老熟时黄色或鲜黄色,中央1对黑色气门显著凸起,口钩黑色,全体共11节,第11节末端黑色,这是该种区别于其他种的主要特征。蛹长3.5~5mm,棕红至棕黑色,圆筒形,前端平截边缘隆起似桶盖。西南年发生5~7代,华南年发生11~12代,以幼虫或蛹在生育后期高粱的分蘖苗里及土中越冬。华南南部可终年活动,无越冬现象。蛹期7天 左右。成虫羽化后经补充营养交配产卵,每只雌蝇一生可产卵24~34粒,多把卵散产在幼苖心叶背面,每株1~3粒,孵化期2~3天。初孵化幼虫从叶片向叶鞘或心叶爬行移动,从心叶缝侵入,为害幼苗生长点。幼虫以腐烂的植物组织为食,幼虫期7~10天。高粱芒蝇成虫对腐烂鱼虾的腥臭味有较强的趋性,可利用该特点进行集中诱捕灭杀。高粱品种间对芒蝇抗感性存在差异。图3-98 高粱芒蝇为害(分蘖和分枝增多)图3-99 高粱芒蝇为害(植株生长点被害、心叶枯死)图3-100 高粱芒蝇成虫图3-101 高粱芒蝇幼虫和蛹1.农业措施防治 高粱出苗后1~4周最易受芒蝇为害。应调整播期,使高粱幼苗敏感期躲过害虫盛发期。在芒蝇严重发生地区,加大高粱播种量,发现死心及被害苗及时拔除,带到田外深埋或焚烧,杀死幼虫。品种间存在一定的抗感差异,推广种植抗虫和耐虫品种。清除田埂、路边和田间的杂草及枯枝落叶,耕整土地以消灭越冬虫源和早春寄主。2.物理防治 利用高粱芒蝇成虫对腐烂鱼虾的腥臭味有较强的趋性,在芒蝇成虫发生期,于高粱田边放置装有腐烂鱼虾的容器,集中诱杀。3.化学防治 用70%吡虫啉湿拌种剂拌种。在幼虫侵入之前,施用2.5%敌杀死乳油,或20%氰戊菊酯乳油,或10%氯氰菊酯乳油。 -
报告(二十九)高粱蚜(Sorghum Aphid)
出版时间:2013高粱蚜(Melanaphis sacchariZehntner),异名Longiunguis sacchari Zehntner,别名甘蔗蚜、甘蔗黄蚜,属同翅目(Homoptera),蚜科(Aphididae)。高粱蚜分布广泛,遍及我国各高粱栽培区。高粱蚜在高粱整个生育期均可为害,以成蚜、若蚜集聚在高粱叶背刺吸植株汁液。初发期多在下部叶片为害,逐渐向上部叶片扩散。叶背布满虫体,并分泌大量蜜露,滴落在叶面和茎秆上,油亮发光,故称“起油株”。蜜露覆盖影响植株光合作用,且易引起霉菌寄生,致被害植株长势衰弱,发育不良。蚜虫为害后,叶片变红、枯黄,小花败育,穗小粒少,产量与品质下降。此外,蚜虫还可传播高粱矮花叶病毒,对产量影响更大。图3-81 高粱蚜虫田间为害状在田间,高粱蚜主要在寄主叶片背面,由下向上扩展为害,而玉米蚜主要在心叶或穗部刺吸为害。高粱蚜除为害高粱外,还可为害玉米、谷子、小麦及其他禾本科植物。高粱蚜的体色有两种:一种为淡黄色或黄豆色,另一种为紫红色。无翅孤雌蚜体长1.5~2.0mm,腹部中央有成列的褐色横纹。触角6节,为体长的1/2,除第5节端部和第6节为黑色外,其余为淡褐色。腹部第1~5节背侧各有1条暗色斑纹。腹管短,黑色。尾片黑色,圆锥形,与腹管等长,基部稍缢缩。有翅孤雌蚜体长1.5mm,有翅。头、胸部、触角、足、腹管、尾片、尾板均黑色,其余均黄色。触角6节,为体长的2/3,第3节有8~13个感觉圈。腹部第1~7节背面各有1条深色横带。卵椭圆形,黑色,长约0.5mm。图3-82 高粱蚜虫(紫色型)为害状(叶片霉污)(右)图3-83 高粱蚜虫(黄色型)为害状高粱蚜发生世代短,繁殖快,每年可繁殖16~20代。北方以卵在荻草上越冬,南方以成虫及若虫在被害株的茎秆及叶鞘内越冬,广西南部全年都可繁殖为害。高粱蚜越冬卵孵化后,在荻草上繁殖1~2代后,迁入高粱田繁殖为害,9月份回迁到荻草上产卵越冬。高粱蚜发生数量受多种环境因素影响,以气象和天敌因素最为密切,春夏干旱极易导致蚜虫大发生。高粱蚜具有两性世代和孤雌胎生世代。图3-84 高粱蚜虫(紫色型)(若虫、成虫)图3-85 高粱蚜虫(黄色型)(若虫、成虫)高粱蚜在平均气温7℃以上即可繁殖为害,旬均气温23℃、相对湿度85%左右最适于生存。暴雨会使得高粱蚜被冲刷,有一定的抑制作用。高粱蚜天敌种类多,有蜘蛛、瓢虫、食蚜蝇、草蛉、蚜茧蜂、步行甲及蚜霉菌等。天敌密度高时对其种群数量增长有抑制作用。不同高粱品种的抗蚜性存在显著差异,我国各地均有一些抗蚜或耐蚜品种。1.种植抗虫品种 高粱杂交种如辽杂6号、辽杂7号、辽杂10号、锦杂93号等对高粱蚜虫具有抗性,应因地制宜选用抗虫品种。高粱品系TAM428、L407A、L407B等对高粱蚜虫具有高度抗性,可作为抗蚜育种材料。2.农业措施防治 可采用高粱、大豆间作,改善田间小气候,增加湿度,控制高粱蚜繁殖为害。3.化学防治 在蚜虫早期点片发生期及为害盛期前进行药剂防治。①施撒毒砂:用40%乐果乳油50ml,对等量水拌匀后,再加入10~15kg细沙,制成毒砂扬撒在高粱株上。②乐果涂茎:将40%乐果乳油稀释成100倍液进行涂茎(1~2)节,逐株涂抹,不可漏涂。③喷雾:10%吡虫啉乳油,或50%抗蚜威乳油,或2.5%溴氰菊酯乳油或20%杀灭菊酯乳油,或40%乐果乳油喷雾。禁用对高粱敏感的敌敌畏、敌百虫等有机磷农药,以免造成药害。 -
报告棉花枯萎病的农药防治
出版时间:2012防治棉花枯萎病的农药包括除草剂类、化学类和生物类。除草剂类农药主要是氟乐灵;化学类农药是指杀菌剂和特殊的化学物质;生物类农药是具有防病作用的生物制剂。大量研究结果表明,除草剂可以影响由真菌、细菌、线虫或病毒等引起的植物病害。除草剂对植物病害的影响存在着正负两种截然不同的作用。即使同一种除草剂对同一种植物病害的影响也有差异。氟乐灵等二硝基苯胺类除草剂减轻植物病害的发生,已有许多报道(Buczacki,1973;Grau等,1997;Teasdale等,1979);而且有研究证明,属于二硝基苯胺类的胺氟灵和胺硝草能减轻棉花枯萎病的发生(Youssef等,1985)。Grinstein等(1984)报道了氟乐灵能抑制棉花枯萎病的发生。但也有报告说,在温室试验中,土壤经氟乐灵处理后增加了感病品种棉花枯萎病的发病率(Youssef等,1982)。这种在同一除草剂与植物病害系统中结果的差异可能是由于所采用的技术、除草剂的剂量与质量、病原菌,土壤类型及作物品种等多种因子对除草剂与植物病害之间相互作用的影响而造成的(Papavizas等,1979)。宋凤鸣等(1990、1992、1993、1994、1995)和张元恩等(1994)就氟乐灵防治棉花枯萎病的效果及其机制做了较系统的研究,取得了具有理论意义和应用价值的研究成果。从枯萎病发病的时间动态看,氟乐灵处理组棉苗枯萎病的株发病率和病指显著低于对照。在接种后的第6天,处理组和对照组棉苗均开始表现枯萎病症状,且株发病率无明显的差异,此后,氟乐灵处理组枯萎病的株发病率增加较缓慢,接种12天后,株发病率增加趋于稳定,而对照组株发病率增加很快,接种后第18天达最高(图7-1)。图7-1 氟乐灵处理后棉苗枯萎病发病的时间动态(宋凤鸣等,1995)从病指看,氟乐灵处理显著降低轮作地苗床和连作地苗床上棉苗枯萎病的发病率及病指,其差异均达到显著或极显著水平(表7-1)。5月10日处理组病害发病率及病指比对照降低80%以上,均高于5月21日的下降率(在40%~60%),可见,氟乐灵处理减轻枯萎病发病的作用随时间推移而下降。连作地苗床和轮作地苗床上枯萎病发生和病指相差不大。来自氟乐灵处理苗床的棉苗移栽到大田后,在现蕾初期枯萎病的发病率和病指均明显低于对照棉苗(表7-2)。处理棉苗枯萎病发病率一般降低65%左右,病指降低65%~75%。从大田枯萎病发病率及病指来看,以连作地苗床棉苗移栽到连作棉田为最重,轮作地苗床棉苗移栽到连作棉田次之,轮作地苗床棉苗移栽到轮作棉田为最低。这也证明了轮作可以减轻棉花枯萎病的发生。苗床类型处理5月10日5月21日发病率(%)病指发病率(%)病指连作地苗床对照7.78±0.803.50±0.5114.67±1.357.45±0.24氟乐灵1.22±0.68**(84.53%)0.45±0.33**(87.14%)8.22±1.78*(43.97%)3.33±0.87**(55.30%)轮作地苗床对照7.33±0.843.14±0.2314.45±1.137.25±0.30氟乐灵1.31±0.29**(83.36%)0.42±0.14(86.62%)6.44±0.68**(55.43%)3.81±0.20**(61.24%)表7-1 氟乐灵处理后对苗床上棉苗枯萎病的抑制作用(宋凤鸣等,1995)苗床类型大田类型处理发病率(%)病指轮作地苗床连作棉田对照6.37±0.593.02±0.71氟乐灵2.15±0.12**(66.25%)1.07±0.16**(64.57%)轮作地苗床轮作棉田对照4.98±0.352.68±0.16氟乐灵1.76±0.35**(64.66%)0.69±0.14**(74.25%)连作地苗床连作棉田对照9.19±4.183.95±0.91氟乐灵3.22±0.61**(64.98%)1.17±0.35**(70.38%)表7-2 氟乐灵播前土壤处理对棉花现蕾期枯萎病发生的影响(宋凤鸣等,1995)张元恩等(1994)也报道了相类似的研究结果(表7-3)。处理病指生长箱中田间小区30天40天50天30天70天对照4954654095氟乐灵处理1520241145除草通1925371043表7-3 二硝基苯胺类除草剂对棉花抗枯萎病的抑制作用由氟乐灵诱导的棉花抗病性增加,不是氟乐灵对枯萎病菌抑制的结果,不是根部分泌物变化的结果,也不是促进益菌生长,拮抗病原菌的结果。因为氟乐灵对菌丝生长、孢子萌发的抑制作用十分有限(表7-4),也不影响枯萎病菌对棉花根部的侵入,而棉花抗枯萎性的提高,是棉花本身抗性机理变化的结果。处理萌发率菌落半径(cm)3h后6h后3天6天9天12天15天菌丝重(g)对照13.7741.893.105.506.727.338.000.63620.64100.6305氟乐灵20.6860.643.405.797.207.968.700.74120.72310.6954表7-4 氟乐灵对枯萎病菌孢子萌发和菌丝生长的影响(张元恩等,1994)氟乐灵对棉花本身抗枯萎病性的机理变化体现在以下7方面(宋凤鸣等,1933,1995)。出苗后周数1周2周3周浙肖棉1号中棉所12浙肖棉1号中棉所12浙肖棉1号中棉所12氟乐灵(μg/g)11.151.41**2.05**1.73**3.08**3.67**51.21*1.45**2.07**1.78**2.82**3.53**101.24*1.49**2.27**1.91**3.08**3.72**对照丙酮0.941.031.241.181.641.75灭菌水0.830.971.031.191.461.70表7-5 氟乐灵播前土壤处理后棉苗植株内木质素含量的变化经氟乐灵播前土壤处理出苗后1~3周,2个供试品种棉苗植株内木质素含量均高于对照,这表明氟乐灵促进了木质素的合成与积累。但在5~10μg/g的氟乐灵处理浓度范围内,木质素含量没有差异。出苗后1~5周内,处理植株与对照植株内木质素含量的差异逐渐增大表明,氟乐灵处理对木质素合成与积累的诱导作用在这一期间是持续的。氟乐灵对抗病品种中棉所12木质素合成与积累的促进作用强于对感病品种浙肖棉1号的作用。出苗后周数1周2周3周浙肖棉1号中棉所12浙肖棉1号中棉所12浙肖棉1号中棉所12氟乐灵处理(μg/g)132*3351**68**82**93**533*3248**74**80**106**1036*3755**76**88**109**对照丙酮223030435460灭菌水212527415061表7-6 氟乐灵播前土壤处理后棉苗植株内苯丙氨酸解氨酶活性的变化氟乐灵处理后,增加了2个供试品种棉苗植株内PAL的活性,说明氟乐灵对棉苗PAL活性具诱导作用,但在不同浓度处理之间,PAL活性差异不明显。在处理出苗后第二周内,2个供试品种棉苗植株内PAL活性的增加大于处理后第三周内的增加,表明氟乐灵对PAL活性的诱导作用发生较早;随着时间的推移,这种诱导作用逐渐减弱。氟乐灵对抗病品种中棉所12 PAL活性的诱导作用大于对感病品种浙肖棉1号PAL活性的诱导作用。但在中棉所12出苗后1周时,处理植株中,PAL活性与对照中的PAL活性没有显著性差异,可能与氟乐灵对中棉所12棉花的诱发作用较迟有关。氟乐灵处理后,2个供试品种棉苗植株内过氧化物酶活性高于对照,表明氟乐灵对过氧化物酶活性具有促进作用,且这种促进作用具有持续性。对抗病品种中棉所12过氧化物酶活性的促进作用,强于对感病品种浙肖棉1号的作用。但在不同浓度处理之间,酶活性的差异不显著。出苗后周数1周2周3周浙肖棉1号中棉所12浙肖棉1号中棉所12浙肖棉1号中棉所12氟乐灵处理(μg/g)160.2**68.563.4*77.4**77.8**90.3**564.9**70.0*68.8**76.8**79.5**93.9**1071.0**69.2*73.6**78.8**92.5**表7-7 氟乐灵播前土壤处理后棉苗植株内过氧化物酶活性的变化出苗后周数1周2周3周浙肖棉1号中棉所12浙肖棉1号中棉所12浙肖棉1号中棉所12对照丙酮52.861.254.663.457.065.8灭菌水53.282.455.064.657.867.0表7-7 氟乐灵播前土壤处理后棉苗植株内过氧化物酶活性的变化(续)-1图7-2显示出,浙肖棉1号过氧化物酶同工酶有5条共同谱带[A(Rf=0.53)、B(0.47)、C(0.40)、D(0.32)和E(0.25)];中棉所12则有4条共同谱带[A’(0.46)、B’(0.41)、C’(0.35)和D’(0.28)]。氟乐灵处理后,过氧化物酶同工酶组成发生了变化,增加了一些新谱带;且氟乐灵对过氧化物酶同工酶的影响随着处理后时间的推移而不同。在出苗后第一周和第二周,浙肖棉1号增加了F(0.17)、G(0.13)和H(0.05)3条新谱带;在出苗后第三周时又增加了I(0.21)、J(0.07)和K(0.11)3条新谱带。在出苗后第一周,中棉所12增加了E’(0.19)带;第二周又增加了G’(0.15)带;第三周则又增加了F’(0.30)谱带。在不同浓度处理之间,2个供试品种的过氧化物酶同工酶没有差异。图7-2 氟乐灵播前土壤处理后棉苗植株内过氧化物酶同工酶图谱经氟乐灵诱发处理再接种病菌后,棉苗体内维管束组织中类萜烯醛的积累水平明显大于对照组。虽然对照组棉苗在接种后18天时,也有较高水平的类萜烯醛积累量,但在接种后的15天内,其积累水平很低。相反,处理组棉苗在接种后第9天时,就有较高水平的类萜烯醛积累量,而且其积累量呈直线增加,可达到很高的水平,如在18天时类萜烯醛的量占中柱组织的85%(平均4.2级)以上。图7-3 发病棉苗体内类萜烯醛的积累动态棉枯萎病菌侵入棉花植株后,由于棉花自身及外界环境条件的影响,受侵染植株可能不表现症状。因此,外观发病率及严重度可能不完全反映枯萎病菌的实际侵染及在植株内的扩展情况,为此,在棉花收获后进行了剖秆检查,以了解枯萎病菌的实际侵染率及茎秆木质部病变程度。由表7-8可知,氟乐灵处理组中棉株枯萎病发病株率降低,茎秆木质部的病变程度减轻。这可能说明,氟乐灵处理后使棉花植株增强了抵抗枯萎病菌侵入的能力(表现为侵染率的下降),同时,抑制了侵入枯萎病菌在木质部内的生长与扩展(表现为木质部病变程度的下降),从而阻止了病害的进一步发展。此外,氟乐灵处理后对枯萎病发病株率的减少要低于对木质部病变程度的降低,这表明,氟乐灵减轻枯萎病发病主要是通过抑制侵入枯萎病菌在棉株内的生长与扩展而起作用的。品种处理侵染率(%)病指沪棉2011对照75.24±0.9140.69±2.38处理63.19±3.86(16.02)31.73±1.65(22.02)中棉所12对照62.82±0.8326.70±0.62处理45.97±2.27(26.82)17.00±1.10(36.33)表7-8 氟乐灵处理后剖秆检查结果氟乐灵处理组棉苗根部和茎部组织中,枯萎病菌的菌量显著低于对照组相应部位的菌量(图7-4)。接种后第9天起,处理组与对照组之间的菌量差异加大;同时,茎部组织的菌量差异大于根部。从菌量增加的时间动态来看,接种后12天内,根部组织中菌量增加缓慢,但在接种后12~15天增长加快。对照组棉苗茎部组织中,菌量的增加动态与根部相似,在接种后的12~15天增加较快,而处理组棉苗茎部组织中的菌量在接种后的15~18天才有较大的增加。说明处理组茎部菌量增长滞后于对照。综上所述,播前氟乐灵施用后能减轻枯萎病的发生,主要是氟乐灵诱发棉花产生了诱导抗性,这种诱导抗性的机制,主要表观在抵抗病原菌的侵入和对入侵病原菌在棉株体内生长的抑制。氟乐灵是旱地作物棉花的除草剂,主要采用播前混土法施药。宋凤鸣等(1995)推荐施药量每亩用48%乳油65~175ml,视土壤质地和有机质含量而定。氟乐灵处理组在轮作地苗床和连作地苗床的出苗率均高于对照组,其原因是处理组苗前死亡率降低。处理组在连作地苗床上的苗前死苗率比对照组减少79.80%;在轮作地苗床上比对照组减少52.91%(表7-9)。播前施用按推荐氟乐灵施药量对棉花出苗是安全的。图7-4 氟乐灵处理后棉苗体内枯萎病菌菌量的变化动态苗床类型处理出苗率(%)苗前死苗率(%)连作地苗床对照77.90±2.6711.93±2.67氟乐灵84.81±2.632.41±0.11**轮作地苗床对照82.88±1.147.73±1.26氟乐灵86.56±0.45*3.64±0.50**表7-9 氟乐灵播前土壤处理对棉花出苗及苗前死苗的影响(宋凤鸣等,1995)棉花枯萎病系种子与土壤传播的维管束病害,从子叶期至成株期整个生育阶段皆可侵染发病。其化学防治的关键在于药剂的速效与长效。速效即药剂施用后能迅速被吸收,运转至维管束中,并累积达到能抑制、杀死病原菌的有效浓度;长效即药剂具有缓释作用及不易受环境影响而分解、变性的性质。多菌灵等苯并咪唑系列是一类具广谱杀菌活性的内吸杀菌剂,目前已被广泛用于防治多种作物病害,并且已知它们在土壤中不易被分解,存留期至少达数月之久。鉴于此类药剂用于大田治疗,因棉株对多菌灵等内吸利用率低,而导致防效较差的问题,郭敦成等(1993)依据农药对生物体表穿透的相近相通规律,着意提高多菌灵极性,以增加其对棉根的穿透能力,同时,亦注重新配方的土壤稳定性研究,使新配方对棉花枯萎病的控制既具有速效又具有长效。经几年试验研究,研制出以多菌灵为主体,以调整其油水分配系数为目的,添加水杨酸、冰醋酸等助剂复混而成的新型杀菌剂治萎灵,除了具有原多菌灵的广谱杀菌特性外,还具有速效、高效、长效和促进棉花生长的特点。对棉花枯萎病菌的毒力是多菌灵的16.5倍(表7-10),施药后10天即可见效。治疗效果为82.3%(对照多菌灵的治疗效果为56.2%),有效控制期可达60~80天(表7-11,表7-12)。药剂菌丝生长抑制率(%)5.0002.50012500.6250.313(mg/kg)EC50(mg/kg)增效倍数多菌灵60.6243.2242.4942.0029.671.6810—多菌灵+助剂Ⅰ100.00100.0056.7248.3647.010.64531.91多菌灵+助剂Ⅱ100.0065.1861.1946.2710.510.78391.39多菌灵+助剂Ⅰ+助剂Ⅱ82.0576.9275.2767.0358.610.107316.53表7-10 助剂对多菌灵的增效作用试验地点稀释倍数调查天数(天)(距离药期)用药前/后病指对照区用药区治疗效果(%)备注湖北石首230250.00/7.620.00/0.6092.1350.00/14.880.00/2.2684.8无病土育苗移栽棉湖北石首250105.15/25.399.12/16.1081.4205.15/31.999.12/14.5690.7305.15/38.949.12/19.6883.1直播棉湖北鄂州2002037.5/41.6737.5/12.9286.38537.5/28.7537.5/1.6794.2直播棉湖北鄂州200200.00/11.000.00/4.3860.6850.00/2.670.00/0.1694.0直播棉湖北枝江300100.00/5.580.00/0.5073.1300.00/4.080.00/0.1589.0450.00/2.570.00/0.0697.5移栽棉湖北松滋300203.50/8.751.25/1.5086.7直播棉山东聊城3001065.5/68.0061.5/32.5051.54562.5/48.0061.5/3.0095.8直播棉安徽望江300208.44/30.303.20/9.7068.0408.44/39.403.20/4.7075.8678.44/12.503.20/2.0084.0直播棉安徽怀宁3002030.0/55.0040.0/18.5074.73030.0/64.0040.0/10.0088.3直播棉表7-11 各试验点治萎灵对棉枯萎病的治疗效果总汇病株级别用药后第35天用药后第63天处理区病情对照区病情治疗效果处理区病情对照区病情治疗效果Ⅰ级病株11.2521.2547.061.256.2580.00Ⅱ级病株31.2540.0021.888.7517.5050.00Ⅲ级病株59.2068.7513.8934.2150.0031.58表7-12 治萎灵对不同级别病株的治疗效果(%)治萎灵商品制剂为12.5%液剂,属低毒(由同济医科大学测定,1989)、高效、内吸性农药,具有保护与治疗作用,使用方便,可用作拌种、苗床泼浇和大田灌根及药钵育苗。以灌根对枯萎病的防治效果最好。但为节约成本、稳定效果,似宜采用环环把关的系统施药法:即对移栽棉采用药钵法育苗或拌种加苗床法泼浇(或定根水施药)再加大田挑治或普治;对直播棉采用拌种(定苗施药)加挑治或普治。为省药与安全起见,拌种浓度宜为0.8%(占用种量),灌根与泼浇以200~300倍稀释液为宜。在发病率不超过5%、病株级别不超过Ⅰ级时用药为宜。市场上用于防治枯萎病的商品农药品种较多,不同农药品种防治效果不尽相同(表7-13、表7-14),此外,不同用药方法,防治效果也不一样,因此,对不同农药防治效果的鉴别与方法值得研究。潘劲松等(2000)在实验室对市场上12个防治枯萎病的杀菌剂进行毒力测定,以EC50值作为抑制枯萎病菌生长的指标,值越小,抑菌效果越好,反之,则差。结果是多菌灵(沪产)0.77、多菌灵(杜邦产)0.96、恶霉灵1.14、甲基托布津6.28、喷克7.16、稳长一号11.62、代森锰锌16.65、腈菌唑18.28、菌毒清19.34、敌克松23.58、五氯硝基苯32.13、络氨铜52.20。这表明,在常规杀菌剂中,以多菌灵对棉花枯萎病病原菌毒力作用最强。处理施药前病指药后7天药后14天病指病指减退率(%)防效(%)病指病指减退率(%)防效(%)91%克萎星SP700倍液6.336.67-5.3713.415.3914.8551.0832%克菌EC2000倍液11.1712.00-7.4311.7312.28-9.9436.8330%菌无菌EC2000倍液13.5011.6713.5628.9712.666.2246.1250%枯黄萎灵WP800倍液11.8312.17-2.8715.477.1536.5665.2725%使百克EC1500倍液9.008.5024.6322.406.5527.2258.181.5%菌立灭EW1200倍液12.839.677.8338.0711.2412.3949.6650%枯萎绝WP600倍液8.507.83-21.7024.315.3337.2964.02清水(CK)9.1711.1615.96-74.05表7-13 7种农药对棉花枯萎病的防治效果(黄学军等,2002)处理(g/667m2)施药前病指第一次施药后7天调查第二次施药后7天调查病指防效(%)病指防效(%)32%乙蒜酮乳油13.312.17.1291.493.332%乙蒜酮乳油17.38.94.5550.199.532%乙蒜酮乳油20.07.34.6540.199.520%粉锈宁乳油13.35.74.8523.284.5清水(CK)5.010.0—21.0—表7-14 32%乙蒜酮乳油防治棉花枯萎病试验结果(李凤瑞等,2005)在对商品农药防治效果筛选方法方面,单文荣等(2001)通过滤纸条的抑菌法和离体组织抑菌法有机结合对市售农药及有选择性的组织进行药性测定和预选,找出了一些对棉花枯萎病菌防治有效的药剂和组配。试验除了注重筛选对病菌杀抑作用好的药剂,还注重筛选对病菌并无明显的杀抑作用,但通过寄主组织后却能较好地抑制病菌扩展的药剂,同时,也注重筛选有上下传导作用的药剂,并认为药剂复配后对棉花枯萎病杀抑效果更佳。具体方法如下。①针对市售药剂单筛时,方法如下:将配制的孢子悬浮液(10/10显微镜下观察约有50个孢子)均匀滴入改良PDA平板培养基上,使用经不同药剂不同剂量处理后的滤纸条(长约2.5cm,宽约0.4cm)分别进行抑菌测定,将各培养皿置28℃恒温箱培养3~5天后,与对照相比,判断各不同药剂不同剂量下的抑菌效果。②针对市售药剂有选择性两两组配筛选时,方法如下:将孢子悬浮液均匀滴入改良PDA平板培养基上,各药剂按不同剂量配制成药液,分别用滤纸条浸过不同药液,按一定组配分别十字交叉放入培养基上,置28℃恒温箱培养,根据滤纸条交叉处产生的抑菌状况进行定性分析,判断出增效、相加、拮抗、独立、相互拮抗、拮增作用的组配。①针对市售药剂单筛时,方法如下:将配制的孢子悬液(10/10显微镜下观察有50个左右孢子)倒入改良PDA平板培养基上,使用经不同药剂不同剂量处理后的离体组织分别进行抑菌,置28℃恒温箱培养3~5天后,与对照相比,判断各不同药剂不同剂量下的抑菌效果。②针对市售药剂有选择性两两组配筛选时,方法如下:将孢子悬液均匀倒入改良PDA平板培养基上,各药剂按一定剂量和组配两两配制成药液,分别处理离体组织,将药剂处理过的离体组织分别放入培养基上,设清水(对照),待7~10天后,观察各两两组配通过离体组织对枯萎病的抑制等情况。选择几种抑制效果较优良的组配,对水培离体组织进行先接菌后施药,与对照相比,观察效果。①滤纸条抑菌试验。药剂学单筛记载方法:5级:抑菌半径大于0.5cm;4级:抑菌半径在0.3~0.5cm;3级:抑菌半径在0.1~0.3cm;2级:抑菌半径在0.1cm以下;1级:几乎无抑菌现象,但在滤纸条周围菌落有减菌等现象;0级:同于对照。②离体组织抑菌试验记载方法:5级:抑菌圈半径0.5cm以上,离体组织上不着菌;4级:抑菌圈半径0.1~0.5cm,离体组织上不着菌;3级:抑菌圈半径0.1cm以内,离体组织上没有明显可见的菌丝;2级:离体组织上微见菌丝,不见抑菌圈;1级:离体组织上长满菌丝,但不如对照发达;0级:同于对照,布满菌丝且发达。一般说来,防治棉花枯萎病的用药方法有浸种法、浇灌法(浇根)、茎叶喷雾法和茎部注射法(待棉苗一片真叶完全展开时,用微量注射器每株注射20μl,注射部位为茎近地面1cm处)。目前,生产上以茎叶喷雾法为主要方法。刘峰等(2005)比较了这4种方法后指出,注射法防效最高,喷雾法、药液浇灌法、浸种法防效较差。注射法对棉苗产生一定伤害,但根据诱导抗病理论,伤害本身也是一种诱导方式,因此,诱导抗病和药剂的联合作用可能是该法防效较高的原因。多菌灵水杨酸浸种、浇灌和注射对枯萎病防治均有一定防效,而喷雾防效较低,表明该药剂可以由根吸收和向上输导。氟硅唑注射和喷雾防效高于多菌灵水杨酸,浇灌和浸种则均没有明显效果,可能是由于其向下输导作用强于向上输导作用所致。而敌菌丹尽管没有内吸活性,但其注射和喷雾防效也高于具有内吸活性多菌灵水杨酸,其作用机制有待明确(表7-15)。处理浓度(μg/ml)注射茎叶喷雾病株率(%)病指防效(%)病株率(%)病指防效(%)敌菌丹10009.763.0572.2712.03.3357.36菌毒清150025.717.1435.0925.48.33-6.66氟硅唑100013.794.3160.8214.464.2245.97多菌灵水杨酸100019.355.6548.6421.056.5815.75清水对照—36.011.0—18.757.81—表7-15 药剂注射和喷雾防治棉花枯萎病效果二氧化氯ClO2是目前国际上公认的第四代氧化型杀菌消毒剂,具有高效、广谱、快速、安全、无毒副作用等突出优点,被世界卫生组织(WHO)和世界粮农组织(FAO)列为A1级产品,其杀菌消毒原理是凭自身强氧化性,对微生物(如真菌、细菌、病毒等)的细胞壁有很好的吸附性和透过性、可有效地氧化细胞内的酶,迅速控制微生物蛋白质的合成,达到杀菌消毒的目的,而动植物的酶系统主要存在于细胞的细胞器中,加上动植物自身保护系统,从而可基本保证不会受ClO2的伤害。但由于ClO2在国内应用研究起步较晚,目前,国内外其应用范围大多都局限于医疗、水质处理、漂白、食品工业、防腐保鲜等领域,而在农业应用方面,国外的报道很少,在我国农业种植方面的应用基本处于空白阶段。王化明等(2003)根据二氧化氯本身具有高效、广谱、无毒、无有害残留等特点,凭自身的强氧化性,通过破坏病原菌蛋白质结构而起到杀灭菌毒作用,结合棉花枯萎病的发病情况,经田间试验表明,其防治枯萎病效果好于多菌灵和甲基托布津(表7-16)。从表7-16中可以看出,在所有试验药剂中,以80mg/kg的ClO2溶液防治棉花枯萎效果最佳,其应用后调查统计其平均发病株率只有2.7%,其次是40mg/kg和120mg/kg的ClO2溶液,其平均发病株率分别为8.2%和10.3%,而200mg/kg和10mg/kg的ClO2溶液防效较差,且200mg/kg处理已出现叶子烧焦等药害,多菌灵、甲基托布津的平均发病株率明显高于80mg/kg的ClO2溶液处理。由此可见,用1%~2%棉花专用添加剂的80mg/kg的ClO2溶液比多菌灵、甲基托布津对棉花枯萎病的病原菌有更强的杀灭及更好的对病害起到防治作用。在随后的追踪调查中还发现,和清水(对照)试验相比,40mg/kg、80mg/kg、120mg/kg ClO2等处理后,棉花的黄萎病也大大减少,棉花成铃多,且纤维质量都比没用的有所提高,说明对棉花品质有所改善,对黄萎病防治也有很好的作用。处理(mg/kg)清水(对照)ClO2104080120200600倍液多菌灵750倍液甲基托布津3次重复的平均发病株率(%)51.342.78.22.710.117.619.316.2表7-16 几种药剂防治棉花枯萎病田间试验结果由于棉花枯萎病的病原菌为害棉株的维管束,目前,世界各国防治棉花枯萎病的主要措施是选育和推广抗病品种以及采取一些农业措施,至今尚缺乏高效的防治药剂。农抗120是一种广谱内吸型抗真菌病害的农用抗生素生物杀菌剂,对白粉病、枯萎病、炭疽病等多种作物病害具有较好防效。它与多种化学杀菌剂混配具有增效作用,但存在着施药量大,成本偏高的不足。农抗120与多菌灵均为内吸性杀菌剂,开发两者混配的新型农药,在生产上防治棉花枯萎病,不仅具有生物农药的环保无公害特点,而且能延缓化学农药多菌灵的抗性发展,显著提高防效。韩新才等(2008)在室内进行农抗120与多菌灵不同的配比混剂对棉花枯萎病菌联合毒力测定和增效作用研究。结果表明(表7-17),农抗120对棉花枯萎病菌的抑菌浓度区间为285.7~666.7 mg/L。多菌灵对棉花枯萎病菌的抑菌浓度区间为333.3~1000mg/L。农抗120 EC50值为407.4mg/L,小于多菌灵EC50值574.5mg/L表明,农抗120对棉花枯萎病菌的毒力大于多菌灵。农抗120与多菌灵不同配比混剂,其EC50值为223.5~230.9mg/L,小于农抗120单剂EC50值407.4mg/L和多菌灵单剂EC50值574.5mg/L表明,两者混配其联合毒力远大于两个单剂。农抗120与多菌灵1∶1、1∶2、2∶1比例混配其增效系数(SR)分别为2.13,2.19,1.99,均大于1.5,表现为显著的增效作用。其中,配比为1∶2时,SR值最大,为2.19,而配比增加为2∶1时,SR值下降为1.99,说明农抗120与多菌灵以1∶2比例混配,为具有最佳增效作用的混配比例。农抗120对植物病原菌的作用机理是抑制孢子萌发,导致菌丝畸变和原生质体凝聚等(朱薇玲等,2006),具有保护和治疗作用。多菌灵的作用方式是干扰菌丝体有丝分裂中纺锤体的形成,影响细胞分裂(黄伯俊等,2004)。两者混配对棉花枯萎病菌具有显著的增效作用,其增效机理及田间试验需进一步研究。处理毒力回归方程rEC50(mg/L)EC(th)50(mg/L)SR农抗120y=-14.1326+7.3331x0.9789407.4——多菌灵y=-3.3149+3.0133x0.9839574.5——农+多(1∶1)y=-8.8202+5.8892x0.9890223.5476.12.13农+多(1∶2)y=-12.5832+7.4457x0.9893230.9505.72.19农+多(2∶1)y=-9.1611+6.0229x0.9813226.5450.71.99表7-17 不同配比农抗120与多菌灵混剂对棉花枯萎病菌的抑制毒力及增效作用农抗(SO24)是由链霉菌YBO24(StreptomycesYBO24)产生的、对多种植物病原菌,如棉花黄萎病菌(Verticillium dahliae)、禾谷丝核菌(Rhizoctonia cerealis)、苹果炭疽病菌(Colletotrichum gloeosporioides)、小麦赤霉病菌(Fusarium grimiaearum)、棉花枯萎病菌(Fusarium turcicum)等有较强抑制作用的一种新型生物农药。现在已经完成其产生菌的选育、发酵工艺和分离纯化工艺等方面的基础研究工作。为加快该农抗的研制和推广应用,文才艺等(2007)研究以禾谷丝核菌和棉花枯萎病菌为指示菌,对农抗SO24的作用机理进行了初步探索。研究结果指出,SO24对禾谷丝核菌和棉花枯萎病菌菌丝生长有抑制作用。处理2天后,菌丝体逐渐皱缩,菌丝变得稀疏易分开;8天后,处理菌丝均全部溶解,而对照组菌丝生长正常。SO24对禾谷丝核菌和棉花枯萎病菌菌丝形态结构的影响(图7-5、图7-6),处理24h后,菌丝形态无明显变化;处理2~7天后,部分菌丝细胞内含物减少,液泡变大,形成大小不等的空泡,透光度降低,且空泡越来越多,越来越大;处理8天后,菌丝体溶解、断裂,液泡消失,原生质外渗明显;对照菌丝体则粗细均匀且表面光滑,原生质正常,液泡清晰可见。由此可见,SO24对禾谷丝核病菌和棉花枯萎病菌菌丝有明显的破坏作用。不同浓度SO24对禾谷丝核菌生长的抑制强度不同,用20%的SO24处理时,禾谷丝核菌菌丝全部溶解,培养8天后未见生长;用10%的SO24处理时,仅部分溶解,而未处理对照组的菌丝生长良好。进一步用生物测定法研究其抑菌能力的结果表明,在PDA平板上各浓度间的抑制率差异明显(表7-18),随浓度的增大,SO24对禾谷丝核菌的抑制作用增强,当浓度为20%时,抑制率可达81%说明,SO24对禾谷丝核菌有较强的抑制作用,但作为生物农药开发和应用,还有待于进一步提高发酵效价和优化分离纯化工艺。为了进一步明确其抑制作用机理,分别将10%和20%SO24处理8天后的禾谷丝核菌丝在无菌条件下用无菌水冲洗后接种于PDA平板上,28℃条件下培养,结果发现,表观上已经溶解的菌丝在解除SO24的作用后仍能正常生长。由此可见,SO24对禾谷丝核菌菌丝生长的作用表现为抑制,而不是杀死。这一结果与目前已报道农用抗生素如井冈霉素对病原菌的作用方式类似。项目CKSO24浓度(%)51020直径(mm)4836239抑制率(%)0255281表7-18 不同浓度的SO24发酵液对禾谷丝核菌菌丝生长的抑制率试验结果还表明,SO24对棉花枯萎病菌孢子萌发有明显的抑制作用。对照组棉花枯萎病菌孢子萌发正常,48h后萌发率达到97.5%;而SO24处理后,孢子萌发率显著降低,并且处理时间越长、SO24浓度越高,孢子萌发率的降低越显著。20%的SO24处理48h后,孢子萌发率为零,即20%发酵液能完全抑制孢子的萌发。由此可见,SO24对病原菌孢子萌发具有持续的抑制作用。图7-5 SO24对棉花枯萎病菌菌丝形态结构的影响图7-6 SO24对禾谷丝核菌菌丝形态结构的影响随着化学农药在使用中产生的一系列公害问题被发现,如环境污染、杀伤天敌、破坏生态平衡、3R(Residue,Resistance,Resurgence)等问题,已引起人们的普遍关注。因此,开发高效、低毒、低残留的新型无公害农药,逐渐成为植物病害防治的重要途径。昆虫、病原菌与植物经过几亿年的共同进化,植物体内形成了多种能有效抗御有害生物侵袭的机制,包括植物的形态、行为以及体内产生的次生代谢物质。植物是生物活性化合物的天然宝库,其产生的次生代谢产物超过40万种,其中,大多数化学物质如萜烯类、生物碱、类黄酮、甾体、酚类、独特的氨基酸和多糖等均具有杀虫或抗菌活性。从植物体内的次生物质中寻找能抑制有害生物的有效成分,人工直接提取应用或明确有效成分结构后人工合成制作农药,已成为无公害农药的开发热点之一。苍耳(Xanthium sibiricumPart)系菊科苍耳属植物,在山东省分布很广泛,是一种常见的田间杂草。果实苍耳子是常用中药,是中医临床上散热、解疮毒、通鼻窍、痹症的要药。苍耳子还有消炎、镇痛、抗病毒、抗细菌的药理作用。苍耳叶提取的挥发油对某些真菌具有抑制作用。在农业上可用来防治菜青虫等农业害虫。苍耳对一些植物病原真菌有较强的抑制作用。而苍耳虽有抑菌活性,但未见对苍耳的抑菌作用详细、深入的报道。为此,刘林等(2003)对苍耳中抑菌物质的提取溶剂及活性部位进行了初步筛选。结果表明,苍耳中含有较强的抑菌活性成分,具有明显的开发研究价值。其中,苍耳全株和苍耳叶的乙醚、丙酮提取液抑菌作用较强(表7-19)。乙醚和丙酮是比较适合的提取溶剂,可以从苍耳中较有效地提取抑菌活性成分;苍耳中抑菌活性最高的部位是苍耳叶,苍耳根的抑菌活性也较好。苍耳提取液是一种混合物,其中,某些成分可能会对某些病菌具有促进生长作用。若对提取液进一步分离纯化,可能会得到只对病菌具有抑制作用的化学物质,且抑菌作用会在很大程度上提高。供试菌种乙醚丙酮石油醚全株根果实茎叶全株根果实茎叶全株根果实茎叶棉花枯萎病菌抑制率(%)79.243.236.236.083.676.858.927.939.688.458.032.441.019.042.3苹果腐烂病菌抑制率(%)100.089.347.561.9100100.079.714.091.310090.583.036.820.241.1葡萄白腐病菌抑制率(%)100.075.320.842.0100100.085.426.016.710090.869.814.619.465.4构巢曲霉抑制率(%)—59.041.113.175.3—64.029.833.286.9—59.021.57.251.8表7-19 苍耳根、茎、叶提取液对4种病菌的抑制作用芹菜(ApiumL.)为伞形花科(Umbeliferae)一年生或多年生草本植物。它约有20个种,分布于全世界温带地区,而中国仅有2个种,分别为旱芹(Apium graveilensL.又叫药芹或香芹)和细叶旱芹(Apium leptophyllum),其中,旱芹为模式种。芹菜含有丰富的胡萝卜素、维生素及挥发性芳香成分,并具有极好的药用功能,还有一定的抑菌杀虫活性。Sipaiiiene等(2003)发现,芹菜叶提取物对大肠杆菌(E.coli)等6种菌具有高度的抑制作用。Afek等(1995)亦曾发现,旱芹的诱导产物对灰葡萄孢(Botrytis cingrea)、链格孢(Alternaria alternate)有较高活性。Oussalah等(2006)研究报道,旱芹精油能抑制引起肉类腐烂的Pseudomonas putida菌株。刘福光等(2009)对11种伞形科植物粗提物进行了农用抑菌活性的初步筛选试验,结果发现,旱芹粗提物有很好的抑菌活性。Monir等(2001)研究发现,旱芹种子中的3-正丁基4,5-二氢内酯(3-N-butyl-4,5-dihydrophthalide)在12.5μg/ml和5μg/ml浓度下,对线虫P.redivivus和C.elegans杀灭率可达100%;研究中还发现,此化合物对埃及伊蚊( Aedesaegypt)也有较好的杀灭作用。金阳等(2006、2008)研究发现,芹菜中莰酮类化合物对小菜蛾等害虫有很好的防治作用,并对此类物质进行了合成。魏立强等(2001)在前人研究的基础上,进一步进行盆栽活体试验,研究旱芹粗提物对棉花枯萎病的抑制作用。结果表明,旱芹粗提物灌根对棉花枯萎病的抑制作用,在一定浓度下随浓度的增加而增加,病指随浓度的增加而减小。在浓度为10μg/ml时,病指为11.07,防治效果达到77.71%,明显高于对照药剂的相对防效27.77%(表7-20)。处理浓度(μg/ml)病指防治效果(%)旱芹粗提物2011.1877.491011.0777.71517.7564.262.521.6254.461.2525.00CK49.66—表7-20 旱芹粗提物灌根对盆栽棉花枯萎病的防效蒿属植物含有许多单萜及倍半萜化合物,生理活性成分种类较多,经常被应用于传统医学实践,加之植物原料来源丰富,所以,蒿属植物正受到越来越多的注意。郭艳等(2009)在试验条件下,采用菌丝生长速率测定法,以棉花枯萎病菌为供试菌,对茵陈、黄蒿、艾蒿3种蒿属植物提取物的抗菌活性进行了研究。结果表明,供试3种蒿属植物提取物对棉花枯萎病菌具有较好的抗菌活性,其中,尤以艾蒿提取物的抗菌活性强而稳定,48~96h对上述枯萎病菌的菌丝抑制率均达80%以上(表7-21);丙酮提取物的抗菌活性强于乙醇提取物,前者的EC50为1.4785mg/L,后者的为3.2090mg/L。间歇振荡法、超声波法、冷浸法提取物对供试菌的72h菌丝抑制率分别为84.34%、84.56%和88.70%,可见,同种溶剂不同提取方法所得提取物抗菌活性基本一致。供试植物对棉花枯萎病菌的抑制率(%)48h72h96h茵陈(Artemisiacapilaris)71.0863.1151.81黄蒿(A.annual.)77.1161.7224.7艾蒿(A.argyi)83.7388.780.19表7-21 不同蒿属植物提取物对枯萎病菌的抗菌活性植物精油作为易挥发的小分子物质,结构简单且生物活性多样,在有害生物控制的应用方面,具有低毒、高效、环保、选择性高等优点,吸引了研究人员的广泛关注。八角茴香(Illicillm verumHook.f.)是木兰科八角属植物,对八角茴香精油的研究主要集中在化学成分及其在医药及食品等方面的应用,在农业病虫害防治方面的研究尚未见文献报道。刘志希等(2010)以棉花枯萎病菌为靶标菌,用八角茴香精油为植物材料,通过水蒸气蒸馏法制备精油,在利用GC-MS分析其化学组成的基础上,柱层析分离纯化了精油的主要化学成分——反式茴香醚,最后通过比较八角茴香精油与反式茴香醚对棉花枯萎病菌菌丝生长抑制作用。由图7-7可知,棉花枯萎病菌菌丝在带药培养基中的生长受八角茴香精油及其主要成分的抑制,并表现出明显的量效关系。在供试浓度高于1.00μl/ml时,菌丝生长抑制率大于93.3%;在浓度低于0.50μl/ml时,菌丝生长抑制率小于30.0%;抑制中浓度(EC50)为0.50~1.00μl/ml。在相同测试浓度下,该精油与其主成分反式茴香醚的抑制活性接近,精油的活性略高,这表明反式茴香醚是八角茴香精油中的主要抗真菌活性成分(含量高达94.57%),其他组分可能起协同增效作用。从已知抗菌活性成分反式茴香醚的结构看,丙烯基苯的结构单元可能是抗菌活性的毒性基团,Moliszewska等(2003)的研究证实,具有丙烯基苯结构单元的天然产物,如α-细辛醚,β-细辛醚,丁香酚,3,4-二甲氧基-丙稀苯等对水稻纹枯病菌、灰葡萄孢菌、小麦镰刀菌等植物病原真菌在一定浓度下表现出较强的抑菌活性。因此,对丙烯基苯类衍生物的合成、抗植物病原真菌活性及其构效关系的研究,意义重大。图7-7 八角茴香精油及反式茴香醚对棉花枯萎病菌的抗菌活性辣椒为茄科植物辣椒(Capsicum frultescenceL.)的果实。辣椒果实中的主要药用成分是辣椒碱,它是一种极度辛辣的香草酰胺类生物碱,为辣椒果实中辛辣的主要化学成分,具有抗菌杀虫的药理作用,主要分布在辣椒籽及果皮内表细胞之中。研究表明,辣椒粗提液有较好的杀菌效果。茶皂素是从茶子饼中提取的一种皂苷类物质,在茶子饼中的含量为10%~14%。具有皂苷的一般通性,味苦,辛辣。茶皂素在农药上可用作杀虫剂、杀菌剂和农药助剂。一是利用茶皂素本身杀虫、灭菌功能产生农药作用;二是利用茶皂素良好乳化、扩散、湿润等性能作农药助剂。因此,可用其配制成生物农药,此生物农药对人畜、农作物无害,且耐雨水冲刷。关于辣椒碱对病原菌的抑菌活性所见报道不多。李芳等(2011)用该实验室研制的植物源农药5%辣椒碱·茶皂素微乳剂对棉花枯萎病防治进行了初步的研究。结果指出,5%辣椒碱·茶皂素微乳剂对棉花枯萎病菌菌丝生长有显著的抑制作用,并且随着质量浓度的增加抑制作用增强(表7-22)。当其质量浓度低于5mg/ml时,抑菌圈直径与对照间无显著差异;当其质量浓度达12.5mg/ml时,抑菌圈直径与对照间有显著差异。将高浓度试剂处理后完全不生长的菌饼转移到PDA培养基平板上培养后,菌体能够生长表明,5%辣椒碱·茶皂素微乳剂对棉花枯萎病菌起抑制菌丝生长的作用,但并未将菌丝杀死。对培养后的菌丝悬浮液镜检,与空白对照相比,药剂处理后的菌丝出现以下变化:①菌丝短,分枝较少,粗细不均。②菌丝形成膈膜明显弯曲、多、长短不一、分布不规则。③菌丝内含物变稀、变少、分布不均匀。茶皂素作为一种优良的表面活性剂,与辣椒碱混用后,对抑制棉花枯萎病菌丝的生长有增效作用。辣椒碱和茶皂素及两者的混剂对菌丝有明显的抑制作用,但只是抑制生长,而不是杀死,这与辣椒碱是内吸性杀菌剂的性质是一致的。至于辣椒碱与茶皂素的混剂对抗性菌株的作用特性和活体作用效果如何,尚待进一步研究。质量浓度(mg/L)5%辣椒碱·茶皂素微乳剂抑菌率(%)5%辣椒碱抑菌率(%)茶皂素抑菌率(%)5.031.5061.653.986.2538.0264.5610.0712.561.3767.2010.0325.067.2469.489.4750.080.6772.289.42表7-22 5%辣椒碱·茶皂素微乳剂抑菌试验结果 -
报告微生物农药
出版时间:2012苏云金杆菌Bacillus thuringiensis(简称Bt)是在1901年日本人石渡从患病的家蚕体中分离,并根据来源地德国苏云金地区发现而得名,它本身来自于被寄生害虫的虫体中,是一种革兰氏阳性菌,其孢子及伴孢晶体对印度谷蛾等鳞翅目幼虫具有很好的毒杀能力,由于它对鳞翅目、同翅目、膜翅目、鞘翅目、双翅目等10个目的昆虫和螨类等节肢动物,以及动植物寄生线虫、原生动物、扁形动物等有特异性毒杀作用,防效可达到85%以上,具有对人畜安全、害虫不易产生抗性、易于工业化生产等优点,在农业、林业和卫生害虫的防治上得到了广泛应用。苏云金杆菌细菌营养体呈长杆状,两端钝圆,周生鞭毛或无鞭毛,运动或不运动,通常2~8个细菌个体成链状排列,大小约为1.2~1.8μm×3.0~5.0μm。在蛋白胨—琼脂培养基中30℃条件下培养24h,可形成针尖大小的黄色小点(菌落),边缘光滑整齐。条件适宜时,细胞每3~4h个体增殖1代,繁殖速度较快。它可形成圆形、椭圆形芽孢,其生物杀虫的主要作用机理是在芽孢形成过程中,可以在其营养体内合成一种晶体状的蛋白质内含物,即伴胞晶体(parasporal crystal),是一种次生代谢产物;这种晶体状蛋白质内含物所形成的蛋白质晶体称之为苏云金芽孢杆菌蛋白质晶体。苏云金杆菌虽然有较强的杀虫能力,但它仍然只能通过昆虫吞食的方式感染虫体。而在植物体内生活的昆虫和侵害植物根部的昆虫就不太可能吞食到喷在植物上的苏云金杆菌了。因此,人们想到了采用其他的方法,一种方法是将苏云金杆菌毒素基因直接转入植物体内,使之成为含有该基因的抗虫植物;另一种方法是将苏云金杆菌毒素基因导入植物根部生活的细菌及在植物体内部寄生的细菌中表达。苏云金杆菌为一种生物源杀虫剂,它是单基因表达的产物,以胃毒作用为主。它的杀虫谱较广,主要用于防治直翅目、鞘翅目、双翅目、膜翅目,特别是鳞翅目的多种害虫:苏云金杆菌可产生甲体外毒素(α-exotoxin)、乙体外毒素(β-exotoxin)、丙体外毒素(γ-exotoxin)及丁体内毒素(ζ-endotoxin)等毒素而致效,其中最主要的是为丁体内毒素。昆虫取食这种蛋白毒素后,在害虫中肠的碱性环境中,Bt杀虫晶体蛋白溶解,经过中肠蛋白酶的消化作用,将前毒素降解为活性蛋白,释放出对鳞翅目幼虫有较强毒杀作用的毒素,杀虫晶体蛋白(前毒素)在昆虫中肠细胞膜,形成跨膜离子通道或孔,导致细胞溶解,这种毒素使幼虫的中肠麻痹,呈现中毒症状,其表现为昆虫食欲减退、对接触刺激反应失灵、厌食、呕吐、腹泻行动迟缓、身体萎缩或卷曲。昆虫中毒后一般对作物不再造成危害,经一段发病过程,同时,芽孢在消化道内迅速繁殖,最终导致昆虫死亡。幼虫死亡后身体瘫软,呈黑色。外毒素是苏云金芽孢杆菌在生长过程中分泌到胞外的代谢产物,外毒素作用缓慢,它可以抑制依赖于DNA的RNA聚合酶的作用,在蜕皮和变态时起作用,影响RNA的合成。1.昆虫抗药性早在20世纪50年代苏云金芽孢制剂就开始使用,人们亦曾对苏云金芽孢杆菌杀虫剂是否会像化学农药一样产生抗药性提出疑问,在20世纪80年代以前由于一直都没有检测到昆虫的Bt抗性,因而认为,昆虫的抗性问题也是一个遥远的问题,然而,自1983年以来,抗性问题不断在实验室和田间得到发现和证实。如何防止害虫对Bt产生抗性呢?在生产上为了避免害虫产生对Bt的抗性应尽量做到以下7点。(1)Bt轮用生产上要轮换使用杀虫机理不同的几种Bt制剂,目的是为了在害虫对某种制剂产生抗性前轮换其他制剂,以延缓其抗性的产生,轮用的有效性取决于停用或改用另一种杀虫剂后,害虫恢复对前一杀虫剂的敏感性。但是,另外一方面,有交互抗性的菌株间混合不能有效阻止其抗性形成,延缓作用也不大。(2)混合使用不同的Bt制剂将Bt与其他杀虫剂或将不同制剂混合施用,不同杀虫机理的农药间甚少产生交互抗性,混用将延缓抗性的产生,但不适当混用可能会降低Bt的活性。(3)顺序使用不同的Bt制剂首先使用含有毒素种类较少的制剂,再使用含有毒素种类多的制剂。(4)控制使用剂量、浓度和频率可通过人为控制Bt制剂或毒素的使用剂量,通过减少使用Bt的次数和剂量来降低抗性的产生,也就是逐年缓慢减少种群数量以达到最终防治目的。(5)改进Bt喷施技术如使用静电喷雾相当于使用低剂量时的效果。(6)Bt杀虫剂与少量农药混合使用由于苏云金芽孢杆菌与化学农药没有交互作用,所以苏云金芽孢杆菌与低剂量的农药混合使用,既能提高杀虫效果,又能降低两者对害虫的选择压力,还能防治一些对Bt制剂不敏感的虫种,可起到兼治作用,从而延缓抗性的形成和发展,因此,可以在较低的Bt制剂剂量下配合使用增效剂获得较高的防效。(7)Bt植物种植区设立防护带目前,新基因植物多是结构表达单一的毒蛋白基因,很容易导致和加速抗性的产生。在转Bt植物大田设立非抗虫植物,为昆虫提供避难场所,使敏感昆虫较易存活下来,相对增加群体中敏感昆虫的比例,降低抗性害虫的繁殖速度,从而可延缓昆虫抗性形成速度。2.影响Bt杀虫效果的因素(1)菌种的选择苏云金杆菌的不同亚种,目前,已筛选出60个亚种,甚至同一亚种不同菌株对害虫的毒效也存在着明显差异。大多数苏云金杆菌亚种只对鳞翅目有活性,对鳞翅目高活性的苏云金杆菌亚种,库斯塔克亚种和蜡螟亚种对鞘翅目昆虫却无杀伤作用。不同菌株效果差异显著,如库斯塔克亚种HD-I菌株比一般菌株的毒力高20~200倍,而对蚊幼虫低毒,但其中HD-169对蚊幼虫具高毒效(LC50=0.04μg/ml),因此,菌种的选择对杀虫效果至关重要。(2)制剂和剂型菌剂的质量一般以其活孢子数及其致病毒性作为一个重要指标。此外,制剂中芽孢和晶体的相对比例也是影响因素之一,库斯塔克亚种当芽孢和伴晶体1∶1时对印度谷螟毒力最强,而有无芽孢则对粉斑螟毒效无影响,一个无芽孢突变株对粉斑螟毒力与标准菌株无明显差异。我国已实行苏云金芽孢杆菌悬浮剂行业标准化,以毒力效价作为衡量其质量高低的指标。粉剂防治仓虫效果比可湿性粉剂好。主要有可湿性粉剂 (WP)、粉剂 (DP)、颗粒剂 (GR)、水分散性粒剂 (WG)、悬浮剂(SC)、超低容量剂 (UL)、乳悬剂 (ES)、油悬剂 (OF)、水剂(AF) 和胶囊剂 (生物胶囊和化学胶囊) 等。我国Bt产业加工的剂型主要包括粉剂、可湿性粉剂、悬浮剂、颗粒剂。针对目前剂型及害虫特点,可采取撒粉、灌心、喷雾等方法施用。为了解决Bt杀虫谱窄、杀虫速度慢等不足可以通过研制Bt的复合制剂来解决,例如,Bt与病毒的复合制剂,Bt与各种有机、无机化学制剂的复合制剂等手段来提高杀虫效果。(3)目标昆虫不同昆虫或同种昆虫不同虫期甚至同种昆虫不同种群对苏云金杆菌制剂敏感性不同。对以色列亚种,库蚊最敏感,伊蚊次之,按蚊较差。不同昆虫在自然界的习性千差万别,有的食叶,有的蛀茎,其习性是影响昆虫摄菌量的一个重要因素,继而影响苏云金杆菌制剂的防效。(4)环境因素苏云金杆菌制剂本身是一种含活性生物的杀虫剂,生长繁殖需要一定温度和湿度,其活性和稳定性受多种环境因素的影响。芽孢在室内紫外线照射10min,99.9%的活性物质就会失活,暴露在自然光下30min,50%失活;60min,80%失活,太阳光紫外线对芽孢有杀伤作用,因此,苏云金杆菌制剂在贮藏和运输过程中应避免阳光直射,最好在阴天或晴天下午16:00后施药,尽量避免太阳光照射。选用能防紫外线的包裹基质来包裹晶体和芽孢是保护Bt产品的方法之一,对化学农药的包裹制剂于20世纪70年代就已经投入商品化生产,但对生物农药的包裹一直没有找到经济有效的材料,有人曾经采用淀粉作为包裹基质来包裹Bt产品,同时,添加紫外线防护剂,收到了不错效果。温度是影响防效的另一个重要因素,苏云金芽孢杆菌乳剂防治菜青虫,环境温度18℃保存7d后防效为42.7%,28℃在6月上旬防效为91.5%。温度等环境条件不仅作用微生物本身,而且影响昆虫生存以及喷出的雾滴。高温可以加速疾病的发展而导致昆虫快速死亡;用飞机喷雾防治松毛虫,夏天,11:00以前和18:00以后喷洒较11:00~18:00效果好,其原因是前者温较低,山林蒸发量很小,气流较为稳定,喷时雾滴密集,徐徐下沉而不会因温高较细雾滴随气流飘浮和蒸腾作用散失。因此,温度过高过低都不利其发挥药效。1.Bt单施的效果高家合(2005)研究了苏云金杆菌防治贮烟害虫应用效果,试验在云南玉溪、楚雄烟厂烟叶仓库进行,采用两种不同的施用方法:①烟叶均匀喷雾,菌剂0.1g/kg烟叶,清水15ml/g烟叶;②烟包表面喷雾,菌剂0.2g/kg烟叶,清水5ml/kg,从烟叶中分离到贮烟害虫高毒效的苏云金杆菌Bt33、Bt53、BtHB,两个试验点烟叶均匀喷雾菌剂处理对烟草粉螟的防治效果好于烟包表面喷雾菌剂的处理。其中,烟叶均匀喷雾Bt53菌剂处理的防治效果最好。用苏云金杆菌菌剂防治贮烟害虫后对烟叶的化学成分无影响;卷制的单体烟香气质、香气量、烟气浓度、杂气与对照比,评吸分均有提高:刺激性、劲头、余味与对照比差异不显著。2.Bt与化学农药配施的效果采用Bt作为防治小菜蛾幼虫的手段,取得了一定的效果,但目前已产生较高抗性,且存在杀虫效果慢、残效期短、易光解等不利因素,这也限制了Bt在生产中的应用。寻找生物农药与化学农药的结合使用应是一种较为理想的应用模式。吴刚(2001)研究了小菜蛾幼虫经苏云金杆菌预处理后,对有机磷和氨基甲酸酯杀虫剂敏感性的变化以及预处理对小菜蛾幼虫体内乙酰胆碱酯酶、羧酸酯酶、谷胱甘肽—转移酶和谷胱甘肽的含量的影响,结果表明,苏云金杆菌预处理抗性小菜蛾幼虫后,其对甲胺磷、水胺硫磷和克白威的敏感性分别为未处理组的6.74倍、8.83倍和8.50倍;处理敏感小朵蛾幼虫后则分别为未处理组的2.96倍、169倍和3.88倍。苏云金杆菌预处理抗性小菜蛾,未处理组乙酰胆碱酯酶的Km和Vmax值分别为预处理组的1.86倍和1.56倍,所使用的6种杀虫剂对己酰胆碱酯酶的Km值,处理组为未处理组的1.8倍~2.66倍,苏云金杆菌预处理小菜蛾对羧酸酯酶的Km、K影响不大,能显著地抑制羧酸酯酶和谷胱甘肽S-转移酶的活性并导致谷胱甘肽含量下降。苏云金杆菌预处理敏感小菜蛾,对乙酰胆碱酯酶的Km和Vmax值和羧酸酯酶的Km和Vmax值以及谷胱甘肽含量影响小大。为了改良Bt剂型,朱丽云(2005)探讨了以明胶—阿拉伯胶为囊壁材料的复凝聚相分离法制备Bt微胶囊剂的加工工艺,并用平板活菌计数法对得到的Bt微胶囊剂进行了抗紫外能力分析及用毒力测定法比较微胶囊前后的杀虫活性。结果表明,经过紫外2h的照射,原Bt菌液平板活菌计数成活率只有11.4%,微胶囊化后的Bt菌液成活率高达78%;相应地,原Bt菌液已基本丧失杀虫活性,而微胶囊化后的Bt菌液对小菜蛾致死率仍达66.7%,比原菌液抗紫外能力大大增强。3.Bt与多角体病毒混用的效果茶毛虫(Euproctis pseudoconspersaStrand)是我国浙江省、江苏省和安徽省等主要产茶省份的茶树重要害虫,发生普遍,常将茶树食成秃枝,严重影响了茶叶的产量和品质,茶毛虫对Bt具有较强的耐药性,由于缺乏针对性高毒力Bt菌株,Bt单剂防效差。茶毛虫核型多角体病毒是茶毛虫的主要病原微生物,对茶毛虫有很强的致病力,但其专一性强,对其他害虫无效,作用速度缓慢。刘琴(2010)研究了苏云金杆菌与茶毛虫核型多角体病毒EpNPV混用对茶毛虫的联合增效作用,5组不同配比对茶毛虫2龄幼虫的共毒系数在177.3~221.7,表明Bt与EpNPV混用对茶毛虫具有显著增效作用。农用抗生素系指由微生物产生的,在低浓度时可抑制或杀灭作物的病害、虫害、草害及调节作物生长发育的微生物次级代谢产物。目前,农用抗生素按照用途可分为畜用抗生素和植物用抗生素两大类,畜用抗生素的品种较多,且相当一部分是与医用抗生素共用的,例如,四环素、金霉素、土霉素等;按作用功能可分为杀菌抗生素、杀虫抗生素和除草抗生素。用微生物的代谢产物来防治植物病害,最早始见于美国、英国、日本等国家,他们用医用抗生素如链霉素、土霉素和灰黄霉素等来防治植物病害。其中,以日本发展最快,居世界领先地位,主要应用的抗生素有9种,如杀菌剂有春日霉素、链霉素、多氧霉素、有效霉素、灰黄霉素、灭瘟素、灭胞素;除草剂有双丙胺磷。我国是农用抗生素生产大国和应用大国,也是农用抗生素研究开展较早的国家。早在20世纪50年代,我国就已开始研究,尽管发展缓慢,仅陆续开发出灭瘟素和放线菌酮等几个有限的品种。进入20世纪70年代后,步伐加快,相继成功开发出井冈霉素、多抗霉素、公主岭霉素等农用抗生素,但是,基本上还停留在“以防为主”的阶段。20世纪90年代以来,由于国家对农业支持力度的不断加大,我国农用抗生素的研究领域显现出了诱人的前景,不仅成功研制出中生菌素和武夷霉素、农抗120等新品种。由于许多新开发的抗生素的防治对象不只是菌类,也有害虫、杂草等,再将它们称为农用抗菌素有些不合适了,所以现在改称为农用抗生素。农用抗生素按防治对象分为杀虫农用抗生素、杀菌农用抗生素、除草农用抗生素、植物生长调节农用抗生素。1.春雷霉素春雷霉素(商品名称加收米)属抗菌素类杀菌剂,低毒。是一种作用机制研究得比较清楚的农用抗生素。主要用于防治水稻稻瘟病。在水稻抽穗期和灌浆期施药,对结实无影响。春雷霉素喷洒在水稻植株上,在体外的杀菌力弱,保护作用较差,但对水稻的渗透力强,能被水稻很快内吸并传导至全株,对水稻稻瘟病菌的治疗作用很强。此外,防治西瓜细菌性角斑病、桃树流胶病、疮痂病和穿孔病等病害也有特效。但对多数真菌(镰刀菌、小丛壳菌、圆孢菌、盘圆胞菌、毛盘胞菌、长蠕胞菌、赤霉菌、青霉菌等)、细菌、酵母菌等效果较差。由于春雷霉素对某些作物(大豆、茄子、葡萄等)会产生药害,这也影响了它的市场价值,以至于曾一度用量下降。近年来,日本通过对春雷霉素菌中引起药害的基因片段进行改造,开发了效果更佳但无药害的新菌种,使春雷霉素重新焕发了青春。2.井冈霉素井冈霉素(Jinggangrnycin)是我国科学家沈寅初院士于20世纪70年代开发成功的第一个微生物农药,由吸水链霉菌井冈变种代谢产生。从1976年起,在我国大量生产使用井冈霉素,目前,已成为我国使用面积最广、亩用成本最低的无公害农药。它是1973年由上海市农药研究所在江西井冈山地区土壤中发现的。它是作用于病原菌能量代谢系统的抗生素,对纹枯病菌的主要储存糖——海藻糖的酶活性有强烈的抑制作用(海藻糖酶能分解海藻糖为葡萄糖,使其能在菌丝体内运输),从而阻止纹枯病菌从菌丝基部向顶端输送养分(葡萄糖),从而抑制菌丝体的生长和发育。它的成功开发取代了对人畜与环境影响最大的有机砷农药,成了当今产量和使用面积最大的农用抗生素。3.中生菌素可防治苹果斑点落叶病、轮纹病和炭疽病等真菌病害。蒋细良等(2003)的研究结果表明,中生菌素的作用机制,是使病原真菌的蛋白质的合成受阻,从而导致DNA、RNA继续合成而起到杀菌作用。对真菌是使丝状菌丝变形,抑制孢子萌发并能直接杀死孢子。对农作物的细菌性病害及部分真菌性病害具有很高的活性,同时,具有一定的增产作用。4.武夷菌素1979年,从福建省武夷山区采集的土壤中分离而得。其产生菌为不吸水链霉菌武夷变种,武夷菌素对革兰氏阳性菌、革兰氏阴性菌、酵母菌有抑制作用,而对真菌的抑制活性更强。干扰病原真菌蛋白质的合成,造成菌丝原生质渗漏,致使菌丝畸形生长,并抑制病原菌菌体菌丝生长、孢子形成、萌发和影响菌体细胞膜渗透性,从而达到防治真菌病害的效果。在农业生产上,武夷菌素对蔬菜、果树、粮食和经济作物真菌病害有很好的防效,尤其对番茄叶霉菌病、黄瓜黑星病、番茄灰霉病、柑橘流胶病、柑橘树脂病以及大豆灰斑病、西瓜枯萎病、芦笋茎枯病及月季花花白粉病等有防治效果,同时,还具有一定的增产作用。5.农抗120它是由中国农业科学院在北京郊区土壤中分离得到的,是一种碱性核苷类农用抗生素,农抗120是一种广谱抗真菌的农用抗生素,通过抑制病原菌的蛋白质合成而发挥其杀菌作用。农抗120主要用于瓜类、烟草、苹果、葡萄、大白菜、小麦、玉米等作物的白粉病、炭疽病、枯萎病、纹枯病等,对人、畜为中等毒性。它的防治对象主要是土壤传染、气流传染和茎秆腐烂3大类作物病害,而农抗120通过作物吸收后,迅速传导到植株各部位,并产生一系列的生理变化及生化过程,可以有效地抑制病菌孢子体萌发,使菌丝生长变形,内部原生质凝固,蛋白质无法形成,使镰刀菌酸无法产生,或受到抑制,失去活力,自然无法堵塞维管束,无致枯能力,枯萎病也就不会发生了。农抗120是通过提高植物自身的免疫力,起到防病治病作用的。6.公主岭霉素(Gongzhulingmycin)它又称为农抗109,系1971年由吉林省农业科学院植物保护研究所在吉林省公主岭土壤中发现的一株放线菌所产生。此菌株与不吸水链霉菌相近,故定名为不吸水链霉菌公主岭新变种。公主岭霉素是由脱水放线酮、异放线酮、制菌霉素、荧光霉素、奈良霉素B及苯甲酸组成的混合物,它对细菌抑制不明显,但对不少真菌病具有很强的抑制性。公主岭霉素主要用于种子处理,防治高粱散黑穗病、谷子粒黑穗病和莜麦黑穗病等。此外,对苹果灰斑病、梨赤星病、大豆紫斑病、棉炭病、桑白绢病、玉米圆斑病、水稻恶苗病、水稻稻曲病、水稻胡麻叶枯病、稻苗期瘟病和蔬菜立枯病等作物病害有效。制剂有0.25%可湿性粉剂,对人、畜为中等毒性。通常,它与三唑酮(粉锈宁)、拌种双等农药混用以提高其药效。1.阿维菌素阿维菌素,英文名称Avermectins,是由日本北里大学大村智等和美国Merck公司首先开发的一类具有杀虫、杀螨、杀线虫活性的十六元大环内酯化合物,由链霉菌中灰色链霉菌发酵产生。主要对革兰氏阳性菌有效,而对革兰氏阴性菌效果差。其中以阿维霉素A的活性最高,特别是对梭菌、链球菌和杆菌有效;而阿维霉素B对葡萄球菌的活性最高。喷施叶表面可迅速分解消散,渗入植物薄壁组织内的活性成分可较长时间存在于组织中并具有传导作用,对害螨和植物组织内取食危害的昆虫有长残效性。主要用于家禽、家畜体内外寄生虫和农作物害虫,如寄生红虫、双翅目、鞘翅目、鳞翅目和有害螨等。杀虫作用机制与一般杀虫剂不同的是,它干扰神经生理活动,刺激释放γ-氨基丁酸,而γ-氨基丁酸对节肢动物的神经传导有抑制作用,螨类成虫、若螨和昆虫与幼虫与药剂接触后就会出现麻痹症状,不活动不取食,2~4d后死亡。因不引起昆虫迅速脱水,所以它的致死作用较慢。但对捕食性和寄生性天敌虽有直接杀伤作用,但因植物表面残留少,因此,对益虫的损伤小。阿维菌素可作为防治家畜体内外寄生虫的驱虫剂,更多的用于防治各种农业害虫、害螨,但对鳞翅目类害虫无效。阿维菌素被用于防治柑橘的锈螨、橘全爪螨、橘芽瘿螨、橘短须螨、斑真叶螨、茶半蚨螨、矢尖盾蚧及实硬蓟马;防治棉花各种螨类及潜蛾、棉叶夜蛾;以及防治观赏植物的潜叶蛾、苜蓿蓟马、小长管蚜类、桃蚜;马铃薯叶甲;果树螨类、圆盾蚧及烟草夜蛾、天蛾等,用途十分广泛。阿维菌素的制剂为1.0%乳油。另外,约有十余种阿维菌素与其他农药的混配制剂。阿维菌素已成为替代甲胺磷等剧毒农药的理想药剂之一。2.华光霉素也称为日光霉素、尼柯霉素,是具有杀螨、杀真菌活性的农用抗生素,其分子结构属核苷肽类抗生素,是一种具咪唑啉酮结构的杀螨抗生素。由我国苏州地区土壤样品中分离出的唐德轮枝链霉菌S-9,经发酵产生的。作用特点是:华光霉素是由唐德轮枝链霉菌S-9发酵产生的农用抗生素,因其分子结构与细胞壁中几丁质合成的前体N-乙酰葡萄糖胺相似,因而对细胞内几丁质合成酶发生竞争性抑制作用,阻止葡萄胺的转经,干扰细胞壁几丁质的合成,抑制了螨类和真菌的生长。本品严禁与碱性农药一起使用;避免在烈日下使用,以傍晚使用为宜;本品应现用现配,喷雾要均匀周到。它对人畜安全,对环境无影响,主要用于防治苹果的山楂叶螨和柑橘的全爪螨,并对多种真菌病害有效。对作物无药害,在正常使用剂量下,对天敌安全。制剂有2.5%可湿性粉剂。3.浏阳霉素又叫大环四内酯类抗生素,浏阳霉素为一触杀性杀虫剂,对螨类具有特效,对蚜虫也有较高的活性。可用于棉花、果树、瓜类、豆类、蔬菜等作物防治螨类及蚜虫。使用浓度为1000~3000倍。多与有机磷、氨基甲酸酯类农药混配使用,以达到增效及扩大杀虫谱的效果。蔬菜施用后,安全采收期短,仅24h,不会影响收获期的蔬菜及时上市。与其他生物杀虫剂相比,菜喜杀虫速度更快,施药后当天可见效果,对顽固害虫(小菜蛾、蓟马等)高效。双丙氨磷(Bilanafos)又称为双丙氨酰膦等,它是日本明治制果公司于1980年所开发的除草农用抗生素,产生菌为吸水链霉菌属(Streptomyces hygroscopicus)是一种具有氨基膦酸结构的抗生物质。是能产生既抗细菌、又抗真菌的抗生素,并且有强烈的杀草活性,能防除一年生和多年生的农田杂草,如野荠菜、猪殃殃、雀舌草繁缕、婆婆纳、匍匐冰草、看麦娘、野燕麦、藜、莎草、草、早熟禾、马齿苋、狗尾草、车前、蒿、田旋花、问荆等。对阔叶杂草的防除效果优于禾本科杂草。它可在杂草各生长期作茎叶处理。在蔬菜和果园行间施药为60~200g/667m2;在防除苹果、柑橘、葡萄园中一生杂草的用量为35%制剂0.33~0.5L/667m2,防除多年生杂草的用量为0.5~0.67L/667m2,防除蔬菜田中一年生杂草为0.2~0.33L/667m2。有32%和35%浓缩可溶剂。双丙氨磷对人畜为中等毒性,是一种速效和持效兼而有之的除草剂。双丙氨磷在植物体内代谢物质为L-体草铵膦,它可以通过抑制植物体内谷酰胺的合成,导致氨的积累,从而抑制光合作用中的光合磷酸化,导致植物死亡。1963年,我国首次将真菌用于杂草的生物防治,利用炭疽病“鲁保一号”防治大豆菟丝子。1966年以后,生物除草剂“鲁保一号”推广到全国20多个省、市、自治区,防治效果稳定在80%以上。目前,从事农抗研发的单位已有40多家,原药生产企业达到50多家,复配生产企业达到120多家。我国登记注册的农抗类品种24种,其中,防病农抗15种,杀虫农抗5种,除草农抗1种,植物生长调节剂农抗3种。从产量和产值综合来看,已实现大规模生产的最大品种是阿维菌素,其次是井冈霉素。从应用面积看,已实现大规模生产的最大品种也是井冈霉素,其次是阿维菌素。水稻稻瘟病是我国稻区和世界其他稻区最为严重的病害,朱飞翔(2010)用21.2%春雷霉素·氯苯酞WP对水稻稻瘟病进行了防治研究,试验设在湖南省测阳市北盛镇,试验田冬闲,水稻稻瘟病历年发生严重,土壤为浅红黄泥。结果表明,该药剂对稻瘟病有较好的防治效果,有效成分用量为238.5g/hm2、310g/hm2和381.6g/hm2时,对水稻叶瘟的防效分别为64.35%、70.91%和76.04%;对穗瘟的防效分别为62.04%、68.95%和74.51%;与空白对照相比其增产率分别为9.33%、16.20%和20.47%。谭万忠(2008)研究了重庆地区茶树病害种类及武夷菌素对茶病的田间控制效果,共查明病害16种,而以云纹叶枯病和轮斑病对茶树的危害最严重。采用武夷菌素原药的600倍液并按15L/667m2的用量对茶树叶面喷雾2次。以对照病叶率计算武夷菌素对茶树云纹叶枯痛、轮斑病和其他叶斑病的防效,分别为71.33%、65.38%和87.78%;而按病害严重度计算分别为61.02%、77.08%和79.01%,经统计学显著性测验表明,武夷菌素对这些茶树病害的相对防病效果与多菌灵的病害控制效果没有显著的差异(P>0.05),但处理与对照茶树病害的病叶率和病情指数的差异都达到了极显著水平(P<0.001),这表明,武夷菌素对荼云纹叶枯病和轮斑病具有很好的控制效果,可以代替多菌灵在茶叶生产中应用。孙英健(2005)研究了不同阿维菌素B1a浓度对4种土壤微生物生长和呼吸强度的影响及对土壤中蚯蚓的急性毒性,供试土壤采自南京、成都、武汉及长春,取自表层10cm下的土壤,蚯蚓取自中国农业大学饲养场,取个体体重在300~600mg、环带明显、2月龄以上的成熟蚯蚓为试验用蚯蚓。结果表明,土壤中阿维菌素B1a浓度在83.3mg/kg以上时对4种土壤细菌均表现出明显的抑制作用,但对土壤真菌不表现抑制作用,高浓度阿维菌素B1a对土壤微生物的呼吸强度有抑制作用,并且在不同土壤其作用有差异,采用滤纸接触试验和人工土壤试验测定阿维菌素对蚯蚓的急性毒性(半数致死量,LD50),接触毒性LD50为4.63μg/cm2,土壤法试验测定的LD50在处理后第7d和第14d分别为24.13mg/kg和17.06mg/kg。许小龙 (2002) 研究了阿维菌素对十字花科蔬菜主要害虫的生物活性及防治小菜蛾、菜青虫的田间应用效果,试验在南京市郊甘蓝田中进行,将药液均匀喷洒在钵栽无虫卵的小青菜上,药后1d、5d、10d、15d、20d和25d分别采摘叶片于室内塑料杯中,48h后检查结果,试验表明,阿维菌素4mg/L和8mg/L对菜青虫和小菜蛾的防效在95%以上时持效期10~15d,阿维菌素与高效氯氰菊酯 (1∶6)、与杀虫单 (1∶299) 复配对小菜蛾防治有显著的增效作用和良好的田间效果。1.白僵菌的定义白僵菌是一类寄主范围广且致病性强的昆虫病原真菌,在真菌分类学上属于丝孢纲Hyphomycetes,丛梗孢目Moniliales,从梗孢科Moniliaceac,白僵菌属Beauveria。由于白僵菌是寄生菌,繁多的寄主,导致形态学特征多变,其菌体由菌丝和分生孢子组成,常见白僵菌共有3种:球孢白僵菌、小球孢白僵菌和布什白僵菌。其中,球孢白僵菌的寄生范围广,能够侵染鳞翅目、鞘翅目、同翅目、膜翅目、双翅目等15个目149科的707种昆虫。由于白僵菌具有对环境和温血动物无害,易培养、杀虫谱广、致病力强等特点,已广泛应用于农林害虫的防治,仅我国防治松毛虫的年使用面积就达到60万hm2。白僵菌的菌落成绒状,从卷毛状到粉状,有时呈绳索状,但很少形成束丝梗;白色,稍后或变成淡黄色,偶成淡红色;背面无色或淡黄色到粉红色。分生孢子梗多,着生在营养菌丝上,粗1~2μm;产孢细胞(瓶梗)常浓密簇生于菌丝、分生孢子梗或膨大的泡囊(柄细胞)上,球形或者瓶形,颈部延长成粗1μm、长达20μm的产孢轴,轴上具小齿突,呈膝状(“之”字形弯曲)的产孢细胞和泡囊常增生,在分生孢子梗或菌丝上聚成球形或卵形的相当于密室的孢子头,在低倍镜下即可看到。分生孢子球形或近球形,透明,光滑,(2~3)μm×(2.0~2.5)μm。所谓白僵虫就是白僵菌的分生孢子落在昆虫体上,在合适温湿条件下,即可发芽直接侵入昆虫体内,以昆虫体内的血细胞及其他组织细胞作为营养,大量增殖,以后菌丝穿出体表,产生白粉状分生孢子,从而使害虫呈白色僵死状,称为白僵虫。2.白僵菌毒素(1)白僵菌素白僵菌的杀虫成分为白僵菌素(Beauveria),是一种环状缩羧肽,是从球孢白僵菌菌丝体内纯化出来的,用丙酮和酒精可以提取,对多种昆虫有毒杀作用。(2)球孢白僵菌素球孢白僵菌素是从白僵菌和蜡介轮枝菌(Verticillium lecanii)中分离出的另一种不同于白僵菌素的缩羧肽,此毒素比白僵菌素毒性高。(3)卵孢霉素球孢白僵菌、卵孢白僵菌、金色毛壳霉(Chaetomium aureum)、染色卵孢霉(Oosporacolorans)和侧面毛壳孢(Chactomium trilaterate)在代谢过程中都产生卵孢毒素,其结构已经被鉴定。卵孢毒素对许多昆虫有毒杀作用;对小麦、燕麦、烟草以及豆科植物也可以产生药害。白僵菌的传播,主要靠分生孢子,借助气流、水和虫体的互相接触而传染到健康的虫体,白僵菌对昆虫侵染主要有两种途径:一种是通过与昆虫接触从昆虫的体壁、气门、节间膜、气孔及伤口等外部途径侵入;另外,一种是在昆虫取食、呼吸时,通过消化道、呼吸道等内部途径侵入。害虫发病初期,昆虫运动呆滞,幼虫经白僵菌处理后取食减少,对碰触反应比较迟钝;食欲减退,静止时或全身倾侧或头胸俯状,呈萎靡乏力的状态。皮肤则明显失去光泽,虫体渐变为淡黄色,略肿胀,出现僵直症状。有些病虫的体皮上还有大小不一的黑褐色病斑,个别的胸腹足上环绕一条黑色带状的病斑。随着病势的发展,患病昆虫身体转侧,有时吐出黄水或排泄软粪,不久即死。刚死的虫体,皮肉都很松弛,身体柔软,过2~3h后开始变硬,常变成粉红色。尸体硬化1~2d后,先在气门、口器及各环节间生出绵状白毛,死后3~4d白毛布满全身,而且白毛上又逐渐长满石灰状白粉,几周后自粉渐变为黄色,上面又生出许多针状结晶。落入土壤中的白僵菌还能在土壤中过冬,在第2年害虫发生期,通过气流的传播再传染害虫,并导致死亡,表现为一次施药,多年有效的效果,故为良好的“以菌治虫”的生物防治制剂。白僵菌制剂为低毒杀虫剂。对人、畜和天敌昆虫安全,不污染环境,但对作蚕和家蚕有害,在蚕区不能使用。1.菌剂含量白僵菌在温度、湿度条件基本相同的情况下,菌剂的含孢量越高,治虫的效果亦显著提高。2.温度白僵菌的孢子一般在5~35℃、相对湿度85%以上可以萌发。若菌体遇到较高的温度自然死亡而失效。其杀虫有效物质是白僵菌的活孢子,最适温度为24~28℃,24h萌发率90%以上,40h分生孢子开始产生。如温度过低(15~10℃)萌发,生长比较缓慢,72~88h才能达到90%以上萌发率,产孢量比适温要低10倍。高温干燥害虫虽死,但往往长不出白色菌丝和分生孢子,病菌不易蔓延;低温干燥时病菌也不易于流行。低温潮湿,只要温度有短时间上升则可形成不同程度的流行,适温高湿的条件下,病菌最易流行。3.相对湿度白僵菌杀虫受一定温度、湿度的影响,但湿度是主要因子。低湿度有利于孢子的萌发和形成,湿度以25%~50%最为适宜,过干、过湿都不利孢子萌发。孢子萌发和菌丝生长都需要高的相对湿度,以100%最为适宜,而95%时孢子发芽率显著降低,湿度90%以下则不利于孢子萌发。而白僵菌孢子一旦侵入害虫体内,即不再受外界湿度影响,适温下可迅速致死松毛虫。低温、低湿度最不利白僵菌侵染致病。4.光照在黑暗条件下,菌丝伸长速度很缓慢,但菌落显著较厚。此种菌落经过一个阶段的光照处理后,可以形成大量孢子,其孢子产量较始终在有光条件还多。在一定光照度范围内,孢子数量随光照强度增加而增加。在可见光中,光波较短的蓝绿色(500nm以下)比光波较长的红黄光(565nm以上)更有效。5.剂型最早生产的球孢白僵菌杀虫剂剂型产品采用的是含有大量载体或培养料的粉剂,该产品不仅运输不方便,而且效果也不稳定。随着科学技术的发展,白僵菌的生产工艺得到了提高,方便了产品的运输与应用,并陆续有可湿性粉剂、乳剂、油剂、混合制剂、无纺布菌条等多种剂型产品被开发研制出来。不同剂型的球孢白僵菌杀虫剂防治害虫的效果也存在着较大差异。例如有研究显示白僵菌的混合粉剂比油剂防治马尾松毛虫的效果要好。不同剂型的球孢白僵菌杀虫剂具有各自的特点,例如可湿性粉剂明显地提高了孢子粉润湿性,使用方便;乳剂和油剂提高了孢悬液分散度与黏附力,具有黏着力强、渗透性好的特点;混合制剂提高了对害虫的防治效果,加快了害虫的死亡速度;白僵菌无纺布菌条可以有效地改善白僵菌孢子的微生态环境,并能在适宜的环境条件下促进孢子的萌发和再生。此外,为了增加球孢白僵菌杀虫剂的活力与杀虫效果,在制剂中还经常添加一些辅助剂、紫外保护剂和增效剂等。(1)原粉剂与粉剂利用真菌杀虫剂固体发酵产品,连同固体培养基一起粉碎,便成为原粉剂。若利用旋风分离等分离方法,将固体培养基表面生长的真菌孢子分离提纯,便得到了含孢量较高的高孢子粉。为了增强分生孢子对周围环境的抵抗力,增加真菌杀虫剂的存活力,人们又将高孢粉进行进一步加工,制成粉剂。(2)微胶囊剂、混合剂和干菌丝为了延长真菌杀虫剂的菌丝或孢子暴露在环境中的存活时间和增加侵染效果,人们尝试着用可溶性淀粉、明胶、氯化钙等为囊壁材料,对白僵菌丝或孢子进行微胶囊化包被。无纺布菌条是日本日东电工公司Fucushima等发明研制出的一种新型的真菌杀虫剂新剂型。(3)可湿性粉剂、乳剂和油剂可湿性粉剂是以白僵菌的孢子粉加入湿润剂和载体混合而成的一种剂型;乳剂是利用乳化剂将白僵菌分生孢子制成水悬液的一种制剂形式;而油剂是以油为稀释剂,将分生孢子制成孢子悬液的一种形式。1.不同剂型白僵菌的效果白僵菌粉剂已大面积推广应用,但白僵菌的菌粉体积大,运输、贮藏不方便,用菌量大,效果不稳定。与水剂相比,油剂在低的相对湿度下更有利于孢子的萌发,同时,在高温下也更能延长孢子的寿命;油剂还有利于孢子在疏水基质上的吸附,如昆虫体壁或植物表面,可以说,它是一种用于防治农林害虫的有效剂型。黄金水(2004)在福建省云霄县研究了白僵菌超低容量油剂林间应用对生物多样性的影响,结果表明,未防治区和白僵菌油剂防治区的物种数分别为473种和392种,而化学防治区的物种数只有266种;化学防治和白僵菌油剂防治均降低了物种的丰富度和多样性,同时,也增强了物种的优势度,但化学防治区与未防区的差异显著,白僵菌油剂防治区与未防区的差异不显著,尤其对天敌和非目标昆虫无显著影响。2.白僵菌与化学杀虫剂配施的效果蔡国贵 (2002) 研究了应用白僵菌与溴氰菊酯混合防治马尾松毛虫,通过应用白僵菌粉与4种浓度溴氰菊酯粉混合后不同时间孢子萌发情况测定,以及用纯菌粉、药粉和菌药不同比例混合粉,对马尾松毛虫室内毒力测定和林间防治试验比较,筛选出菌粉与0.05%溴氰菊酯粉按4∶1比例混合,防治效果最好,并经大面积推广防治示范,平均防治效果达95%以上,分别较纯菌粉和药粉效果提高14.9%和29.5%,具有明显的增效作用,马尾松毛虫死亡高峰期提前5~7d,减少松针损失量,能及时控制住高虫口林分害虫的严重危害,经济效益、社会效益和生态效益显著。3.白僵菌与生物杀虫剂配施的效果采用生物Bt杀虫剂和球孢白僵菌混合溶液对酒曲害虫黑菌虫毒杀,是一种降低污染和生产成本、增强杀虫效果、提高产酒率的混合微生物杀虫剂。李新社(2009)研究了苏云金杆菌(Bt)和球孢白僵菌混配对酒曲害虫黑菌虫的毒杀效果。研究结果表明,在温度40℃、相对湿度73%~75%条件下,苏云金芽孢杆菌杀虫剂与球孢白僵菌杀虫剂以5:4混配时能有效地杀死酒曲害虫黑菌虫,杀虫至第15d可以使黑菌虫的校正死亡率达93.33%。4.白僵菌不同放菌方式的效果白僵菌的释放形式对于防治效果显得十分重要,徐金柱(2001)研究了放菌方式对白僵菌防治光肩星天牛效果的影响,试验研究了悬挂布氏白僵菌无纺布菌条和喷雾两种不同放菌方式对光肩星天牛成虫的死亡率、产卵量和白僵菌活孢率的影响,并研究了在自然条件下无纺布菌条的带菌量变化情况。结果表明,无纺布菌条放菌方式对成虫的杀伤力明显高于喷雾放菌,尤其是在放菌3~7d后;成虫产卵的刻槽数也明显低于喷雾组;在自然条件下,菌条上的孢子的活孢率和喷雾放菌间差异显著。白僵菌对寄主昆虫的致病性受环境因素的影响,一般高湿环境下昆虫的发病率较高。孙鲁娟(2001)研究了不同温、湿度下白僵菌对棉铃虫幼虫的致病力,结果表明,3个浓度处理的棉铃虫在温度为25℃时的致死中时(LT50)最短,死亡速度最快,死亡率最高;高于或低于此温度时,棉铃虫的LT50延长,死亡速度减慢。相对湿度发生变化时,感病棉铃虫死亡速度和死亡率明显不同。相对湿度为95%左右时,棉铃虫死亡速度最快,死亡率最高;相对湿度低于70%时,棉铃虫死亡率显著降低。自从1879年梅契尼柯夫最先从奥地利金龟上分离到金龟子绿僵菌以来,已有100多年的历史。绿僵菌可以划分为3个种,即金龟子绿僵菌、黄绿绿僵菌和白色绿僵菌,其中黄绿绿僵菌下分为5个变种,分别是黄绿绿僵菌新变种1、黄绿绿僵菌新变种2、黄绿绿僵菌新变种3、黄绿绿僵菌小孢变种、黄绿绿僵菌大孢变种;金龟子绿僵菌下分4个变种。分别是金龟子绿僵菌新变种1、金龟子绿僵菌新变种2、金龟子绿僵菌小孢变种、金龟子绿僵菌大孢变种。绿僵菌是一种具有很强致病性的昆虫病原真菌,该菌的寄主范同比较广,能寄生直翅目、鞘翅目、半翅目、同翅目、双翅目、膜翅目、鳞翅目等8个目42个科200多种昆虫,还能寄生螨类及线虫等,可以有效地防治金龟子、蝗虫、马尾松毛虫、小菜蛾、蜚蠊、鞭角华扁叶蜂、白蚁等,和白僵菌一样,绿僵菌对人、畜和作物都无毒害,是当前研究和应用最多的虫生真菌之一,在许多国家常常被制成真菌杀虫剂来防治蝗虫、叶蝉等有害昆虫。和其他大部分病原真菌一样,绿僵菌的分生孢子首先附着于寄主体表,一旦能正常萌发生长,则产生入侵菌丝,最终导致寄主死亡。绿僵菌对寄主的入侵是寄主与病原菌之间的生理生化作用的综合结果,可通过体壁、气门、消化道等多种途径侵染宿主,其中,体壁途径是主要方式。这种侵染方式体现了真菌的特点。在这个过程中绿僵菌形成特殊结构(如附着胞等),同时分泌各种相应的酶(如几丁质酶等),破坏寄主体表,侵入寄主体内,与此同时,需要克服昆虫体表上的某些物质的抑制作用以及寄主体内的一系列免疫活动。其致病过程一般可以分为以下5个阶段。1.孢子附着于昆虫体表主要是通过非特异性的物理结构,即绿僵菌分生孢子表面的“小杆层”可附着于昆虫表皮。2.孢子萌发分生孢子附着在寄主昆虫体壁后,经过一系列生化反应,在适宜的温度、湿度条件下萌发,分生孢子萌发形成的芽管直接穿透表皮或形成附着胞牢固的附着在表皮上,然后从附着胞上长出细长的侵入丝深入表皮,这个过程是在芽管萌发生长时产生的机械压力和其在生长过程中分泌的相关酶的联合作用下共同完成。分泌的酶可降解体壁中的蛋白质和几丁质等物质,从而使孢子萌发的芽管得以穿透体壁。3.菌丝在虫体内大量生长菌丝侵入虫体后,可以在昆虫体腔和组织内大量生长繁殖,破坏了昆虫的各种细胞和组织,对昆虫体内和体表组织的蛋白质代谢产生影响,使淋巴中的过氧化物酶活性降低等一系列破坏作用。4.产生毒素大部分虫生真菌在侵入寄主之前就已经战胜了寄主的保卫反应,这是因为毒素起了重要的作用,绿僵菌可以产生一系列环状六肽素,又称破坏素,多为小分子缩羧肽及蛋白酶类,其中破坏素A和破坏素E的杀虫活性最强。首先是这些毒素可以抑制寄主细胞的免疫反应,如降低昆虫吞噬细胞的数量和活性,改变浆细胞的形态,引起体液免疫中酚氧化酶活性的改变等。5.寄主死亡菌丝在寄主体内开始大量繁殖,侵入寄主的所有器官,最终导致使虫体僵硬;菌丝从寄主体内穿出,产生新的感染单位并发生扩散。关于绿僵菌将寄主致死的原因,传统的观点认为,是菌丝在虫体内迅速增殖,大量消耗吸收了寄主的营养而最终导致寄主死亡。在绿僵菌的作用下,虫体活动减弱,部分试虫还抽搐、翻腾,头部扬起并左右晃动,体色逐渐由绿色变为灰色。随后,虫体呈灰褐色,出现僵直状死亡,保湿培养,虫体长出白色菌丝,后被绿色分生孢子覆盖。1.绿僵菌菌剂的剂型用绿僵菌防治农林害虫已有近百年的历史,但制剂的商品化进展却十分缓慢,在绿僵菌生产工艺方面,单纯的液体发酵生产的孢子或菌体,因活性和耐储性降低而受到限制。目前,工业上主要采用传统的液固双相发酵生产工艺生产真菌孢子粉,固相发酵阶段存在搅拌不均、通透性差、发酵周期长和设备价格偏贵等缺点。(1)粉剂是直接将绿僵菌的分生孢子粉与一定量的填充物或添加物的制成品混合的产品形式,填充料是一些吸收性能较差的惰性物质,最常用的填充物质是滑石粉、陶土、黏土等。一般的粉剂含重量为5%~10%的孢子和90%~95%的填充料,填充料的pH值及其缓冲能力、对化学抑制性物质的吸收能力及其对微环境的优化能力都是影响粉剂中孢子存活率、活性的主要因素。(2)可湿性粉剂这是绿僵菌的孢子粉加入湿润剂和载体混合而成的一种剂型。可湿性粉剂含有50%~80%孢子、15%~45%填充料、1%~10%调配剂和3%~5%湿润剂。(3)油剂这是以油为稀释剂,将分生孢子制成孢悬液的一种形式,在相对湿度很低的环境中有利于孢子萌发,高温环境下又能延长孢子的寿命,还有利于孢子对疏水基质的吸附如昆虫体壁或植物表面。与水剂相比,油剂在低的相对湿度下更有利于孢子的萌发,同时,在高温下也更能延长孢子的寿命。油剂还有利于孢子对疏水基质的吸附,如昆虫体壁或植物表面。(4)干菌丝为液体发酵产物的应用提供了新的空间,丰富了真菌杀虫剂的剂型,在解决干菌丝制备的一些瓶颈问题后,该剂型应该得到较为广泛的推广应用。(5)颗粒剂这是指分生孢子(或菌丝等侵染体)与载体混合搅拌而成的一种颗粒状制剂,将原菌粉吸入过筛的炉渣或沙子中即可得简单的颗粒剂。典型的颗粒剂含5%~20%孢子、80%~95%载体和1%~5%黏合剂。(6)漂浮剂这是针对水田环境而研发的,利用一些辅助材料使得制剂漂浮在水面上,或吸附于水稻等作物的茎秆上,从而在水面形成了绿僵菌菌环,水田害虫沿着稻株潜水或上浮时容易沾染绿僵菌,从而被感染致病或死亡。2.影响绿僵菌杀虫效果因素(1)化学试剂绿僵菌制剂杀虫速率较慢的缺点,有效解决的途径之一是与化学杀虫剂混用。因此,在野外使用绿僵菌时应避免与这些除草剂同时使用或混用。人们为了克服这个缺点,研究者们将低浓度的化学杀虫剂、植物源杀虫剂及其他生物杀虫剂与真菌杀虫剂混合制剂以取得更快、更好的杀虫效果,这样既可显著的提高防效,又能减少化学杀虫药物的使用量,从而达到节约成本和绿色农业的效果。(2)高温绿僵菌分生孢子萌发的最适宜温度为28℃,绿僵菌在25~32℃有较好的杀虫效果,28℃时杀虫效果最好,当温度高于28℃时,绿僵菌的杀虫效果优于白僵菌。(3)病毒意大利蝗痘病毒包涵体在环境中较稳定,能长期保存,能起到长效作用,将此病毒与绿僵菌混合接种蝗虫具有很强的杀虫效果。利用生物杀虫剂杀虫的互补性和共同作用防治蝗虫,具有重要的实际意义。1.绿僵菌与化学农药配施效果宋漳 (2001) 研究了化学杀虫剂对绿僵菌的影响及菌药混用效果,结果表明,6种化学杀虫剂皆对绿僵菌分生孢子有程度不同的抑制作用,浓度愈高,抑制作用愈强,但氧化乐果对绿僵菌孢子萌发抑制作用最小。对马尾松毛虫的生物测定结果表明,绿僵菌 (含孢量为1.9×1010个/L) 与敌杀死 (1∶60000),辛硫磷 (1∶10000),灭杀毙 (1∶25000) 和灭幼脲1 (1∶15000) 混用有明显的增效作用,其LT50值比单用绿僵菌 (含孢量为1.9×1010个/L) 分别提前了7d、6d、5d和3d。秦长生(2008)研究了绿僵菌相容性杀虫剂筛选及混用防治椰心叶甲,根据6种常用杀虫剂的常规使用浓度、亚致死浓度、次亚致死浓度对金龟子绿僵菌菌株菌落生长的影响结果,筛选了与绿僵菌相容的杀虫剂,并选用适当剂量的杀虫剂与绿僵菌混用,防治椰心叶甲,结果表明,供试的6种杀虫剂对绿僵菌生长有不同程度的抑制作用,其中,杀虫单的抑制作用最弱,亚致死剂量药剂5d后对菌落生长的抑制率为15%,10d后下降到5.90%,次亚致死剂量5d和10d对菌落生长的抑制率均低于5%,与绿僵菌有较好的相容性。低剂量杀虫单与绿僵菌混用防治椰心叶甲成虫具有协同作用,亚致死剂量和次亚致死剂量的杀虫单和绿僵菌混用,防治椰心叶甲的致死率分别达93.33%和81.11%,要明显高于单独使用绿僵菌(75.56%)和单独使用亚致死和次亚致死剂量杀虫单(10%~30%),具有较好的应用前景。2.绿僵菌与生物农药配施效果高书晶(2010)研究了杀蝗绿僵菌与植物源农药混用对亚洲小车蝗的杀虫效果,室内测定结果表明,植物源农药印楝素和苦参碱与绿僵菌混合施用时对亚洲小车蝗的防效显著增强,表现明显的协同作用。印楝素和绿僵菌混用与单独施用绿僵菌相比对亚洲小车蝗的LT50缩短了约3.17d,苦参碱和绿僵菌混用与单独施用绿僵菌相比对亚洲小车蝗的LT50缩短了约1.81d;田间小区试验表明,印楝素和苦参碱与绿僵菌混合施用的防效都达到90%以上。差异显著性分析表明混合施用和单独施用绿僵菌的差异显著。因此,植物源农药与绿僵菌可以结合用于防治亚洲小车蝗,其机理是农药通过影响昆虫外骨骼的发育,使真菌杀虫剂更易侵入虫体。3.绿僵菌不同放菌方式的应用效果陆永跃(2003)研究了绿僵菌不同放菌方式对香蕉假茎象甲种群的控制作用,结果显示,田间布施绿僵菌对香蕉假茎象甲种群有一定的控制作用。接种式放菌后3个月寄生率达到高峰,未清理蕉园、清理蕉园和对照蕉园象甲成虫寄生率分别为18.60%、14.29%和4.0%。其后未清理蕉园寄生率为8%~16%,清理蕉园寄生率为5%~9%。淹没式放菌处理不同类型蕉株对香蕉假茎象甲均有较强的控制作用,且处理留头蕉茎的控制作用强于处理成长蕉株。当绿僵菌孢子浓度为8×108ml时,成长蕉株、秋季留头蕉茎和冬后留头蕉茎上假茎象甲被绿僵菌寄生所对应的存活率分别为0.3215、0.1286和0.1062,干扰作用控制指数分别为0.3568、0.1415和0.1222。应用无纺布菌条防治光肩星天牛和松褐天牛广泛使用,每棵树木上均放置无纺布菌条,是一种淹没式的放菌方式,虽能取得一定防治效果,但成本较高,无法在山高坡陡树灌丛密的森林中大面积应用。为提高其使用价值,夏成润(2005)研究了金龟子绿僵菌无纺布菌剂与引诱剂结合使用防治短角幽天牛的试验,结果显示了绿僵菌无纺布菌条与引诱剂结合防治短角幽天牛具较大潜力。昆虫杆状病毒是已知昆虫病毒中的最大类群,也是发现最早、研究最多的昆虫病毒。昆虫病毒的最大特点是能够形成包涵体,一个包涵体中含有一个或多个病毒粒子。根据包涵体是否存在可将其分为包涵体病毒(occluded baculovirus,OV)以及非包涵体型杆状病毒(nonoccluded baculovirus,NOV);其中,将包涵体病毒按形态又可分为核多角体病毒属(nuclear polyhedrosis virus,NPV)和颗粒体病毒属(granulosis virus,GV)。而核多角体病毒属又可根据病毒粒子包膜中的粒子数不同,而划分为多粒包埋型核多角体病毒(multiple nuclear poly.hedrosis virus,MNPV)和单粒包埋型核多角体病毒(single nuclear polyhedrosis virus,SNPV)。1.核型多角体病毒(NPV)NPV是一类在昆虫细胞核内增殖的、具有蛋白质包涵体的杆状病毒,多在寄主的血、脂肪、气管、皮肤等细胞的细胞核内发育,故称核型多角体病毒。它的数量在昆虫病毒中占首位,例如,在我国已报道的290余种昆虫病毒中,NPV就占了212种。核型多角体病毒寄主范围较广,主要寄生鳞翅目昆虫。经口或伤口感染。经口进入虫体的病毒被胃液消化,游离出杆状病毒粒子,通过中肠上皮细胞进入体腔,侵入细胞,在细胞核内增殖,之后再侵入健康细胞,直到昆虫致死。病虫粪便和死虫再传染其他昆虫,使病毒病在害虫种群中流行,从而控制害虫危害。病毒也可通过卵传到昆虫子代。专化性强,一种病毒只能寄生一种昆虫或其邻近种群,只能在活的寄主细胞内增殖。2.质型多角体病毒(CPV)昆虫质型多角体病毒在昆虫细胞质内增殖,具有蛋白质包涵体,侵染昆虫中肠细胞,宿主范围相对较广,约250种,其中,80%为鳞翅目,16%为双翅目,3%为膜翅目,1%为鞘翅目和脉翅目。质型多角体病毒主要通过食入感染,且它只感染昆虫的消化道。全世界已记载过的CPV的宿主已超过200种。我国对昆虫质型多角体病毒的研究从家蚕病害的研究开始,已报道的有30种,其中,研究得最多的是家蚕CPV。此外,还研究过马尾松毛虫CPV、油松毛虫CPV、茶毛虫CPV、棉铃虫CPV、舞毒蛾CPV、小地老虎CPV和黄地老虎CPV等。3.颗粒体病毒(GV)颗粒体病毒主要通过食入来对昆虫进行感染,它可以感染的昆虫组织多为真皮、脂肪组织、肠皮膜细胞。其杀虫机理是,包涵体进入虫体后,在碱性胃液的作用下释放出病毒粒子,病毒粒子在昆虫体内大量增殖,影响昆虫正常的血液循环,从而导致昆虫细胞的死亡。杆状病毒是昆虫及某些无脊椎动物的重要病原体,是研究最为深入的昆虫病毒。昆虫杆状病毒对许多害虫比较敏感。杆状病毒占所有可感染昆虫病毒的60%以上。目前,至少已有600多种昆虫(主要是鳞翅目昆虫)和其他无脊椎动物中发现杆状病毒感染。它们对宿主具有高度的专一性,对脊椎动物和植物则十分安全。杆状病毒应用最成功的例子是巴西黎豆夜蛾NPV,在大豆上应用近100万hm2。棉铃虫NPV在中国每年应用近10万hm2。野生型昆虫杆状病毒杀虫剂具有对人畜、环境安全,且不产生严重抗性的优点,但是,其缺点也很明显。首先是杀虫谱狭窄,相对于化学农药的广谱,其一般只对几种昆虫起作用,如家蚕病毒(BmNPV)不感染柞蚕,而柞蚕病毒也不感染家蚕,有些病毒虽然也交叉感染,但其对其他宿主的感染毒力显著降低。其次是潜伏期长,杀虫速度缓慢。其对害虫的田间致死时间一般需7~14d,而不像化学农药那样快速杀灭害虫。由于杆状病毒的上述特点,特别是它对人畜、天敌和环境比较安全,因此,它是生产绿色食品必不可少的生物农药,其市场前景看好。但是,野生型杆状病毒制剂由于杀虫速度相对较慢,寄主范围窄等缺陷,限制了其商业化生产和推广应用速度。野生型杆状病毒制剂由于杀虫速度相对较慢,施用后4~14d才表现出杀虫活性,且繁殖体系难以扩大,寄主范围窄等缺陷,对高龄害虫需用量大等缺点,限制了其商业化生产和推广应用速度,商品化生产困难。因此,应用价值没有得到充分发挥,生产和推广受到极大的限制。为了提高其毒力,加快杀虫效率,通过基因工程技术对杆状病毒进行重组,以获得新一代高效、安全的病毒杀虫剂。构建重组杆状病毒杀虫剂的方法也在不断创新,主要技术路线有3条:一是鉴定并去除某种非必需基因来增加杀虫效果;二是插入某些外源基因以提高杀虫速度;三是通过修饰、缺失与宿主范围相关的基因来拓宽病毒的杀虫谱。其中,插入外源基因是目前构建重组病毒杀虫剂最主要的方法。目前,人们主要对其进行基因重组改造,已成功实现重组表达的有利尿激素、保幼激素酯酶、羽化激素、蝎子毒素、植物蛋白酶抑制剂、昆虫病毒增强蛋白基因等。这些外源基因大致有3类型:①昆虫激素类物质,能破坏害虫的正常生长,引起体内生理调控紊乱;②细菌毒性和昆虫毒素,作用于害虫,引起害虫麻痹,停止进食,提早死亡;③植物蛋白酶抑制剂,能使害虫消化功能受阻,生长发育不良或导致死亡。野生型病毒比重组病毒具有更强的环境适应能力,在野外环境中,最终占优势的往往是野生病毒。这说明重组病毒对环境的影响和危险较低。与其他杀虫剂相比,杆状病毒杀虫剂的特点主要表现在以下6个方面。(1)杆状病毒对脊椎动物及所有植物均无病原性,且不能进入哺乳动物细胞核中,因此,不会对哺乳动物造成危害。(2)大多数杆状病毒的宿主域只限于昆虫的某一个科或属,宿主域较为狭窄,与相对无选择性的化学农药相比风险较小,对害虫的天敌、有益的昆虫和人体无害。(3)已成为严重公害的化学杀虫剂残毒问题应用杆状病毒杀虫剂在环境中不会遗留有害残毒,对环境无污染。(4)杆状病毒杀虫剂可与其他防治手段和谐共存,在害虫综合治理计划中具有更大的应用范围。(5)杆状病毒可以很好地适应和回避昆虫的防卫机制,没有严重的抗性问题,但重组杆状病毒杀虫剂尚未大面积推广,因此,有关安全性还需要大量的田间应用试验。(6)活体微生物杀虫剂的作用方式通过微生物增殖使昆虫感染疾病,在昆虫体内有一个生病的过程。但是这相对化学农药立竿见影的效果来说,它的作用速度较慢,一般要10~20d才显露出来。但害虫一旦感染后,一般都滞食或停止摄食直至死亡。作为化学农药的替代品,杆状病毒要得到更大的规模推广应用,必须解决以下几个方面的问题:①提高病毒的杀虫活性和作用速度;②提高在恶劣环境(如高温、干旱、高辐射等)条件下的可应用性;③提高生产效率和减少生产成本;④提供药效持久、使用方便的新剂型;⑤深入了解病毒在害虫—作物系统的适应性,充分发挥病毒可持续控制害虫的作用;⑥充分发挥病毒杀虫剂在环境友好方面的优越性,并为使用者和公众所普遍接受。由于病毒是专性细胞内寄生物,只能在活的寄主细胞内增殖,它是通过大量饲养健康幼虫—幼虫喂食病毒后死亡—从虫尸中提取病毒的途径来生产的。某些昆虫集群饲养难度较大,通过这些昆虫来繁殖病毒,操作繁琐,生产成本高。因此,有的地方难以接受,给推广带来一定的影响。因此,杆状病毒杀虫剂的生产只能采用原寄主整体昆虫(体内法)或其离体的细胞培养生产(体外法)。1.体内法是美国Sandoz公司20世纪70年代末研发成功,并用于HZNPV(商品名:ELCAR)杀虫剂的生产。该方法生产成本较低,增殖的病毒遗传稳定性较好。但体内法劳动强度较大,在达到一定规模后,进一步扩大并不能减少单位产品的成本。另据报道,昆虫自身引发的某些微有机体对病毒产品的污染也难以避免。2.体外法是通过大量培养昆虫细胞进行生产。大规模培养昆虫细胞的方法很多,综合起来可分为两种类型:贴壁细胞培养和悬浮细胞培养。体外法具有很大的灵活性,不存在体内法的缺点。但脆弱的昆虫细胞培育需氧量很大,在大发酵器中培育,充分供氧难以实现。若采用连续培养法,病毒在体外经多次传代,会产生“传代效应”即病毒突变而使某些基因片段丢失,导致缺损感染现象。这些突变的病毒与原接种病毒相比,在基因组特性、病毒毒力等方而有较大的差异,尤其降低了病毒的毒力。另外该法设备投资大,培养基及牛血清等价格高昂,所生产的病毒难以在价格上与其他杀虫剂竞争。但目前细胞培养法在一些方面取得了重要进展,包括无血清介质的开发利用、细胞耐受株的研究以及发酵手段上的改进等。因此,采用整体活虫生产病毒杀虫剂仍是当前杆状病毒杀虫剂生产的主要方法。用此法生产重组杆状病毒杀虫剂时,由于其杀虫效果明显提高,使幼虫提前死亡,也就必然导致病毒产量降低。要解决该问题,一是降低昆虫细胞培养成本,开发细胞耐毒耐受株;二是改良现存的活体昆虫生产方式,如确定幼虫的最佳感染时期、感染剂量以及收获病毒的最佳期,实现在大龄幼虫期进行病毒生产;三是寻找替代宿主,利用替代宿主易繁殖、饲养技术成熟的特点进行大规模生产,同时解决一种宿主不能生产多种病毒的问题。苜蓿银蚊夜蛾核型多角体病毒作为新型生物杀虫剂已应用于农作物病虫害防治。范晓军(2007)对构建的重组杆状病毒(AcMNPV-BmKIT-Chi)进行了杀虫活性和生物安全性初步研究。结果显示,重组病毒和野生型病毒的LC50分别为7.5×102PIB/ml,3.3×104PIB/ml,重组病毒比野生型病毒具有更好的杀虫活性;检测了该重组病毒和野生型病毒对小鼠的易感性,所试小鼠未见明显急性毒性反应,高剂量重组病毒灌胃小鼠的脾脏增大,小鼠胸腺、脾、肾组织切片未有异常,重组病毒对小鼠具有较高的生物安全性。胡蓉(2002)测定了AcNPV.Bt.En复配剂对甜菜夜蛾幼虫的毒力,AcNPV的添加对Bt具有增效作用,并且两者在不同配比条件下,显示出不同的杀虫效果。当Bt与1.0×105PIB/mg的AcNPV复配时,LC50=(19.7±2.6)μg/ml,该混剂对Bt单剂的共毒系数为355,明显高于Bt与1.0×103~1.0×104PIB/mg 的AcNPV复配时的共毒系数(CTC分别为236和174)。化学农药的广泛使用带来了一系列的环境问题,也给人类带来了严重的危机感。于是,生物防治成为害虫综合治理的主要手段之一。低毒、低残留、易降解对环境友好的生物农药成为当今农药届研究的热点,如植物的次生化合物质、苏云金芽孢杆菌、白僵菌、绿僵菌、昆虫病毒等已被大量应用于害虫的综合治理中,为害虫的生态控制带来了显著的成效。在害虫的生物防治策略中,昆虫病原线虫(Entomopathogenic nematodes)是近几十年发展起来的一种有潜能的生物防治因子,昆虫病原线虫是一类新型的生物杀虫剂,由于它具有较高的毒力、杀虫范围广、能主动寻找寄主、易于人工培养且成本低廉、使用安全等优点,而成为当前国际生防领域研究热点之一。昆虫病原线虫广泛分布于斯氏线虫科(Steinemematidae)和异小杆线虫科(Heterorhabditidae)。在分类上属于动物界(Animalia)、线虫门(Nematoda)、尾感器纲(Secernentea)、小杆目(Rhabditida)。昆虫病原线虫一生可分为卵、幼虫和成虫3个虫态。幼虫期共4个龄期,其中,只有第3龄幼虫可存活于寄主体外,也是唯一具有侵染能力的虫态,又称为侵染期幼虫(Infective juveniie)。1.斯氏线虫斯氏线虫是害虫防治中研究最多的线虫种类。因其较易饲养和处理,常用于庭院和花园。在田间应用中,小卷蛾斯氏线虫(Steinernema carpocapsae)是防治毛虫幼虫是最有效的。在实验室和田间试验中,它可以防治草地螟、夜蛾和钻蛀虫(木蠹蛾)。夜蛾斯氏线虫(Steinernema feltiae)防治蚊类幼虫非常有效。有时也用于防治蘑菇蝇蚊和温室中的其他土栖害虫。但是,斯氏线虫对防治蛴螬、根蛆、松墨天牛等效果不好。某些商业产品声称对某些害虫防治有效,其仅仅是根据人工条件下的实验结果,通常不能反映田间的应用效果。2.异小杆线虫异小杆线虫的应用不是很普遍,主要是由于其比较难饲养,并且对环境条件更加敏感。然而,在防治蛴螬方面,其田间试验效果要比斯氏线虫效果好。异小杆线虫对防治苗圃害虫也很有效,如取食植物根部天牛和柑橘叶甲。3.索科线虫我国幅员辽阔、地形地貌复杂、气候多样、昆虫种类繁多,拥有较丰富的索线虫资源。昆虫寄生索科线虫广泛寄生于蔬菜等农、林、医害虫体内,它能主动侵染宿主,其寄生率即等于害虫的死亡率,并可在自然界再循环,有后续的防治作用;保护利用索科线虫的自然控制作用,可以不用或减少使用农药,因而具有巨大的生防潜力和广阔的应用前景。开始不表现明显病症,后行动迟钝、腹部异常膨大、食量减少或不取食。虫体异常透明,可从病虫外看到线虫。昆虫病原线虫(Entomopathogenic nematodes)是昆虫的重要天敌类群之一,现已发现3000种以上的昆虫被线虫寄生,被寄生昆虫主要表现为发育不良、生殖力减退、滞育或死亡,在昆虫病原线虫一共生菌复合体对昆虫的致病作用中,起主要作用的是共生菌。昆虫病原线虫共生细菌寄生于昆虫病原线虫肠道内,二者互惠共生。目前报道的昆虫病原线虫细菌革兰氏染色阴性,该菌兼性厌氧、化能异养,属肠杆菌科(Enterobacteriaceae),包含两个属:嗜线虫致病杆菌属(Xenorhabdus)和发光杆菌属(Photorhabdus)。侵染期线虫将共生菌释放到昆虫的血腔后,这些细菌迅速繁殖,即在昆虫血腔内释放共生菌,共生菌大量繁殖并分泌杀虫物质,产生毒素导致昆虫患败血症,并分解昆虫组织,为线虫生长提供营养,同时,产生抗菌物质抑制其他杂菌的生长,为线虫的繁殖发育提供理想的环境。近几十年研究发现,昆虫病原线虫共生菌能够产生多种有应用潜力的生物活性代谢产物:抑菌物质、杀虫蛋白、抗肿瘤物质和胞外酶等,其中产生抗生素是昆虫病原线虫共生菌的普遍特征,也是共生细菌抑制其他微生物在昆虫尸体内定殖的主要原因。大量研究表明,这些抗生素具有较广的抑菌谱,能广泛抑制细菌、真菌和酵母菌等。昆虫病原线虫及其共生菌的杀虫机理是一个非常复杂的问题。目前对其杀虫机理的了解主要包括以下5个方面。(1)线虫及其共生菌对寄主血淋巴有破坏作用有效的昆虫病原线虫必须能躲避或破坏昆虫的各种防御机制(内部的和外部的)。当线虫侵入寄主后,寄主的血淋巴对外界异物的侵入有各种不同的防御反应,主要是寄主吞噬细胞和其他m细胞对共生菌初期产生的抵抗作用,一般在3~12h达其抵抗最大阈值。24h后共生菌能破坏这种抵抗反应并大量繁殖,进而破坏寄主的主要器官。(2)线虫和共生菌均能产生毒素线虫产生的毒素除了直接作用于寄主血淋巴外,还可能在保护共生菌免受寄主的防御机制中起作用,破坏寄主的免疫系统,使共生菌能在寄主血淋巴中快速增殖,最后使寄主死亡。和许多其他革兰氏阴性细菌一样,线虫共生菌在生长过程中能产生内毒素和外毒素。有些昆虫可能被外毒素杀死而其他昆虫可能对内毒素和线虫毒素更敏感。(3)共生菌次级代谢物也有杀虫作用共生菌代谢物抑制多种微生物的有效组分已被分离,这些组分除了能广泛抑制细菌、真菌和酵母菌外,对昆虫还具有毒杀作用。(4)虽然共生细菌是引起寄主昆虫死亡的主要原因,线虫分泌的毒素对昆虫也有致死作用1.紫外光由于昆虫病原线虫对干燥和紫外线辐射较敏感,太阳辐射对昆虫病原线虫有很强的杀伤力,在紫外线直接照射时,只需几分钟线虫就会死亡。所以,对叶部昆虫的防效不是很好,但近年来随着抗干燥剂和抗辐射剂的推广应用,昆虫病原线虫也被广泛应用于叶面害虫的防治。对线虫与多种保护剂,如抗蒸发剂、保水剂、黏合剂、紫外保护剂等的混用增效作用系统研究发现,保护性助剂的应用对于保护线虫、提高大田实际防效有明显作用。2.湿度湿度被认为是最重要的气候因子。线虫不能忍受干燥,即使90%以上的高湿度,露于空气中的线虫也会很快死亡。3.温度温度是影响昆虫病原线虫存活和防效的重要因子。温度影响线虫的成熟和生长、繁殖、迁移率、保存和线虫的呼吸。温度是影响线虫成活的最主要因素,不同线虫品系对温度的耐受差异可能与其最初的自然生长环境有关。经过适当前处理,线虫可以在液氮中长期贮存或者耐受短期高温。4.土壤土壤的质地及理化性质也是影响线虫防效的重要因子,S.glaresi在沙土中比在泥土块中更快感染龟背蔗龟,致死率也更高;S.feltiae(Agriotos)对碱性土壤的忍耐力比酸性强,25℃下,在pH值为5~11的水溶液中,10d后未发现明显死亡,而pH值为3~4的水溶液中则出现明显死亡。5.杀虫剂许多昆虫病原线虫对多种化学农药及抗菌素和黏附剂等具较强的抵抗能力,因此,在农林病、虫、杂草的综合防治中,将它们与线虫混用,可降低防治成本并有效地提高防治效果。研究发现乐果、乙酰甲胺磷、代森铮、辛硫磷、敌杀死等对斯氏线虫比较安全,田间利用线虫与乐果混用防治竹象虫,可明显提高防效和保笋率。主要线虫杀虫剂产品,小卷蛾斯氏线虫、夜蛾斯氏线虫、格氏斯氏线虫、蝼蛄斯氏线虫、嗜菌异小杆线虫、大异小杆线虫等。依据昆虫病原线虫产品的特征可将其分为液剂、颗粒剂、水分散性颗粒剂、粉剂、线虫胶囊、虫尸剂。1.液剂贮存前,先将线虫用抗生素清洗,然后把溶液贮存在真空、充有氮气和二氧化碳的密封容器中。溶液中还可以继续添加其他抗生素,线虫液剂可根据需要溶于一定量的水中直接喷施。2.颗粒剂、水分散性颗粒剂将昆虫病原线虫溶液用一定的喷雾设备以液滴的形式一滴一滴的喷出,液滴落在装有粉状物质的圆盘上,圆盘转动或振动使液滴外包裹一层粉状物质,形成内部含水、大小为1~10mm的小颗粒即水分散性颗粒。使用时,水分散性颗粒可以在短时间内甚至几分钟内恢复昆虫病原线虫活力,便于溶水后施用。3.粉剂用直径小于50μm非纤维状纤维素与昆虫病原线虫溶液混合制成,纤维素吸水诱导线虫进入脱水休眠状态。使用前需水化恢复线虫活力,然后溶于水中直接喷施,它一般不会堵塞喷雾设备。4.线虫胶囊用水凝胶、复合剂、昆虫病原线虫混合均匀形成直径为0.4~5mm线虫胶囊,可以直接以固体状施用,或用藻酸钠溶液溶解线虫胶囊再以液状喷施。5.虫尸剂它是在线虫感染的虫尸体表包裹两层包装材料后适当脱水干燥制成,在田间试用取得了很好的防治效果。商业性生产的线虫制剂的贮存要求成本低并使线虫经常处于质量好、合适应用的条件下。要达到这个目的,必需抑制线虫的活动,以防止其体内含的脂类和糖原储备下降。过去常用的方法是把线虫清洁后保存在低温通气的水中或混以海绵、活性炭等低温贮存,不同线虫种对贮存要求的温度不同,其中斯氏属线虫通常保存在5~10℃的低温下,异小杆属线虫则在10~15℃中。近年来逐步发展了较为稳定的、质量较好的线虫制剂,即用活性炭、聚丙烯酰胺、藻酸盐凝胶或通过黏土等物质使线虫部分干燥。活动处于抑制状态以降低其代谢,从而使线虫获得保存。1.昆虫病原线虫与黏合剂混用由于昆虫病原线虫对湿度、温度和紫外光等环境条件要求较高,难于适应现有的生态环境,因而成为其大面积推广应用的障碍。徐洁莲(2000)研究了昆虫病原线虫与黏合剂混用的增效试验,应用一定浓度的水溶性黏合剂POA与病原线虫混合,试验连续2年采用喷雾法,使用喷枪,把不同处理的线虫液喷于龟背天牛幼虫、桑天牛幼虫最末2个排粪孔,清除地面的粪粒,7天后检查幼虫是否有排粪,确定幼虫是否死亡。结果表明,该方法可提高线虫的存活率、毒力及对寄主的致死速度。LRT50为0.74,共毒系数大于100,混剂增效显著。田间防治龟背天牛、桑天牛的效果比单用病原线虫提高10%~25%。POA是一种有利用价值的增效剂。昆虫病原线虫制剂商品化过程中,延长有效货架时间,以便于长距离运输和选择田间应用的最佳时间,是线虫产业化生产的关键技术之一。2.昆虫病原线虫与农药混施昆虫病原线虫的单独使用时剂量大,成本较高,为了提高昆虫病原线虫小卷蛾斯氏线虫(S.carpocapsae)品系对褐纹甘蔗象的防治效果,降低使用成本,王果红(2007)利用昆虫病原线虫与化学农药混用防治褐纹甘蔗象,将4000条/ml感染期线虫与48%毒死蜱EC(1000mg/L)、70%吡虫啉(500mg/L)混合施用于国王椰子,7d后对幼虫的防效为96%,明显优于单剂毒死蜱(68.96%)、单剂吡虫啉和小卷蛾斯氏线虫(68.42%~76.52%)的防效;混剂处理7d对成虫的防效为88.89%,亦明显优于单剂毒死蜱(72%)、单剂吡虫啉(2.5%)和小卷蛾斯氏线虫(27.78%~52.63%)。东北大黑鳃金龟是黑龙江省地下害虫的优势种,为了探索防治该害虫的有效方法,张丽坤(1999)研究了斯氏线虫与常用杀虫剂混用时对东北大黑鳃金龟的毒杀效果,将40%氧化乐果稀释500倍、1000倍、2000倍和4000倍4个浓度,其他3种杀虫剂按有效成分的含量与氧化乐果稀释相同浓度,用清水作对照。分别取稀液5ml装入培养皿中(药液高不超过1cm),每皿加入相同数量斯氏线虫,12h、24h、48h、72h后分别从各培养皿中取样,显微境下观察,测定线虫的死亡率。结果得出,该线虫对氧化乐果、灭杀毙、辛硫磷均有较强的抗性,而甲基异柳磷对该线虫有较大的毒性。室内试验表明,该线虫分别与氧化乐果及灭杀毙混用对蛴螬的毒杀均有明显的增效作用,它与氧化乐果混用的共毒系数略高于与灭杀毙混用。微生物除草剂是指能在人们控制的条件下有效地被用来防除特定杂草的活体微生物产品或微生物代谢产物,即利用活体微生物和利用微生物产生的代谢产物进行杂草防除。狭义的微生物除草剂是指“直接利用微生物本身进行杂草防治”;广义而言,微生物除草剂是指利用能快速繁殖的杂草病原菌活体或由微生物产生的具有杀(抑)草毒性的代谢产物来开发的杂草生防制剂。由杂草病原菌的繁殖体和适宜的助剂组成的微生物制剂叫做活体微生物除草剂。利用微生物所产生的对植物具有毒性的代谢产物进行杂草防治的除草剂叫做微生物源除草剂,也叫做农用抗生素除草剂。活体微生物除草剂是将杂草的致病菌进行大量培养,制成标准化的制剂,像化学除草剂一样,当杂草处于敏感生长阶段时,于苗前或者苗后施用,使杂草病害流行,从而实现控制杂草的目的。该方法在短时间内可有效地控制草害,适用于防治农田、草坪及公园中的杂草。按照发展生物除草剂的标准,有望作为候选或已发展成生物除草剂的有36种,已经使用或商品化或极具潜力的有19种。活体微生物除草剂的作用方式是孢子、菌丝等直接穿透寄主表皮,进入寄主组织、产生毒素,使杂草发病并逐步蔓延,影响杂草植株正常的生理状况,导致杂草死亡,从而控制杂草的种群数量。已报道的有除草潜能的微生物类型主要是:真菌、细菌、病毒等。1.具有杂草生物防治的真菌主要包括了9个属:①刺盘孢菌属;②疫霉属;③镰刀菌属;④交链孢霉属;⑤柄锈菌属;⑥尾孢霉属;⑦叶黑粉菌属;⑧壳单孢菌属;⑨核盘菌属。2.从杂草根系土壤的微生物菌群中筛选出的具有除草活性的细菌可以作为开发微生物除草剂的重要资源,正日益受到广泛的重视。具有除草潜能的根际细菌主要集中于8个属:①假单孢菌属;②肠杆菌属;③黄杆菌属;④柠檬酸细菌属;⑤无色杆菌属;⑥产碱杆菌属;⑦欧文氏菌属;⑧黄单胞细菌。Camperico是日本新研究的茎叶处理细菌除草剂,其有效成分是细菌Xanthomonsas campestris pv.poannua,用于防治高尔夫球场的早熟禾,防效可达90%以上,且专化性强,具有种间选择性。目前,活体微生物除草剂是国外研究和开发的热点,这是由于它有许多化学除草剂所不具备的优点:①微生物资源丰富,繁殖速度快,生产周期较短;②对人、畜、天敌等非靶标生物安全,而且不会污染环境;③由寄主杂草分离得到的植物病原菌对寄主植物一般具有种间特异性,选择性较高。微生物源除草剂是利用微生物所产生的次生代谢产物——即植物毒素,进行杂草防治的一种新型的微生物除草剂。微生物能产生很多的代谢产物,它们有结构和生物活性多样性及易被生物降解的特点。在这些代谢产物中有使植物感病,产生病斑或枯萎的活性物质成分,而这种活性物质成分侵入寄主植物,使其感病,破坏其细胞结构,以达到杂草防治的目的。微生物源除草剂的作用机理完全不同于活体微生物除草剂,前者主要作用于植物体内敏感的分子靶标,但这些靶标与化学合成除草剂之间很少存在共同的分子靶标部位。微生物所产生的这些次生代谢产物,无论在大小或在化学结构方面都存在较大的差异,它们有的是多肽类物质,有的是萜类化合物,有的是大环脂类化合物,还有的是酚醛树脂类化合物等。这些植物毒素在宿主特异性方面也存在很大差异,有些只对单一植物种或仅对一个品种具有毒性,而这些毒素则对宿主外的一些植物也具有毒性。后者往往即便是非特异性的也具有一定的选择性,像由链霉菌属的放线菌所得的茄香霉素,它对稗草和马唐等具有除草活性是非特异性的,但对栽培作物诸如水稻等则无毒害,又具有选择。以下按植物毒素的来源分别加以介绍:1.来源于真菌的植物毒素来源于真菌的其他植物毒素,如AAL-toxin、cornexistin和tentoxin等都具有除草活性。AAL-toxin及其一些结构类似物能抑制神经酰胺合成酶的活性,引起鞘氨醇的迅速积累,细胞膜的破裂。2.来源于细胞的植物毒素产植物素养素的细胞大多是革兰氏阴性菌,常见的有假单孢菌属、欧文氏菌属、黄单孢菌属和少量革兰氏阳性菌,如疮痂病链霉菌和缠绕棒杆菌和一些非荧光假单孢菌。病原细菌Pseudomonas syringae pv.phaseolicola能使Kudzu的叶片出现萎黄病的病症,产生局部坏死。经研究发现这种缺绿症是该菌所产生的植物毒素phaseolotoxin所致。这种毒素一旦进入植物内部将向枝端感染,导致植株的矮化、失绿、严重的导致植物叶片坏死。微生物源除草剂与许多人工合成的传统除草剂相比,有以下的特点:①化学结构新颖,一般农药化学难以合成,是一种的潜在的新型植物毒性化合物;②与活性微生物除草剂相比,更易储存、利于剂型加工和使用方便;③天然植物毒素一般为多靶标作用位点和方式,不容易引起杂草产生抗性;④选择性较强,有相当一部分植物毒素为寄主专化性毒素,易于在环境中降解,而且大多数对哺乳动物低毒,对非靶标生物较安全;⑤开发和登记等费用都要低于化学除草剂。微生物除草剂产品通常应具有贮藏期长、使用简便、成本低和高效的特点。目前,生物除草剂研究多是利用真菌进行生产除草剂,真菌的孢子是目前认为最适宜作为生物除草剂的部分。而在几种常见的孢子当中,无性繁殖的孢子或分生孢子在实验条件下最容易生产,并且是在自然条件下传播病害的最普遍方式。因此,孢子是作为真菌除草剂侵染接种体的最佳材料。许多真菌生物除草剂在使用前可以以干孢子粉的形式在常温下贮存1~2年。孢子是在液体或固体基质上发酵培育的,经过机械收获孢子和烘干处理,可加工成孢子粉制剂备用。在近期研究中剂型成为首要问题,从剂型入手可以减少生物除草剂对露水的依赖。1.固体剂型固态剂型的真菌除草剂通常是由在液体发酵中不能产生孢子的真菌通过固体基质发酵的方法生产获得。许多种谷物被用做真菌生长载体和生物除草剂的生产使用材料,包括稻、大麦、粟、小麦等。真菌在其中经过一段时间的培养之后,将培养物质干燥磨碎成颗粒状后使用。真菌除草剂制成固体颗粒剂型使用有以下特点:真菌制成胶囊剂,缓慢释放,在极端环境中具有缓冲能力;固体颗粒中的营养成分能充当真菌的营养补充,使真菌产生较长的持效性。2.液体剂型液体剂型的真菌除草剂往往用于苗后的杂草控制,最简单的液体剂型是孢子水悬液,通常加入0.1%吐温20(Tween 20)做湿润剂,这种制剂通常作为标准对照和用于与新的复杂剂型比较。在病原真菌感染杂草的理想条件下,这种简单的水悬液也可取得良好效果。液体剂型主要包括以下3种。(1)改良型乳剂改良型乳剂是由含有小液滴的连续油相组成,这种剂型的生产潜力是能够降低生物除草剂的蒸发作用。这种剂型克服了对露水的依赖同时能降低所需病原菌孢子的浓度,但它仍存在缺陷。由于它所需油的含量较高(>30%),使得成本增加,并增大了制剂的黏稠度,需要特殊的喷洒装置例如空中辅助喷头。此外,高剂量的油可能对植物产生毒害从而影响非靶标植物的生长。(2)油包水的水乳剂(WOW)将含水的细小油滴分散在连续水相而制成的。这种乳液含有至少一种亲脂性表面活性剂和一种亲水性表面活性剂。病原菌孢子可以存在于最内层的水相或最外层的水相,或在两水相都能存在。WOW乳液实质上已被人们认识一段时间,尽管已应用于医药、化妆品、食品工业,但未曾用于农业和园艺方面,有待进一步开发利用。(3)其他液体剂型人们试图用长链脂肪醇作外层包裹剂来减少水分蒸发,但问题在于外层包裹物对污染物敏感、易分解。病原菌孢子萌发刺激物如铁螯合剂、营养物质等都能缩短病原菌对低湿度的敏感期。植物毒素和一系列酶及酶抑制剂可作为助剂使用,后者通常对任何病原菌及除草化合物都具有特效。水剂是真菌除草剂最常用的剂型。这是因为水价廉易得,使用及后处理方便,对环境无副作用,并且植物病原菌保持活力都需要自由水的存在。最简单的真菌除草剂应用方式就是对水喷施,但是,许多杂草表皮层覆盖有一层蜡质,阻止了液态真菌除草剂在其表面的吸附和均匀分布。制剂中有限数量的真菌孢子在杂草表面能够尽可能均匀分布显得尤为重要。表面活性剂具有润湿杂草植株,促进真菌孢子在植株表面均匀展布的作用。1.Devine制剂1981年在美国获得登记注册,是第一个被注册的真菌除草剂。该菌最早分离自柑橘林中垂死的Morrenia odorata Lind.植株,最高防效可达95%,施药后的有效除草期可达2年以上。然而所有藤本植物对该制剂都具有敏感性,因此,对它的使用受到限制。2.Collego制剂由美国开发的已商品化的最成功的茎叶处理真菌除草剂。“Collegeo”是一种含干燥孢子的可湿性粉剂,施后防效可达90%以上。它是将长孢状刺盘孢(Colletotrichum gloeo-sporiocidef.sp.aeschynomene)的孢子加工成可湿性粉剂,该制剂可用于防除水稻及大豆田中的弗吉尼亚田皂角等杂草。Collego制剂对杂草专一,用喷雾器对叶面作常规喷雾即可。它的应用、储藏和施用方式与一般苗后茎叶处理除草剂类似。3.Biomal制剂这是加拿大第一个注册的微生物除草剂,为一种包含橙刺盘孢菌锦葵专化型真菌孢子的制品,用于控制圆叶锦葵、苘麻等杂草。该真菌在茎和叶柄上引起凹陷溃烂,剂量为每毫升2×106孢子的悬浮液将产生最好的的杂草控制效果,但该真菌侵染杂草要求10h以上结露期的30℃以下的温度条件使用。4.Casst制剂从Alternaria spp.分离出的真菌除草剂,主要用来防除决明(Cassiatoral.)。5.Bialaphos制剂这是从1株链霉菌(Streptomyces hygroscopicus)培养物中分离并开发的1种广谱性内吸型除草剂。化学结构为2-氨基-4-甲基磷酰-乙酰-丙氨酰-丙氨酸。它对杂草的作用比百草枯缓慢,但比草甘膦迅速。6.Biochon(Koppert)制剂从温带森林中分离出的一种重要树木腐烂真菌,用于防止伐树树椿再生,病原菌在树内发展并扩散至维管系统而阻断导管使植株死亡,处理后2年内伐根95%死亡,以真菌菌丝体水悬液出售。7.鲁保1号(Colletorcichum gloeosporioides)制剂这是20世纪60年代初期我国山东省农业科学院植保所开发的生物除草剂,是在大豆菟丝子上分离得到的一种寄生性病原菌—胶孢炭疽菌菟丝子专化型,适用于防治蔬菜、大豆、亚麻、瓜类等作物田中所发生的菟丝子,用菌粉11~15kg/hm2,加水稀释,在菟丝子发生初期喷雾2次。8.Camperico(Pseudomonas gladiolipv.gladioli)制剂主要防除高尔夫球场等处的早熟禾,防效可达90%以上,且专化性强,具有种间选择性。影响生物除草剂开发应用的因素如上所述,微生物除草剂相对于化学合成除草剂而言,有许多优势,因此,成为研究的热点。但其研究开发及应用的弱点也阻碍了其商品化。1.寄主单一微生物除草剂比化学合成除草剂对目标杂草有较强的选择性。而在一个复杂的农业生态系统中往往是多种杂草并存的,只能防除一种或几种杂草的微生物除草剂很难达到理想的除草效果,这些除草剂只能在特定场合发挥它们的特有作用。为了克服这一弊端,可将两种或两种以上的微生物混合作为一种微生物除草剂。2.发酵与制剂加工困难目前,工业上主要依靠发酵工艺来大规模地生产菌体。但是,有些真菌不易繁殖,产孢量较低,孢子活力也差,多代繁殖后致病力下降,或加工成制剂后稳定性变差等,都会影响其大批量生产和商品化。由于微生物除草剂是活的生物体,是不溶于水的颗粒物质。这种颗粒性和疏水性直接影响到了制剂的润湿性、分散性和悬浮性等物理性能,使该剂型的加工比化学除草剂更加困难。例如,我国20世纪60年代生产的防除大豆田菟丝子的微生物除草剂“鲁保一号”,经过长时间的人工培养和保存。菌种的生活力明显减弱,产孢量下降,菌剂对大豆菟丝子的致病力降低,甚至丧失应用价值。菌种的严重退化,使“鲁保一号”的生产、应用很快陷入困境,几乎濒于消亡的边缘。而抗生素除草剂的开发也涉及菌体的生产,同时,还存在分离提取和鉴定毒杀植物性质的次生代谢产物,流程比较复杂,目标分离物含量甚微等因素使其研究开发的成本较高,从而影响着商品化进程。3.防效受环境因素影响微生物除草剂中发挥作用的是活的微生物体,因此,其施用和防效比化学除草剂更依赖环境条件。露水持续时间与湿度直接影响真菌孢子及繁殖体的萌发、入侵、孢子产生及再侵染,从而影响微生物除草剂的防效。Collego的成功应用主要归因于稻田和大豆地的高湿度环境,由于大多数真菌能在较宽的温度范围内萌发和侵染,所以,温度比湿度对防效的影响较小。但是真菌入侵后,一般温度较高时,其发病快、防效高。许多菌株往往因为对环境条件(温度、湿度及着露期)要求过于苛刻而难于商品化。4.微生物除草剂与化学除草剂、化学农药的相互影响杂草、虫害和病害常可能在同一生态系统中发生。因此,同时或先后施用除草剂及化学农药是经常遇到的情况。微生物除草剂与其他农药同时或先后使用,会抵消一方或双方的作用,使其推广大受限制。若它们之间相互作用对一方或双方有利,则有助于微生物除草剂的大面积推广。韦韬(2011)研究了稗草生防菌新月弯孢菌Culvularia lunata菌株J15(2)的安全性和致病力。结果显示,菌株J15(2)只能在稗草上侵染并扩展;接种孢子后保湿24h,对2叶期稗草抑制率可达55.6%,对1.5叶期稗草抑制率可达100%;保湿48h,对2叶期稗草防效提高至91.6%;接种孢子量需达1012孢子/hm2才能较好地抑制稗草生长;土壤带菌亦可抑制稗草生长。该菌与化学除草剂精唑禾草灵或二氯喹啉酸混用能显著提高除稗效果,菌株J15(2)3.3×1012孢子/hm2分别与精126117唑禾草灵有效剂量3.83g/hm2、二氯喹啉酸有效剂量250.00g/hm2混用,对稗草防效分别为99.5%和88.6%,远高于这两个除草剂单用时的药效。该试验结果表明,菌株J15(2)具有作为微生物除草剂的开发潜力。韦韬(2011)研究了稗草生防菌新月弯孢菌Culvularia lunata菌株J15(2)的安全性和致病力。结果显示,菌株J15(2)只能在稗草上侵染并扩展;接种孢子后保湿24h,对2叶期稗草抑制率可达55.6%,对1.5叶期稗草抑制率可达100%;保湿48h,对2叶期稗草防效提高至91.6%;接种孢子量需达1012孢子/hm2才能较好地抑制稗草生长;土壤带菌亦可抑制稗草生长。该菌与化学除草剂精唑禾草灵或二氯喹啉酸混用能显著提高除稗效果,菌株J15(2)3.3×1012孢子/hm2分别与精126117唑禾草灵有效剂量3.83g/hm2、二氯喹啉酸有效剂量250.00g/hm2混用,对稗草防效分别为99.5%和88.6%,远高于这两个除草剂单用时的药效。该试验结果表明,菌株J15(2)具有作为微生物除草剂的开发潜力。姜述君(2010)研究了生防菌Alternaria amaranthi-3对反枝苋的防治效果,结果显示,接种浓度显著影响菌株的致病力,在48h露期条件下,接种孢子浓度为105个/ml时,菌株水剂对反枝苋幼苗生长抑制率为35.55%;浓度为107个/ml时,生长抑制率达到75.25%。露期对该菌株的致病力也有较大影响,在不保湿条件下,菌株水剂对反枝苋的生长抑制率为26.43%,而保湿48h处理的生长抑制率达到77.96%。Span 80︰Tween 80=1︰3的复配乳化剂和大豆油制备的水乳剂可显著降低露期对菌株防效的影响和提高菌株的致病力,无露期时,菌株水乳剂对反枝苋的生长抑制率达到88.35%,显著高于水剂;48h露期条件下,菌株水乳剂处理的生长抑制率为90.59%,而菌株水剂处理为77.96%。表明通过剂型的改进菌株Alternaria amaranthi-3能有效防除反枝苋。李海涛(2005)自猝倒病株发病部位分离得到一株寄生疫霉菌菌株,回接健康麦瓶草幼苗,呈现同样病症。土壤接种盆栽试验结果表明,在供试的作物和杂草范围内,该菌的寄主范围相对专一,感病植物主要集中在十字花科、苋科和石竹科;无菌培养滤液强烈抑制麦瓶草幼苗胚根生长,抑制率为86.1%;该生防菌及其代谢产物具有开发微生物除草剂的潜力。对该菌的生物学特性研究表明:菌丝菌落生长的最佳条件为番茄培养基(液),20~28℃,光照,震荡增大通气量有利于菌丝体生长。偏碱性有利于生防菌菌落的生长,但液体培养环境下对培养基的初始酸碱度要求不严格。 -
报告(七)东北大黑鳃金龟(Northeast Giant Black Chafer)
出版时间:2013东北大黑鳃金龟(Holotrichia diomphaliaBates),属于鞘翅目(Coleop-tera),金龟科(Scarabaeidae)。蛴螬是金龟甲幼虫的总称,俗名白土蚕,分布于我国东北地区。日本、朝鲜半岛、俄罗斯(西伯利亚)等国家有发生。东北大黑鳃金龟成虫和幼虫均可为害。幼虫为害种子、幼苗及幼根、嫩茎,咬断根茎,咬口整齐,或钻蛀块茎、块根造成减产;成虫取食作物和其他植物的叶片造成为害。除高粱外,还可为害玉米、薯类、豆类、花生、甜菜、棉花、蔬菜、果树和林木等。图3-17 根部被害(幼苗萎蔫)图3-18 幼苗根部被咬折断[黄化(左),枯死(右)]成虫黑色或黑褐色,具光泽,体长16~21mm,宽8~11mm。触角10节,鳃片部3节,黄褐色或赤褐色。前胸背板两侧弧扩,中间最宽。鞘翅长椭圆形,1/2后最宽,每侧具4条明显纵肋。前足胫节具3外齿,爪双爪式,爪腹面中部有垂直分裂的爪齿。雄虫前臀节腹板中间具明显的三角形凹坑,雌虫前臀节腹板中间具一横向枣红色棱形隆起骨片。卵发育前期长椭圆形,大小2.5~2.7mm×1.5~2.2mm,白色稍带绿色光泽,后期圆形,白色。老熟幼虫体长35~45mm,头宽4.9~5.3mm,头部前顶毛每侧3根呈1纵列,其中2根紧挨于冠缝旁。肛门孔3裂缝状,肛腹片后部覆毛区中间无刺毛列只有钩毛群。蛹为离蛹,初白色后红褐色,大小21~24mm×11~12mm。腹部具2对发音器,位于腹部第4、第5节和第5、第6节背部中央节间处。尾节狭三角形,上翘,端部具1对呈钝角状向后岔开的尾角。雄蛹尾节腹面基部中间具瘤突状外生殖器,雌蛹尾节腹面基部中间具1生殖孔,其两侧各具1方形骨片。图3-19 东北大黑鳃金龟(左:成虫♀;中:成虫♂;右:卵)(张治良摄)图3-20 东北大黑鳃金龟幼虫(左:幼虫;中:头部;右:尾部)东北大黑鳃金龟在辽宁2年完成1代,黑龙江2~3年1代,以成虫和幼虫交替越冬。越冬成虫4月下旬至5月初始现,5月中下旬为盛发期,9月上、中旬为终现期。6月中下旬为产卵盛期,每头雌虫平均产卵100余粒,卵期平均19天。幼虫孵化盛期在7月中旬前后,8月上中旬幼虫开始进入3龄,10月中下旬开始下潜到55~145cm冻土层下越冬。越冬幼虫翌年5月上旬开始为害作物幼苗地下部分,为害盛期在5月下旬至6月上旬。化蛹盛期在8月中旬前后,蛹期平均为22天。8月上旬成虫开始羽化,盛期在8月下旬至9月初。羽化的成虫(蛰伏在蛹室中)直至翌年4月下旬才开始出土活动。有成、幼虫交替越冬,隔年交替为害现象。成虫昼伏夜出,晴天17:00时后出土取食。土壤含水量10%~20%时,卵与幼虫生存最适。一般油料作物田间虫口密度大,为害重。1.农业措施防治 秋收后深翻土地、改良土壤、合理轮作、铲除杂草、科学施肥、精耕细作等,以破坏地下害虫的生存条件,从而减轻为害。2.药剂防治 ①拌种法:40%甲基异柳磷乳油、50%辛硫磷乳油按种子重量的0.3%用量拌种,需适当增加播种量。②毒土法:每亩用40%甲基异柳磷乳油100ml,拌潮湿细土20kg,高粱播种时随之撒施于穴中或播种沟内,可减轻为害。 -
报告一、营养缺乏及毒害(Nutrient Deficiencies and Toxicities)
出版时间:2013高粱生长发育过程中需要多种营养元素,需要量较多的称大量元素,如氮、磷、钾、钙、镁、硫等;需要量很少的称为微量元素,如铁、硼、锰、锌、钼等。大量元素和微量元素缺乏或过剩均能导致高粱植株营养失调症产生。元素不足时高粱会表现病态,即通常所说的缺素症。如果土壤中某些元素过多,会对高粱产生毒害,也会表现病态,甚至死亡。高粱植株表现营养失调症状,除了与土壤中某些元素缺乏或过剩有关,还与多种环境条件如土壤pH值、温度、通风情况、光照及其他因子等关系密切。近年来,我国北方春季低温冷凉地区,高粱缺锌症时有发生,影响幼苗生长发育,甚至造成缺苗现象,严重地块可导致减产30%~50%,损失甚至超过某些侵染性病害。由于营养失调所致症状与侵染性病害或某些生理病害相似,有时很难区分。例如,镁、钾、锰元素的缺乏症与磷元素过多症状非常相似,而钙元素缺乏症与高粱顶腐病症状有相似之处。因此,应熟悉症状、发病原因,做出正确诊断,根据缺素病害症状确定土壤营养缺乏状况,提出科学的调控措施,减少营养失调导致的产量损失。氮素缺乏症从高粱幼苗到成熟期的各个生育阶段均可发生。通常高粱缺氮时表现植株矮小、瘦弱细长、叶色淡黄、生长缓慢。若缺氮情况持续不变,下部老叶片的氮素会向幼嫩组织转移,所以,从基部老叶片开始,叶尖逐渐发黄,叶片中心较边缘部分先变黄色,中部叶片淡绿;当黄色扩展到叶鞘时,叶鞘会逐渐变黄枯死,继之整个叶片变黄褐色而死亡;病株根系衰弱,自主根开始变红褐色。缺氮植株,常表现抽穗期延迟,或穗发育不良;穗小而籽粒少,产量降低。在自然条件下,氮素是一种最容易贫乏的元素。低温冷害、大雨淋溶、淹水潮湿、少雨干旱、有机肥施用不足等,均会加重缺氮症的发生。如果追施氮肥过多、过迟,或磷钾肥供应不足,以及前茬作物施氮过多,土壤残留氮过多等,还会引起高粱氮营养过剩症。植物可利用两种氮的形式(硝态氮和铵态氮),在同样的浓度下,硝态氮的毒害要低于铵态氮。过量的硝态氮在叶片上形成淡黄色和深红色条斑,最终呈长条状坏死斑布满叶脉间。铵态氮过多引起叶片边缘变黑,呈现皮革状纹理,最终死亡。图2-1 缺氮叶片(黄化)图2-2 缺氮根系(红色)高粱整个生育期均可发生缺磷症状,以苗期最为明显。受害植株生长缓慢,矮小、瘦弱,叶片暗红褐色,根系发育不良。叶片变色先从基部老叶开始,逐渐向上扩展至心叶,严重时叶尖枯萎。幼嫩植株表现尤为严重,初在叶尖和叶缘处变灰色或紫灰色,随着植株生长发育,整个叶片呈灰绿色;有的植株叶片基部和中脉呈灰紫色;叶鞘和茎秆变红色;幼苗根部变红褐色。缺磷植株的叶片与正常植株的叶片相比会更加直立。缺磷常导致高粱抽穗延迟,影响花期授粉和籽粒灌浆,高粱穗小,籽粒不饱满,成熟期推迟。通常土壤中磷素不易流失,发生缺磷状况较少。容易发生缺磷的主要是酸性土壤和有机质含量低的花岗岩、砂岩形成的贫瘠土壤;石灰性或碱性土壤中的磷易转化成为作物不能吸收形态,易导致缺磷;早春气温低、高寒山区、冷浸田土壤等有机磷分解释放慢,或氮肥用量偏大,磷肥用量不足以及高粱早期根系遭虫害、药害、肥害等危害,均易于出现缺磷症状。土壤中磷元素过多时,许多高粱品种的老叶叶尖和边缘出现红色斑点,老叶上斑点较嫩叶上多。有资料报道磷过多会抑制根的生长。此外,磷素过多时会抑制植株生长,引起铁、锌、铜元素的缺乏。图2-3 正常植株(左)缺磷植株(矮小、叶片灰绿)(右)图2-4 缺磷叶片(自顶端干枯,呈灰褐色)图2-5 缺磷叶片(基部和中脉呈灰紫色)图2-6 缺磷幼苗(根部红褐色)近年来生产上有机肥施用量锐减,故高粱田土壤缺钾情况普遍发生,且有逐年加重趋势。高粱缺钾症在苗期即有表现,拔节到授粉期尤为明显。初期下部老叶尖开始沿叶缘向下褪绿,产生坏死斑和红色斑点。严重缺钾时,整个叶片的叶脉间区,沿叶脉产生黄色、棕色条纹,并逐渐坏死。幼苗缺钾,幼叶生长速度减慢,呈黄色至黄绿色,叶尖枯焦状;根系不发达,须根减少,有的呈现褐色坏死;长期缺钾植株生长缓慢,节间变短,矮小瘦弱,支撑根减少,抵御病虫害能力下降,且易发生倒伏。穗发育不良,籽粒不饱满,产量下降。土壤速效钾和缓效钾含量较低,而且有效钾易于随水流失而致土壤缺钾;沙质土壤、钙质土壤和有机质含量少的土壤易于缺钾;长期不施有机肥或不进行秸秆还田的土壤会导致缺钾加重。钾元素过量的现象很少发生,除非植株生长在钾元素过多的特殊环境。钾素过多会引起整个叶片均匀地发白、萎蔫和变褐。症状从叶尖延伸到叶基部,老叶发病重于幼叶。图2-7 缺钾植株(叶尖和叶缘黄化、坏死)图2-8 缺钾植株 (叶片黄绿相间条纹)图2-9 缺钾幼苗 (根部褐色斑)缺钙症首先表现在高粱分生组织和新生叶片上,幼叶叶尖经常粘连在一起,叶片扭曲、叶缘发白、形成刀切状开裂或缺刻现象,与高粱顶腐病症状有相似之处。有时可见植株心叶青枯、死亡。钙元素在韧皮部中相对稳定存在,因此,老叶通常含有充足的甚至较高浓度的钙。如果缺钙现象持续,植株分生组织不能正常发育,高粱穗分化受阻,从而导致穗不能正常形成,严重影响高粱产量。图2-10 缺钙植株(叶尖褪绿、扭曲)图2-11 缺钙植株(心叶青枯、死亡)图2-12 缺钙植株 (心叶畸形卷裹)图2-13 缺钙幼苗 (根部褐色斑)在温室和人工培养箱中生长的高粱经常出现缺钙现象,这与蒸腾作用的减少(阴天或湿度高)或光照强度的减弱有关。铝浓度过高可引起酸性土壤中生长的植物产生缺钙现象。缺镁通常抑制高粱植株生长,延迟生殖生长。缺镁症一般在植株拔节期以后发生。缺镁症状首先在老叶上表现,叶尖、叶边缘先出现相对较小的坏死斑,并均匀地扩展至叶基部和主脉,叶片呈深红色、红褐色(因品种而异)坏死斑,根部呈现红褐色坏死斑。极度缺镁时,脉间组织干枯死亡,整个叶片变红、或变褐色,叶尖则变成红褐色或黑褐色。缺镁主要发生在湿润地区的沙质土壤,如北方淋溶性土壤及南方许多酸性土壤;含钠量高的盐碱土及草甸碱土;大量施用石灰、过量施用钾肥以及铵态氮肥等也容易诱发缺镁;长期不施有机肥料和含镁肥料等,均会导致土壤中有效镁含量不足而引起高粱缺镁。高浓度的铝存在更易加重植株缺镁症状产生。图2-14 缺镁植株(叶片红褐色条纹、坏死斑)图2-15 缺镁植株 (叶缘、叶尖黑褐色)图2-16 缺镁植株 (根部红褐色坏死斑)高粱苗期缺硫常导致上部叶片黄化,继之茎部和叶片变红,植株矮小。高粱缺硫时新叶呈均一的黄色,叶基部紫褐色或红褐色,老叶基部变暗褐色;有的根部出现黄褐色坏死斑。生长在缺硫土壤上的高粱,在施用氮肥而不施硫时,出苗后30天即呈现黄化现象。图2-17 缺硫症状(心叶黄化,叶片基部紫褐色)图2-18 缺硫植株(心叶黄化,叶片基部红褐色)图2-19 缺硫植株(根系变红褐色)高粱缺硫症状与缺氮有些相似,但缺氮是在较老叶片上出现症状,而缺硫的基本特征则是幼叶失绿。缺硫症多发生在有机质少、质地轻、离子交换量低的沙质土壤,如温暖多雨、风化程度高、淋溶作用强、含硫量低的土壤,南方丘陵山区、半山区的冷浸田,长期不施有机肥和含硫化肥的土壤以及远离城镇和工矿区降水量中含硫少的偏远地区的土壤。关于硫素过多而使植物中毒的现象较为少见,因为植物对硫酸盐并不敏感。植株体内硫过多,可能是工业燃煤厂和矿物燃料排放而引起的空气污染所致,长期暴露在低浓度的二氧化硫中也能够使植株中毒。近年来,高粱缺锌症在生产上多有发生,已造成一定损失,而倍受人们关注。高粱幼苗期和生长中期缺锌,新生叶片条状褪绿,呈现黄绿相间条纹,渐变为黄色,严重时枯死,有的根系渐变为红褐色。变色过程由基部逐渐向叶尖蔓延,有的叶片边缘有明显的红线。高粱缺锌时,致使植株体内生长素不足,影响细胞壁伸长,发育缓慢,节间变短,有时心叶卷裹,不能正常展开。穗发育不良,结实率低,产量降低。图2-20 缺锌植株(左:新叶条状褪绿;右:叶缘红褐色)图2-21 缺锌植株(叶片条状褪绿,叶尖干枯)图2-22 缺锌植株(心叶卷裹)图2-23 缺锌植株(根系变红褐色)一般高粱很少发生锌过剩现象,锌元素过剩时叶片呈淡黄色,并具黄绿相间条纹。高粱缺锌常发生在pH值>6.3的中性和碱性土壤,特别是石灰性土壤,其中,有机质贫乏和熟化度低的土壤更易发生缺锌。土壤或肥料中含磷过多、酸碱度高、有机质含量低、冷凉多湿、长期连作等,均有可能导致缺锌症发生。高粱缺铁时,幼叶和新生叶片黄化,叶脉间失绿,叶脉为绿色,呈清晰的条纹状。严重缺铁时,新叶变成黄色、白绿色,或心叶难以抽出,植株生长不良,矮缩,生育期延迟,或不能正常抽穗。极度缺铁时,全株黄化,变褐,导致死亡;植株根系衰弱,须根严重减少,变红褐色坏死。土壤有效铁含量低,或土壤pH值较高呈碱性时,易于发生缺铁症状。北方干旱、半干旱地区,尤其是石灰性土壤和盐碱土,土壤中的铁主要以 Fe3+ 和碳酸铁盐形式存在,难被作物吸收利用,易于发生高粱缺铁症状。南方酸性土壤施用过量石灰,或锰元素过多,也能引起缺铁失绿症。有效磷含量高或施用磷肥过多的土壤,由于颉颃作用使铁失去生理活性;长期不施有机肥有效铁的供给减少的土壤等,均能诱发缺铁症状。此外,作物根系受损、土壤通气不良等,也能诱发缺铁。图2-24 缺铁植株与正常植株比较(右:缺铁植株心叶白化)图2-25 缺铁植株 (心叶黄化,脉间失绿)图2-26 缺铁植株 (根系红褐色坏死)通常铁过剩状况较少发生。有研究表明,过多的铁元素可导致锰、铜、锌缺乏症发生。高粱缺锰时,初在幼叶上表现症状,新叶褪绿、黄白色,叶片披散不挺立,上部叶片脉间褪绿,有白色条纹。缺锰严重时,白色条纹延长,症状多出现于叶片中央部位,叶片出现卷曲,断裂现象。缺锰可抑制植物的生长和发育,植株严重矮化,甚至倒伏和死亡,根尖褐色坏死。缺锰症状常与缺铁或缺锌症同时发生而相互掩盖和混淆。图2-27 缺锰植株(叶片披散,黄白色条纹)图2-28 缺锰植株 (心叶黄化,叶脉间褪绿)图2-29 缺锰植株 (根尖褐色坏死)高粱上一般很少发生缺锰现象。在碱性土壤上生长的高粱易发生缺锰症。此外,富含钙的土壤,尤其是冲积土和沼泽土容易产生锰缺乏症,酸性土壤大量施用石灰石时会诱发高粱缺锰症状产生。锰元素过多也会对高粱造成毒害,多发生在热带酸性土壤,或淹水条件下生长的高粱上。发生锰元素毒害时,高粱叶片出现均一的暗紫色小圆点或斑块,严重时叶脉间出现白色条纹。缺硼植株新叶狭长、披散,上部叶片叶脉间出现透明条纹,以后逐渐黄化。幼叶不能展开,生长点发育不良,形成簇生叶,根系发育不良,锈褐色坏死。严重缺硼时,植株矮小,生殖器官发育不良,穗小,易造成败育,导致减产。缺硼多发生在水溶性硼含量低、有机质含量少的沙质土壤,如丘陵花岗岩、片麻岩发育的泥沙土,碱性、石灰性土壤中硼易被固定,也易发生缺硼。高温干燥、持续干旱,酸性土壤过量施用石灰,都容易诱发缺硼。偏施氮肥,使N/B比过大,能促进或加重缺硼。图2-30 缺硼植株(叶片狭窄、披散)硼元素过多会对高粱造成毒害,用含有较高硼浓度的污水灌溉,高粱易出现硼过多或毒害症状。高粱硼中毒时,植株生长受抑制,叶尖及叶缘黄化,严重时叶尖及叶缘焦枯,叶片上有褐色坏死斑,有时与高粱缺钾症状相似。图2-31 缺硼植株(心叶黄化)图2-32 缺硼植株(根系发育不良,锈褐色)高粱缺铜时,植株幼叶或新生叶尖端变褐、卷曲、或边缘破裂;叶片颜色变淡,严重时黄化,心叶卷曲,难以展开;根系变褐色,发育不良,根毛减少。图2-33 缺铜植株(叶片淡绿、弯曲)高粱很少出现缺铜症状,缺铜症可能与钙缺乏紧密相关,因缺铜植株叶片尖部钙的含量明显降低。图2-34 缺铜植株(心叶畸形、卷曲、皱褶)图2-35 缺铜植株 (叶皱褶、黄化)图2-36 缺铜植株 (根毛减少)铜元素过量的毒害症状与缺铁症相似,前者叶基部脉间变黄更为严重。缺钼症状多表现在新叶上,与缺钙和缺铜症有相似之处。叶尖褪绿、黄化、披散、卷曲,常有开裂、变褐、枯萎;通常根系发育近于正常。一般高粱上很少发生缺钼症状。在酸性土壤中,钼元素可被土壤微粒固定,高粱易发生缺钼现象。图2-37 缺钼植株(叶片黄化、披散、弯曲)图2-38 缺钼植株 (叶片生褐色坏死斑)图2-39 缺钼植株 (根系发育近于正常)高粱对高浓度的钼具有耐性而不受损害。钼过量导致叶片变为暗红色,很难与磷缺乏症相区分,在诊断上应特别注意。【营养失调症防控要点】在营养失调症中,以缺素症为多。高粱发生的缺素病,是生长发育过程中土壤营养供应失调引起的一类生理性病害。解决缺素问题,必须根据高粱生育各阶段对营养成分的需求规律,加强栽培管理,调控各种营养成分的数量,平衡各元素之间的关系,采取各种措施,进行综合防控。1.轮作倒茬 高粱连作特别是长期连作,是连续消耗土壤中高粱所需营养成分导致缺素的主要原因。轮作倒茬则可以调节微生物种群,活化各种有益微生物的活动,调整营养成分,恢复地力,从而缓解缺素问题。特别是高粱与豆科等作物轮作,效果更好。2.适期播种 低温寒害会导致缺氮、缺磷、缺硫、缺锌等多种缺素症的发生。因此,在易于发生低温寒害的地区,应适期晚播,待地温稳定在8~10℃时播种,可有效控制上述缺素症的发生。3.改良土壤,加强管理 即通过土壤改良和加强管理改变缺素症发生的条件。缺素症状发生与土壤结构和土壤理化性状有很大关系。土壤过湿、沙性或潮湿板结易于缺钾,pH值高、湿度大、通气不良时易于缺铁,含磷过多易于引致缺锌。因此,应根据各类土壤的基本性状和缺素症的种类、危害程度等具体情况,因地制宜进行土壤改良,加强田间管理,防止或缓解缺素症的发生。4.科学施肥 根据缺素症的种类、发生程度及引发的原因等科学施肥。提倡基肥和追肥结合,有机肥和化肥结合,土壤施肥和根外追肥结合,适时适量,合理施用。(1)土壤施肥 总体上,增施有机肥,对多种缺素症均有较好的调整和缓解作用。有些缺素症发生属于基质中缺乏某种营养元素所致,需通过土壤施肥加以补充。有些则是土壤中并非缺乏某种元素,而是这种元素以不可吸收态存在,或因土壤溶液中含盐类太多,各种离子间的颉颃作用,使该元素不能被利用。对于后者情况,应设法使不可吸收态转变为可吸收态,或采用土壤施肥的办法直接补充可吸收态的该种元素。(2)根外追肥 根外追肥(即叶部施肥)也可补充营养、缓解缺素症的危害。对微量元素缺乏症,采取叶面喷施方法针对性补充更为快捷有效。如缺锌、缺钼、缺锰等,均可通过根外叶面喷施的方法快速缓解。 -
报告板栗生产技术
出版时间:2019板栗根深叶茂,适应性强,较耐干旱和瘠薄,栽培容易,管理方便,适宜在山区发展。对山区经济的振兴和生态环境的改善效果非常显著。板栗多为高大乔木,寿命较长,但结果较晚,实生树一般5~8年开始结果,15~20年进入盛果期,50~60年生结实最多,盛果期可延续百年以上。嫁接树2~3年即能结果。板栗为深根性果树,主根可深达4m,但大多数根系分布在20~80cm的土层内,根系分布深浅受土层厚薄的影响。大树根系的水平分布可达1.5m以上,水平根扩展范围可为冠径的3~5倍,强大的根系是板栗抗旱耐瘠薄的重要因素。侧根细根发达,须根前端常有白色菌丝呈分枝状,为板栗的共生菌根,对板栗的生长和结果有显著的促进作用,同时也是板栗适应性强的重要原因。板栗根系受伤后再生能力弱,需经较长时间才能萌发新根,在栽植时要少伤根,特别是大根。板栗的芽按性质可分为叶芽、完全混合芽、不完全混合芽和副芽(休眠芽)四种。幼旺树叶芽着生在旺盛枝条的顶部和其中下部。进入结果期的树,多着生在各类枝条的中下部。芽体瘦小,芽顶尖,茸毛较多。多数品种不经短截不萌发或萌发形成弱枝。完全混合花芽着生于结果枝顶端及其以下数节,芽体肥大,发育充实、饱满,芽形钝圆,茸毛较少,外层鳞片较大,部分品种在枝条的中下部也能形成完全混合花芽。完全混合花芽翌春萌芽后抽生的结果枝既有雄花序也有雌花序。不完全混合花芽一般着生于完全混合花芽的下部或较弱枝的顶端及下部,芽体比完全混合花芽略小,萌发后抽生带花序的雄花枝。副芽又称休眠芽或饮芽,着生在各类枝条的基部短缩的位节上,芽体极小,一般不萌发,呈休眠状态,寿命长。遇刺激或前部枝条衰老时,萌发抽生徒长枝。板栗的枝条分为营养枝、结果枝、结果母枝和雄花枝四种。①营养枝由叶芽或副芽萌发而成,不着生雌花和雄花。根据枝条生长势不同,可将其分为徒长枝、营养枝和细弱枝三种。徒长枝由枝干上的副芽萌发而成,年生长量50~100cm,生长旺,节间长,组织不充实是老树更新和缺枝补空的主要枝条,一般30cm以上的徒长枝通过合理修剪,3~4年后也可开花结果;营养枝又称发育枝,由叶芽萌发而成,年生长量20~40cm,生长健壮,无混合芽,是扩大树冠和形成结果母枝的主要枝条,生长充实、健壮的枝可转化为结果母枝,来年抽梢开花结果;细弱枝由枝条基部叶芽抽生,生长较弱,长度在10cm以下,不能形成混合芽,翌年生长很少或枯死。②结果枝是结果母枝上完全混合花芽萌发抽生的、具有雌雄花序能开花结果的新梢。从结果枝基部第2~4节起,直到第8~10节止,每个叶腋间着生柔荑雄花序。在近顶端的1~4节雄花基部,着生球状雌花簇。③结果母枝是指着生完全混合芽的1年生枝条。大部分的结果母枝是由去年的结果枝转化而来。此外,雄花枝和营养枝也有形成结果母枝的,结果母枝顶端一至数芽为混合芽,抽生结果枝,下边的芽较弱,只能形成雄花枝和细弱营养枝。④雄花序由分化较差的混合芽形成,大多比较细弱,枝条上只有雄花序和叶片,不结果。一般情况下,当年也不能形成结果母枝。北方板栗适于冷凉干燥气候,南方板栗适于温暖湿润气候。板栗要求年平均气温为10~15℃,生长期(4—10月)平均气温16~20℃;冬季不低于-25℃;开花期为17~27℃。一般情况下北方板栗产量高,品质好。板栗为喜光树种。当内膛着光量占外围光照量的1/4时枝条生长势弱,无结果部位。光照不足6h的沟谷地带,树冠直立,枝条徒长,叶薄枝细,老干易光秃,株产低,坚果品质差。在板栗花期,光照不足则会引起生理落果。建园时,应选择日照充足的阳坡或开阔的沟谷地较为理想。板栗树虽较抗旱,但在生长期对水分仍有一定要求。新梢和果实生长期供应适量水分,可促进枝梢健壮和增大果实。一般年降水量500~1000mm的地方最适于板栗树生长。板栗树对土壤适应性广泛,以土层深厚、有机质多、保水排水良好的砾质壤土最适宜板栗树生长。其适宜的土壤含水量相当于田间持水量的30%~40%。超过60%,易烂根,低于12%,树体衰弱,降至9%时,树可枯死。板栗对pH值的适应范围是4.6~7.0,以pH值5.5~6.5最为适宜;pH值超过7.6则生长不良。板栗正常生长,要求含盐量在0.2%以下,且板栗是高锰作物。pH值增高,土壤中锰呈不溶状态,影响其对锰的吸收,树体发育不良,叶片发黄。板栗自然分布区地势差别较大,海拔50~2800m均可生长板栗。我国南北纬度跨度较大,但在海拔1000m以上的高山地带,板栗仍可正常生长结果。处于温带地区的河北、山东、河南等地,板栗经济栽培区要求海拔在500 m以下,海拔800 m以上的山地出现生长结果不良现象。在山地建园对坡地要求不太严格,可在15°以下的缓坡建园,15°~25°坡地建园要修建水土保持工程。30°以上陡坡,可作为生态经济林和绿化树来经营。花期微风对板栗树授粉有利,但板栗不抗大风,不耐烟害,空气中氯和氟等含量稍高,栗树易受害。板栗园地应选择土层深厚、排水良好、地下水位不高的沙壤土、沙土或砾质土及退耕地等。土壤宜微酸性,要求光照充足,空气干爽。在山坡地造林应选择南坡、东南坡或西南坡为宜。整地一般在板栗栽植前的3个月进行。整地方法常采用水平梯地整地和鱼鳞坑整地。水平梯地整地就是沿等高线修水平梯地。以等高线为中轴线,在中轴线上侧取土填到下侧,保持地面水平,然后在地上挖坑栽树。该法适用于坡度在20°以下的山地。在坡度较陡或地形复杂的栗园,则可采用鱼鳞坑整地。其方法是:按照需要栽植的株行距,以栽植点为中心。由上部取土修成外高里低、形似鱼鳞状的小台田。无论哪种整地方法,挖穴时要将生土和熟土分开堆放,然后施入农家肥或秸秆、杂草、油渣等,再将熟土回填。造林宜采用1~2年生大苗,苗高不低于1m,地径不小于0.8~1cm,根系发达完整,生长健壮,无病虫害,无机械损伤。板栗栽植密度要根据地形、土质条件及品种特性而定。一般栽植密度以3m×4m为宜。挖苗时应尽可能少损伤侧根和须根,已经损伤的根应剪平伤口,主根过长时可以截短一些。如果挖出的栗苗不能马上定植或需远距离运输时,应进行泥浆蘸根,然后再假植或包装运输。栽植穴宽80cm,深80cm。每穴施入充分腐熟的有机肥料30~50 kg,将肥料和熟土混合均匀、踏实即可。栽植在秋季落叶到春季萌发前均可进行。除寒冷地区外,以秋季栽植为好。栽植要求是树要栽端,土要踏实,根要舒展,树苗埋土一半时,将树苗向上轻轻提一下,可使根系舒展。栽植的深度,保持原来的入土深度,栽好后踏实树干基部周围的覆土,并及时进行浇水,以提高栽植成活率。选用2种以上优良品种混合栽植,一般主栽品种与授粉品种比例是(4~8)∶1。休眠期进行耕翻,萌芽前每667m2施纯氮12kg,以促进花的发育,施肥后灌水。枝条基部叶刚展开由黄变绿时,根外喷施0.3%尿素+0.1%磷酸二氢钾+0.1%硼砂混合液,新梢生长期喷50mg/kg赤霉素,以促进雌花发育形成。开花前追肥,每667m2追施纯氮6kg,纯磷8kg,纯钾5kg,追肥后浇水;清耕栗园进行除草松土,行间适时播种矮秆1年生作物或绿肥。7月下旬至8月初,果实迅速膨大期施增重肥,每667m2施纯氮5kg,纯磷6kg,纯钾20kg,根据土壤含水量浇增重水。种植绿肥的果园翻压肥田或刈割覆盖树盘。采收前1个月或半个月间隔10~15d喷2次0.1%磷酸二氢钾。果实采收后叶面喷布0.3%的尿素液。10月施基肥,每667m2施充分腐熟的土杂肥3000kg+纯氮5kg。对空苞严重的果园同时土施硼肥,方法是沿树冠外围每隔2m挖深25cm,长、宽各40cm的坑,大树施0.75kg,将硼砂均匀施入穴内,与表土搅拌,浇入少量水溶解,然后施入有机肥,再覆土灌水。雄花序长到1~2cm时,保留新梢最顶端4~5个雄花序,其余全部疏除。一般保留全树雄花序的5%~10%。采用化学疏雄的方法是在混合花序2cm时喷1次板栗疏雄醇。雄花序长到5cm时喷施0.2%尿素+0.2%硼砂混合液,空苞严重的栗园可连续喷3次。当1个花枝上的雄花序或雄花序上大部分花簇的花药刚刚由青变黄时,在5∶00前采集雄花序制备花粉。当一个总苞中的3个雌花的多裂性柱头完全伸出到反卷变黄时,用毛笔或带橡皮头的铅笔,蘸花粉点在反卷的柱头上。也可采用纱布袋抖撒法或喷粉法进行授粉;夏季修剪并疏栗蓬,及早疏除病虫、过密、瘦小的幼蓬,一般每个节上只保留1个蓬,30cm的结果枝可保留2~3个蓬,20cm的结果枝可保留1~2个蓬。 -
报告柑橘生产技术
出版时间:2019柑橘是世界第一大果树。全世界柑橘年产量有1亿多吨,种植面积高达667万hm2。中国是柑橘最重要的原产中心之一,有着悠久的种植历史。在所有的水果中,其鲜食、加工性能均好,基本上可以做到没有废料。柑橘性喜微酸、湿润环境,最适宜的生长温度为29℃,最适合生长的湿度75%左右;平均生长寿命50年左右。柑橘树形比较矮小,树冠直立或呈自然圆头形或半圆头形。成枝力中等,枝条的顶端优势不强,分枝间势力均衡,常无明显主干,树形比较优美。柑橘的花芽为混合芽,可在生长健壮的各类梢的先端依次形成。如新梢多次生长,则花芽发生的部位随之上移。结果枝有带叶果枝和无叶果枝两种。柑橘的花为雌雄同花,多单生或丛生,为完全花,能自花授粉结实。抗性强、易栽、易管、丰产、品质优良和耐储运等是现代柑橘优良品种的主要特征。砂糖橘、本地早、温州蜜柑、梭柑、蕉柑、南丰蜜橘等。新会橙、柳橙、雪柑、伏令夏橙、血橙、香水橙、脐橙、冰糖橙等。沙田柚、琯溪蜜柚、文旦柚、葡萄柚类等。金弹、四季橘等。选择土壤肥沃、质地疏松、土层深厚、保水排水性好,心土松软的红壤、沙壤土建园。坡向以南向、东南或马蹄形山窝建园为好,西向北向要注意营造防护林。坡度选择5°~15°建园为佳。橘园附近必须有水源。现代柑橘建园技术推广宽行密株和宽行稀株两种模式。在方便管理的同时能大幅度提高柑橘品质,增加柑橘生产效益。宽行密株行距5~6m,株距2~3m,每667m2植38~67株。山地宜密,平地宜稀。一般柑橘苗春、秋两季都可定植,以春季定植为佳,一般在3月上旬橘芽萌发前定植为宜。容器苗全年均可定植,其最佳定植时间是春梢发生结束后。挖大穴,施足基肥。通常要求挖深0.8m,宽1m的定植穴,把心土和表土分开放,每穴施入腐熟有机肥30~50kg,石灰1.5~2.0kg,腐熟菜饼1kg,钙镁磷1.5~2kg,与表土充分混匀填入穴内,肥土要踏紧。定植时苗木置入定植穴后,再用小刀划开并取出营养袋,扶正苗木,填土踏实即可。(1)深翻。每年要进行一次深翻,对柑橘园20~40cm土层进行翻动,近树颈处浅些,树冠外深些,结合增施有机肥,以改良和活化土壤。萌芽期、花期尽量不要深翻。(2)培土覆盖。夏秋高温干旱,在树冠下每株培土高5~10cm防旱,冬季采果后,进行培土高30cm防寒。(3)中耕松土。成年橘园春节杂草容易滋生,雨后土壤板结,结合除草疏松表土,夏季中耕切断毛细管,减少水分蒸发。(1)早施基肥。早熟品种在10月中、下旬,中熟品种宜在11月中旬或采果后,每株施腐熟有机肥20~30kg,磷肥3~5kg,石灰1~1.5kg,复合肥1~2kg,施肥量占全年35%~40%,结果多,大树多施,小树少施。(2)巧施追肥。①春芽肥。一般在2月下旬至3月上旬春梢萌动期进行。以施用高比例的氮、磷复合肥为宜,配合施用腐熟的有机肥。株施尿素0.5~1.0kg,人粪尿20~30kg,复合肥2kg。施肥量占全年施肥的20%。②稳果肥。施肥量占全年10%,5月上中旬一般株施复合肥1kg,开花结果多的多施,结果少的不宜施。③壮果促梢肥。7月下旬至8月上旬株施腐熟饼肥1.5~2kg,人粪尿20~30kg,硫酸钾1~2kg,施肥量占全年的25%~30%。(3)施肥方法。①条状沟施肥。山地果园通常采用条状沟施肥方式,即在树冠滴水线处,开深20~30cm,宽30cm的条沟,沟长根据树冠而定。下次施肥在树冠的另外两侧开沟,施肥后盖土。②放射沟施肥。在树冠距树干1~1.5m处,按树冠大小,向外开放射状沟4~6条,沟深20cm,沟宽30cm,靠近树干处开浅些,逐步向外沿开深些,施肥后盖土。这方法适用于较窄的梯台。在谢花2/3时喷20mg/kg赤霉素或5406细胞分裂素800倍液+0.2%硼砂和0.2%磷酸二氢钾一次;5月上旬和6月中下旬各喷一次30mg/kg水溶性防落素或800倍液5406细胞分裂素+0.2%磷酸二氢钾和0.3%尿素,提高坐果率。供贮藏用的橘果采收时间一般应在九成熟,果面有2/3转黄时采收。短期贮藏或直接上市果实宜在果实全面着色,果实可溶性固形物和含量达到该品种应有的标准时采收。以晴天采收为佳。采收前15d内,应停止灌水、喷药。应该准备好采收工具,橘剪、橘梯、橘篓和橘筐。橘剪必须圆头平口,刀口锋利。特别需要提醒的是,采收人员采收果实时,不宜留指甲,应戴手套,以免采收时在果面上留下伤害。采收柑橘时,应遵照自下而上、由外及内顺序采摘。采果应将不同成熟度的果实分批采收,分批储藏和加工,保证果实品质的一致性。严格采用“一果两剪”法,即第一剪在离果蒂1~2cm处,第二剪把果柄剪至与果肩相平。千万不要从果树上一下把果肩剪平,把果蒂留在植株上,以免消耗更多的养分。采收时尽量不拉枝拉果,注意轻拿轻放。
