首页 <
知识图谱:全部
-
报告辣椒“三落”的原因及防治对策
出版时间:2007辣椒的落叶、落花、落果通称“三落”。这是辣椒生产上的一个重要问题,对产量影响很大,一般落花率达20%~40%,落果率达10%左右,有的更为严重。引起三落的原因主要有3个方面:辣椒生长过程中要求中等强度的光照,光照过强或不足,会引起“三落”。强光直射会造成生长不良,易发生日灼病,导致“三落”;光照不足同样引起生长不良,引发“三落”。温度过低(低于15℃)或温度过高(高于35℃)影响授粉及花粉管的伸长,造成辣椒子房不能受精,引起落花。气候干燥,土壤干旱,造成授粉不良或引起病毒病流行,易引起“三落”。雨涝或灌水不当,根系吸收能力减弱,致使植株生理失调或伤根,引起“三落”或死株。1.4.1 实行间作 每4行辣椒种1行玉米,玉米种在畦埂上,株距1m,每穴2株。可防止强烈阳光直射,灼伤叶片;更重要的是阻止蚜虫迁飞传毒;诱集蛀果性害虫,集中产卵于玉米叶面上,集中处理,减轻蛀果性害虫为害。1.4.2 干旱时要浇水防旱,田间喷清水增加湿度 雨涝或田间有积水时要及时防涝排水。氮肥过多,磷、钾肥相对偏少,使枝叶徒长,营养生长与生殖生长不平衡,引起落花,落果。氮肥过少,使植株脱肥,叶黄枝瘦,造成“三落”。防治方法:要控制氮肥,增施磷钾肥,尤其要注意硫酸锌及磷酸二氢钾的叶面追肥。根据情况及时补充磷钾肥(上述两种物质,中、前期不少于3次,后期要增施1~2次)。3.1.1 病毒病 病毒病是辣椒的重要病害。轻型病毒病只出现花叶,不会造成畸形和落叶。重型病毒病会使叶片褪绿、黄化、蕨叶;造成植株矮化、形成丛枝,畸形,引起“三落”。3.1.2 辣椒细菌性斑点病 该病又名“落叶瘟”,属细菌性病害,常会引起早期大量“三落”,影响产量。一般情况会形成疮痂病斑,高温高湿条件下不形成疮痂,而是迅速扩展为叶缘焦枯,成长叶片上形成许多小斑点,之后引起大量落叶。重茬地,生长差的田快发病较重(抗性差)。3.1.3 辣椒疫病 这是辣椒生产中为害最大的病害。常会造成整株枯死,大片死亡。3.1.4 辣椒白粉病 该病能引起叶片早落,严重者可使全株叶片落尽。此病一般在叶背形成白粉状霉层,正面出现浅黄色斑,气温高相对湿度大的情况下发病重,且传播速度快。3.1.5 炭疽病 该病为害叶片和果实,以为害果实为主,严重时会引起大量果实腐烂,造成落果。高温多雨,田间湿度大,氮肥过多会加重此病。该病俗称“撒墨水”,最初病斑呈深绿色水浸状圆点,然后扩大成圆形至椭圆形,并形成同心轮纹黑褐色,湿度大时,果面病斑上出现黑色霉层。3.1.6 蛀果型害虫 主要有棉铃虫和烟青虫,蛀食会引起落果。培育壮苗,加强肥水管理,增强植株的抗性,特别在炎热的夏季要及时追肥、灌水和排水,及时防治病虫害。与非茄科作物轮作3年以上。①培育无病适龄壮苗。播种前要用10%的磷酸三钠浸种20~30min捞出,充分洗净(如不洗净会影响种子发芽,漂洗3~4次漂洗1~2h),再催芽播种;用无病土育苗,防蚜,适时定植,壮苗定植。②促发棵,壮棵。③增施有机肥。④搞好中耕除草,及时防治蚜虫(整个生育期都防治)。⑤及时清除田间病叶、果、株残体。4.4.1 病毒病可用1.5%植病灵水剂1000倍液喷雾或用20%病毒A可湿性粉剂400~500倍液喷雾。辣椒细菌性斑点病可用硫酸链霉素(200万单位)4000倍液,每隔7天喷一次,连续喷2~3次。辣椒疫病可用72%的杜帮克露800倍液喷雾防治或70%代森锰锌600倍液喷雾防治。辣椒白粉病、炭疽病用55%的可湿性粉剂500倍液进行叶面、叶被喷雾。4.4.2 蛀果型害虫可用半枯带叶杨、柳枝,10根一捆,每亩插放10捆,晚放晨收扑,可诱杀一定量成虫(杨、柳枝全枯时要更换);用BT乳剂400~500倍液防治;用敌杀死、杀灭菊酯或灭扫利喷药防治。 -
报告Factor Analysis of Epidemics of Rice Stripe Disease
出版时间:2007Zhuji Agricultural Technical Extension Center,Zhuji 311800,China水稻条纹叶枯病是由灰飞虱传播的发生严重的水稻病毒病。从2004年以来,浙江诸暨市的单季稻上条纹叶枯病发生明显上升,病害扩展蔓延速度快,对水稻安全生产构成严重威胁。为了调查探讨水稻条纹叶枯病发病流行规律,防范病害发生流行,从2004年起,我们对水稻条纹叶枯病发生情况、影响发病几个关键因素和上升原因进行调查分析,现将结果综合整理如下:从2004~2006年调查情况看,浙江诸暨市水稻条纹叶枯病发生具有以下特点:2005 年大田调查,平均丛发病率 0.93%(0~ 2.80%), 株发病率 0.28%(0~0.740%)。2006 年面上调查109 块田,平均丛发病率为2.51%(0~16.8%), 株发病率0.49%(0~3.64%), 丛发病率大于2%的田块占42%,株发病率大于1%的田块占14%。2006 年观测区调查平均丛发病率为 0.85%(0.05%~1.9%), 株发病率为 0.16%(0.004%~0.44%), 而2005年平均丛发病率为0.19%,株发病率为0.05%。2006年发病比2005年明显加重,条纹叶枯病在本市正以较快的速度上升和扩展。单季稻是近年发病的主要稻作类型,而作为籼稻类型的早稻2006年也有条纹叶枯病发生。2006年5月30日在王家井会议桥机插(4月20日机插)早稻的早22品种上发现条纹叶枯病,5月底开始发病,开始是零星的发生,6月中旬加重,6月下旬调查平均丛发病率为2.33%(1.94%~2.74%),株发病率为0.06%(0.04%~0.07%)。在相同地点的连作晚稻(秀水09)上也发生了条纹叶枯病。据面上调查统计,2006年全市水稻条纹叶枯病发生面积在12万亩左右,比2005年6万亩扩大1倍以上。2006年单季稻条纹叶枯病6月中旬(常年则在7月上旬至中旬)在早播早插的制种田(浬浦镇大、小兼溪村)首先发病,其后各地在6月下旬至7月上旬相继发生,比往年提早10天左右,呈现出面较广、个别田块发生程度较重(丛发病率达到14%~30%)的状况,7月上旬为条纹叶枯病发病高峰期。调查表明,单季稻条纹叶枯病有随播种和移栽时间的提早而提早发病的趋势。早稻、单季稻和制种田及连作晚稻条纹叶枯病的发生定田定点观察,不同稻作类型条纹叶枯病发生消长趋势亦有不同。单季稻的条纹叶枯病发生如图1和图2所示,发病有两个高峰期;制种田的发病情况与单季稻相似,也有两个高峰,峰间相隔15~20天;早稻条纹叶枯病发生从6月2日开始上升,抽穗期达到最高峰;连作晚稻(秀水09)条纹叶枯病8月14日始见病株,其后丛发病数上升,株发病数则是达到一个高峰后开始下降,过段时间又上升,这可能是由于早发病株经过一段时间之后死亡,从而造成病株数下降,后又产生一发病高峰而再次上升,见图3。图1 单季稻条纹叶枯病丛、株发病动态图2 单季稻制种田条纹叶枯病发病动态图3 连作晚稻条纹叶枯病丛、株发病动态几年来对主要推广品种在不同示范方中的条纹叶枯病发生情况进行调查,结果见表1。从调查结果看,影响病害轻重的主要栽培因子有:2.1.1 播种或移栽时间 播种早的田块比播种迟的田块发病重,同一块秧苗不同时间移栽的迟移栽的重于早移栽田。如江藻镇汪王村、山下湖镇祥头村和枫桥镇择墅下村3个示范方种植秀优5号,王家井镇楼许村、山下湖镇义燕村和枫桥镇新店湾村3个示范方种植加优1号,阮市镇阮市村示范方种植秀水110,虽然种植的品种不同,但调查结果都表明,播种期越迟发病越轻,一般在5月底6月初播种的发病普遍轻于此前播种的。又如浬浦镇大、小兼溪村制种田5月8日播种,6月中旬就发病,6月下旬调查丛发病率为2.7%~3.6%,株发病率为0.6%,而马郦村制种基地6月5日播种,6月27日秧田仅见零星条纹叶枯病病株,月底移栽后发病很轻,丛发病率在0.1%以下。同一秧田的秧苗移栽早的田块发病要轻于移栽迟的田块,如枫桥毛家村毛国贤户有两块在同一地点的移栽田(品种秀水110,5月25日播种),分别在6月25日和6月30日移栽,7月24日调查,6月25日移栽田的条纹叶枯病丛发病率为14.5%,6月30日移栽的丛发病率达到30%,迟移栽的发病比早移栽的重1倍。分析原因可能是播种时间早,最易感病的秧苗期与灰飞虱一代成虫盛发迁入高峰期相吻合的机会多和时间长,被传毒的机率大,所以发病重;而迟播的则可能避开了成虫盛发迁入高峰期,因而发病轻。同一秧田的秧苗早栽田比迟栽田发病轻,则是由于受拔秧影响而使传毒灰飞虱集中到剩余秧苗上而大大增加被传毒的几率,靠近秧田旁边的稻苗发病重也是这个原因。示范地点栽培方式播种时间(月.日)调查块数丛发病率(%)株发病率(%)幅度平均幅度平均>1%的田块数汪王直播6.10120~0.200.090祥头育秧6.01140~3.20.90~1.040.2641择墅下育秧5.2570.4~14.04.040.07~3.641.042楼许育秧6.0360.2~1.81.240.04~0.620.180义燕育秧5.25140.2~4.41.460.12~1.020.381新店湾育秧5.23101.2~6.22.860.2~1.450.641阮市育秧5.26151~10.45.040.27~2.771.066表1 水稻栽培方式与条纹叶枯病发生关系2.1.2 种植方式 育秧移栽的比直播田发病重。如秀优5号在汪王作直播种植的发病要比其他两个示范方轻得多,除了因播种时间不同而造成差异外;另一个重要原因是大部分直播的农户在播种前都要进行清园整田后才播种,使传毒媒介灰飞虱的生存场所和食料遭到破坏而减少传毒虫量,因而播种后迁入的带毒虫量少而发病较轻;相反,育秧移栽的由于播种到移栽有20多天的秧苗期,播种时大田不翻耕整理,秧田周围也不清园等,秧苗受到周围杂草上的带毒灰飞虱传毒的机会和时间大大增加,因而发病加重。2006年在陈潘和木桥进行秧田周围清园和不清园的比较试验,结果清园的水稻条纹叶枯病株发病率为0.032%和 0.039%,不清园的为1.153%和1.06%,清园比不清园的发病要轻。浬浦马郦制种基地条纹叶枯病发生轻,除播种时间比较迟外,播种之前6~7天,整个田畈用克芜踪防除杂草,以破坏灰飞虱的生存场所和断绝其食物链的清园工作。两种种植形式的发病程度不同,主要取决于秧苗周围是否有较多的带毒灰飞虱存在,破坏灰飞虱的生存场所和断绝它的食物链是减少毒源的主要措施。2.1.3 播种形式 采用常规水田育秧要比旱地(蔬菜地)育秧发病重。如10个展示品种的秀水63、E8、浙粳22、秀水09、秀优5号、春江026、浙优9号、加乐优2号、甬优5号、加优1号在枫桥择墅下和王家井楼许都是采用育秧移栽,但楼许点采用的是旱地育秧强化栽培,择墅下点仍是常规水田育秧,结果择墅下点除E8外所有参展品种都发病,而楼许点只有秀水63、浙粳22、秀水09、春江026、加优1号发病,且发病程度要比择墅下点轻。分析原因主要在于旱地上育秧,周围灰飞虱数量少。强化栽培育秧由于秧龄短(12天左右)、密播,可在房前屋后的旱地甚至在水泥地面(铺上一层泥)上育秧,从而避免受到较多灰飞虱的侵入而减少被传毒的机会,达到减轻病情的目的。几年调查结果表明,甬优系列品种对条纹叶枯病的感染率相对较低,在条纹叶枯病发生加重的情况下,可以以甬优系列中的一些品种作为过渡。同一地点、种植方式和播种时间相近,但不同品种间发病有较大差异。通过品试田及大田的调查观察,大多数晚粳糯品种(系)为条纹叶枯病感病品种(系),但品种间发病程度有较大差异。从2006年对品种感病情况调查的结果看,E8在多点调查或试验中都没有发现条纹叶枯病的发生,在引种品试中E44、F104、杂5和联检品试中春优59、05G364、浙优2611、05G361、05G227也没有条纹叶枯病的发生,大面积示范的甬优8号,以及种植多年的甬优6号也没有发生条纹叶枯病。从种质资源看,籼粳杂交基因类型的品种基本不发病,表现出较强的抗性,如甬优6号和E8。秀字、加字系列或一些浙粳类的粳糯稻品种发病相对较重,如秀水110等。集中育秧管理的好坏影响发病的轻重。阮市示范方和楼许示范方,采用集中浸种育秧,分户移栽,株发病率为1.06%;而楼许示范方也是集浸种育秧,但株发病仅为0.18%;除了楼许示范方播种时间比阮市示范方迟5天外,不同的是楼许点育秧前期搭棚覆盖地膜,出苗后喷施杀虫剂防治,而阮市点在秧田期管理比较粗放,针对性杀虫工作做得较差。水稻在发病后加强管理也可减轻病害损失,如枫桥毛家村毛贤佰户,种植的品种为秀水110,前期丛发病率为14%~30%,通过加强肥水管理,拔除病株,喷施菌克毒克的病毒钝化剂,后期调查丛发病率下降为9.8%~17%,株发病率下降为1.8%~3.4%,发病程度明显减轻。2.4.1 毒源地广,虫口基数高(1)种植模式的单一化造成毒源寄主多,传毒媒介昆虫生存条件好。自进入21世纪后本市水稻生产模式从原三熟制、二熟制转向大部分一熟制(单季晚稻)、部分二熟制的局面,大部分地区冬春两季都是荒芜休闲,田埂、道路、沟渠和田里杂草丛生,条纹叶枯病毒的越冬寄主广泛,为传毒媒介灰飞虱提供了良好的越冬场所。(2)灰飞虱种群数量持续上升①灯下诱虫量 2005~2006年灯下诱集灰飞虱情况如图4所示。前期虫量主要集中在6月下旬到7月上旬,出现较大诱虫峰;8月下旬诱集量增加,9月份出现全年数量最高峰。图4 2005~2006年灯下灰飞虱诱集情况②水稻秧田和本田灰飞虱发生情况 秧田灰飞虱虫量调查,6月8日平均亩虫量为8160头,均为成虫;6月16日调查,亩虫量为4140头,成虫占85.5%;6月26日调查,亩虫量为4300头,其中成虫占72%。6月12日和16日灰飞虱卵量调查,每百株秧苗有效卵分别为13粒和7粒。从单季稻3年的田间灰飞虱虫量消长调查情况看,2006年与2004年在7月上中旬都有较高的虫量,单季稻条纹叶枯病在7月29日左右有一个发病高峰期,两者发生较相吻合;7月下旬至8月上旬田间虫口数量下降,8月中旬又有所上升,到9月下旬末期灰飞虱虫量急增,为全年数量最高;进入10月灰飞虱迁入越冬场所,田间虫量下降,见图5。图5 单季稻田间灰飞虱虫量消长曲线③灰飞虱的越冬与越夏场所 初步调查结果,灰飞虱在田埂、路边的看麦娘等杂草上越冬,以3、4龄若虫为主。越冬代成虫高峰在3月24日~4月30日;一代成虫高峰在5月下旬至6月初;二代成虫高峰在6月下旬至7月上旬。灰飞虱越夏场所调查,千金子、稗草、狗牙根、马唐上发现较多灰飞虱,以成虫为主;其次为双穗雀稗、游草、狗尾草;蟋蟀草、莎草、丁香蓼上尚未见灰飞虱。从多年药剂试验的结果看,扑虱灵等对基部灰飞虱的防治效果不明显;从晚稻穗部灰飞虱的防治示范看,每亩用80%敌敌畏300ml,或用48%乐斯本100ml加水30kg,采用喷雾法的效果在70%~80%左右;毒死蜱类加异稻瘟净对灰飞虱有较好的防治效果。主治药剂吡虫啉对灰飞虱防治效果仅为40%~50%,有可能出现抗药性或耐药性。缺乏高效药剂,有利于虫源积累和上升。鉴于水稻条纹叶枯病和传毒媒介灰飞虱发生情况,影响发病因素调查分析在防控上要坚持“预防为主,综合防治”的植保方针,采取“切断毒链、治虫防病、综合治理”的对策,因地制宜地推广抗病品种,狠抓秧田和本田前期灰飞虱防治,以控制条纹叶枯病暴发为害。 -
报告Discussion of the Relation Between Rice Sowing Time and the Occurrence of Rice Stripe Virus
出版时间:2007近年来,水稻条纹叶枯病(Rice stripe Vir,RSV)在浙江嘉兴市呈快速上升态势,2007年全市发病面积达26.4万亩,对水稻安全生产带来严重威胁。影响水稻条纹叶枯病的发病流行的因素很多,如传毒媒介灰飞虱种群数量与带毒率、水稻品种抗病性、耕作制度、气候条件等。为了探索水稻播种期与灰飞虱迁移传毒和条纹叶枯病发病间的关系,为防治提供科学依据,2006~2007年进行了水稻不同播种期对病害发病程度的影响试验,现将结果综合整理如下。移栽单季晚稻,品种为秀水09。2006年与2007年均分4期播种,播种时间分别为5月15日、5月22日、5月29日和6月5日,每期间隔7天,每处理重复3次,每小区大田面积在0.5亩。播种前未做药剂浸(拌)种处理,按照处理要求时间,依次分期播种,待30天秧龄时依次分期移栽。秧田期、大田前期正常肥水管理,但不用杀虫剂、杀菌剂,让其自然发病。调查方法:秧苗移栽前调查病株率;大田期在移栽后至病情稳定期,各处理区用五点式取样法选定5点,每点40丛,计每区200丛,每隔5天调查1次,调查丛发病率与株病率,观察各处理区发病动态变化。秧田期各播种期间发病程度差异较为明显,2006年 5月15~22日播种的株病率高,分别为3.26%和2.25%,显著高于5月29日播种的0.24%,6月5日播种秧田未发病。2007年调查结果与2006年相似,见表1。调查试验表明,秧田期播种期越早,发病越重。年度播种期(月/日)5/155/225/296/520063.262.250.240.020074.205.300.370.33表1 水稻秧田不同播种期条纹叶枯病发病情况 (浙江嘉兴,2006~2007)在大田病情稳定期(7月中旬)调查,各播种期与病害的发生有着密切的关系,年度间、重复间基本一致。2006年的4个播种期中,从早到迟平均病丛率依次为18.5%、10.0%、5.67%和1.5%,平均病株率依次为4.07%、2.69%、1.89%和0.42%。随着播种期的推迟,病情递减。2007年的4个播种期中,前2个播种期病情重,病丛率分别为16.2%和16.67%,病株率分别为5.18%和7.31%,而后2个播种期的病丛率分别为2.7%和1.5%,病株率分别为1.9%和0.7%。试验进一步证实了播种期与发病程度间的密切关系,即播种期越早,发病越重,反之,则发病越轻。年度播种期(月/日)病丛率(%)病株率(%)重复1重复2重复3平均0.050.01重复1重复2重复3平均0.050.01200620075/1517.516.521.518.5aA4.163.164.884.07aA5/2210.510.59.010.0bB2.553.332.182.69bAB5/296.04.56.55.67cC2.021.072.571.89bBC6/52.00.52.01.5dD0.630.130.500.42cC5/1516.017.015.516.2aA6.225.214.115.18aA5/2218.015.516.516.67aA9.315.826.807.31aA5/293.03.02.02.7bB2.472.350.891.90bB6/52.01.01.51.5bB0.770.680.640.70bB表2 水稻播种期与大田条纹叶枯病发病关系调查 (浙江嘉兴,2006~2007)水稻不同播种期条纹叶枯病发病程度差异明显,分析原因主要是由传毒介体与条纹叶枯病的流行规律所决定的。条纹叶枯病是由灰飞虱为传毒媒介的病毒病,在一定的带毒虫源基数下,灰飞虱成虫高峰的早迟直接影响病害的流行与否。2006~2007年灰飞虱在嘉兴市的一代成虫高峰在5月中、下旬,如在此期间播种,出苗后正与一代成虫传毒高峰相吻合,此时水稻播种面积小,大量灰飞虱成虫迁移在秧苗上集中传毒,病害发生就重;而推迟至6月上旬播种,灰飞虱正处低龄若虫期或卵期,迁移能力不强,且随着气温的升高,灰飞虱数量减少,此时播种,传毒机率大为降低,病害发生就轻。观察表明,水稻条纹叶枯病与其他病害一样,经历始病期、剧增期、稳定期、下降期4个阶段。始病期随着播种期的不同而不同,播种越早,发病也越早,一般在移栽后2~7天开始出现病害症状;剧增期是病情急速发展的时期,各播种期间较为一致,2006年在6月25日~7月10日,历时15天;2007年在6月28日~7月12日,历时14天。病害稳定期各播种期间差异较小,2006年、2007年均在7月10日左右,此后病情开始缓慢下降,见图1、图2。图1 大田期各播种期条纹叶枯病发病动态(浙江嘉兴,2006)水稻播种期对条纹叶枯病发病有较大影响,在自然发病情况下,秧田期与大田期播种期早,病情重;播种期迟,病情轻。分析原因这与灰飞虱迁移和传毒特性有关,水稻播种期如与一代灰飞虱成虫高峰相吻合,发病就重。在浙江嘉兴市,一代灰飞虱成虫高峰一般在5月中下旬,此时播种容易造成集中传毒。水稻条纹叶枯病防治的根本措施是抗病品种的选育与推广,在目前缺乏抗病品种的情况下,适期播种是控制病害流行的最有效方法之一。水稻播种期的选择,应根据水稻品种的特性、灰飞虱成虫传毒高峰而定,在对水稻生长发育、产量、品质等影响较小和不受影响的前提下,水稻播种期应避开灰飞虱成虫传毒高峰期,应提倡适当推迟、同期播种,在浙江嘉兴市推迟至5月底至6月中旬播种较为适宜。图2 大田期各播种期条纹叶枯病发病动态(浙江嘉兴,2007) -
报告甘蓝型油菜抗病毒病相关基因的初步研究
出版时间:2007本文以甘蓝型油菜一个抗病毒品种和一个感病毒品种为试材,利用转基因手段进行了油菜抗病毒病相关研究。利用乙烯、甲基茉莉酸、水杨酸类似物苯丙噻重氮3种化学物质诱导处理油菜叶片,提取处理前后各材料的RNA,标记探针后与拟南芥芯片进行杂交,通过对基因表达谱的分析,获得与抗病性相关的基因,从中选择3个与病毒抗性相关的基因BNP5、BNP7和BNP10。其中BNP7和BNP10为全长序列,BNP5 5'端部分序列缺失,通过5'-RACE的方法获得该基因全长序列,分别构建3个植物过表达载体pGA5、pGA7和pGA10和3个RNAi载体pGR5、pGR7和pGR10(过表达和RNAi载体均带有除草剂抗性基因bar)。采用本实验室发明的高通量花蕾原位转化法分别对所选材料进行转化。转基因当代植株收获的种子播种以后,幼苗期喷施除草剂进行筛选,并经PCR鉴定,存活幼苗80%以上为阳性植株。目前正在进行阳性植株T1代幼苗病毒抗性鉴定及相关的后续实验。 -
报告Application of Gene Expression Research Methods in Plant Pathology
出版时间:2007基因表达是基因在生物体内转录、翻译以及所有加工的过程,在真核生物中,约有10万个基因,而表达的基因只占基因组的15%左右,了解不同条件下细胞内基因表达的变化,可以帮助我们了解控制生命过程的机理[13]。对于植物来说,在植物不同的发育阶段和不同的环境条件下,基因的时空表达受到严密的调控。当植物受到病原物,如细菌、真菌、病毒、线虫等的侵袭时,植物体内存在防御机制,诱导相关基因表达,或者诱导相关基因表达量增加,产生次生代谢产物或表达抗性基因,从而抵御病原物的侵袭。因此研究植物基因表达变化水平对于揭示植物抗感病机理有重要的意义。在人类控制植物病虫害的措施中,抗病虫转基因植物是其中的重要手段之一,这样可以减少农药的使用,减少对环境的污染,并且符合可持续发展农业的要求,而基因表达分析又是其中必不可少的一步。它可以检测抗病虫基因能否高效的表达,以及能否在特定的发育阶段或者特定的组织器官中表达。基因表达研究方法有Northern杂交法、表达序列标签、mRNA差别显示技术、基因表达的系列分析方法和基因表达芯片等,本文对主要基因表达研究方法在植物病理学上的应用进行了简单概述。Northern杂交技术是用于测定真核生物RNA样品中特定mRNA分子的量和大小以及估计其丰度的技术,是研究基因转录产物的重要手段[14]。Northern杂交技术是在Southern技术的基础上建立起来的,具体的步骤是首先从要研究的组织或细胞中分离完整的mRNA,然后将RNA根据大小用变性琼脂糖凝胶电泳分离,再通过毛细管作用或负压法装置使RNA条带转移到纤维膜上,进行必要的处理后,用固相RNA与探针分子杂交,对特异结合的探针分子的图象进行检测、捕获和分析[15]。这种方法具有较高的特异性,主要是应用于检测特异rnRNA,以分析已知基因的表达情况。李子银等[16]根据已知植物抗病基因的保守区域设计引物,从抗稻瘟水稻品种窄叶青8号第一链cDNA和基因组DNA中扩增出3个与植物抗病基因同源的序列,利用Northern杂交技术,显示其中一个基因在水稻叶片、幼茎和根中均有转录。程志强等[17]利用已知的植物R类基因保守结构域,设计简并引物作为随机引物,分析水稻愈伤组织受白叶枯病菌诱导的mRNA表达丰度差异,获得3个差异片段。Northern杂交结果证实该片段受白叶枯病菌诱导表达,且在抗性品种中的诱导表达明显强于感病品种的诱导表达。黄萱等[18]根据已知植物抗病基因的保守结构域设计引物,从抗锈病小麦品种西农88基因组DNA扩增触3条与植物抗病基因同源的序列,通过Northern杂交表明其中一个同源序列在小麦中受水杨酸调控,属于诱导型表达的抗病基因。表达序列标签(EST)技术是由Adams等[1]提出的。典型的真核基因mRNA是由5’帽子,5’-UTR,编码区,3’-UTR,3’polyA尾巴五部分组成,其中5’-UTR和3’-UTR对基因具有特异性,3’或5’端的一段序列就可以表示在某种条件下基因的表达情况[19]。表达序列标签即在不同的组织构建的cDNA文库中,随机挑选不同的克隆,进行克隆的部分测序从而产生的cDNA序列。目前,已经建立了大量的EST数据库,可以根据不同时间,不同处理、不同组织,不同条件下EST数据的比对,鉴别特异表达的基因。但是,此技术对实验室的仪器、测序、经费等要求高。马金彪等[20]利用EST技术构建条锈菌诱导的小麦叶片cDNA文库,通过序列分析,了解小麦与条锈菌互作过程中表达的基因,为从分子水平揭示寄主与病原菌亲和互作机理奠定了理论基础。mRNA差别显示技术,又称差示反转录PCR(differential display of reverse transcriptional PCR),简称DDRT-PCR,它是将mRNA反转录技术与PCR技术二者相互结合发展起来的一种RNA指纹图谱技术。几乎所有的真核基因mRNA分子的3’末端都带有poly(A)尾巴,在RNA聚合酶的作用下,以mRNA为模板,以oligo(dT)为引物合成出cDNA链[21]。此技术的优点在于简单方便、灵敏度高,但同时它也存在局限性,如:假阳性比例高,可达50%~70%;扩增的片段分子量比较小;工作量大等[13]。mRNA差别显示技术最初是为动物研究设计的,但是从其原理来看,在植物基因表达的研究上也存在很大的潜力,可以应用于植物抗病基因的表达研究上,研究发现,抗病基因中很多都是多基因家族,这样的多基因家族在抗、感病品种中都存在,只是其中的成员有所不同,有的基因缺失,这可能就是造成抗病品种抗病、感病品种感病的原因。所以,可以应用mRNA差别显示技术分析比较抗病品种和感病品种的差异表达的基因,从而进行进一步的分析。黄旭等[22]通过外源DNA浸泡幼胚将普通野生稻(Oryza rufipogen)抗稻瘟系YD1005总DNA导入受体粳稻寒丰S(Oryzasativa ssp.japonica)育成一抗稻瘟病变异株(D1代),利用mRNA 差别显示技术分离得到一个原品种中没有的与抗稻瘟病相关的一个cDNA。饶志明等[23]人利用mRNA差别显示技术对水稻感病品系G71受苯并噻二唑诱导3天的应答反应进行分析,从抗病及其相关基因保守结构域设计的10个引物组合的反应中获得11个受BTH诱导的cDNA差异片段,进一步利用Northern杂交证实其中一个阳性片段的表达受BTH和稻瘟病菌的诱导。由于差别杂交技术、mRNA差别显示技术各有缺点,不能够提供全面的表达分析图谱,不能够全面系统的分析基因转录组。因此,在此基础上,1995年Velculesue等[2][3]描述了一种基因表达的序列分析技术(SAGE),该技术能快速详细的分析成千上万个转录子,能够全面的对基因组的表达进行分析,而无须依赖以前的转录信息。在一个转录物中,可以找到一段特异的序列,这个特异的序列就可以代表这个转录物,该序列即转录序列标签(SAGE标签),一般为9~10bp;SAGE 标签经随机连接、扩增并集中在1个克隆中测序,标签重复出现的次数代表该转录物的拷贝数。根据其占总标签数的比例即可分析出其所对应的编码基因的表达频率。SAGE是分析诱导表达的抗病基因的一种有效的方法,Matsumara等[4]应用SAGE 技术研究水稻在白粉病菌侵染后基因表达的整体变化,旨在发现与稻瘟病抗性相关的新基因;Mitchell 等[5]利用SAGE 方法对水稻与稻瘟病菌之间相互识别及病理反应进行全基因组分析,以了解与病原菌致病力和寄主抗性相关的基因。Mysore 等[6]以番茄为材料,分析了不亲和的植物病原菌互作过程中经诱导产生或被抑制的基因表达图谱。基因芯片技术最早是由Fodor[7]等提出的,基因芯片是一种用于合成和分析生物分子的微型装置。其原理是指是指将大量生物讯息密码,以预先设计的方式固定在玻片、硅片、塑料和尼龙膜等固相载体上组成的密集分子阵列。微阵列在一定条件下进行生化反应,反应结果用化学荧光法、酶标法、同位素法显示,再用扫描仪等光学仪器进行数据采集,最后通过专门的计算机软件进行数据分析[8]。微阵列芯片主要有两种:基于寡核苷酸微阵列芯片和基于cDNA 片段的微阵列芯片。虽然寡核苷酸阵列芯片的检测灵敏度高,可检测出一个碱基的错配,但寡核苷酸芯片的制作是基于DNA 序列已知的基础上,而cDNA 片段可以来自序列未知的cDNA 克隆、EST 克隆,隐含的基因组克隆,或已知的基因组序列的扩增ORFs [24]。因此,基因表达芯片技术是一种高通量的对两种组织或细胞基因表达进行检测和分析的方法。该方法并且克服了核酸杂交技术的操作繁杂、自动化程度低、操作序列数量少、检测效率低等问题[19]。Whitham等[9][25]通过使用微阵列技术,对不同种RNA病毒对易感的拟南芥基因表达的影响进行了研究,结果发现,不同种RNA病毒在易感植物宿主中诱发相同的反应,此研究有利于深入理解RNA病毒致病机理。在遗传上有显著差异的植物病原菌Xylellafastidiosa(Xf)的菌株导致了许多种植物病害,在全世界造成了巨大的经济损失。Nunes 等[10]以Xf 9a5c 菌株(导致柑橘花斑缺绿症)的基因组为参照,使用以微阵列技术为基础的方法,比较了12 个Xf 分离菌株,并对菌株间的基因组组成差异进行全面的评价。定量RT-PCR技术是在反转录和定量PCR的基础上发展起来的一种检测特定基因表达量的技术,可以根据PCR扩增产物的量确定目的基因的表达水平[26]。包括相对定量RT-PCR,竞争性定量RT-PCR、比较定量RT-PCR 和实时定量RT-PCR[27]。朱建裕等[28]根据番茄环斑病毒(ToRSV)各株系RNAⅠ聚合酶基因的保守序列,设计并合成1对引物和1条Taqman荧光探针,建立了对ToRSV的实时荧光RT-PCR检测方法。Chang JH等[11]根据番茄Pto基因家族的序列,设计特异性引物,应用RT-PCR技术,验证了Pto基因家族成员在抗感病番茄中的表达情况,结果发现Pto基因家族成员LescFen、Lescpth2和Lescpth5在感病番茄Rio Grande 76S中表达,Pto、Fen、Lpimpth2和Lpimpth5在抗病番茄Rio Grande 76R中表达。Gene calling是Shimkets等[12]人于1999年提出的,该技术受专利保护(USPYO5871697和USPYO5972693)。主要分为三步:①限制内切酶双酶切②加接头③PCR扩增,并对每个片段回收测序,测序结果数据库比对。具体步骤如下:合成双链cDNA,限制内切酶双酶切,对酶切产物加接头,然后用接头特异性的引物进行PCR扩增,引物分别用生物素和FAM标记,扩增产物毛细管电泳分离,并对每个片段回收测序,测序结果数据库比对。它可以对同一位点的基因表达种类和表达丰度进行分析[29]。此技术的应用有以下几个方面:①确定新的、稀少的表达基因;②当植物受到病原物侵袭时,可以快速检测到特异表达的基因;③可以利用比较基因组学比较种间基因差异,从而确定基因功能;④可以敏感地确定基因表达的微量变化等。另外,还有一些基因表达研究方法,如差异杂交,但仅适用于基因组基因组复杂程度较低的基因组,如酵母;S1核酸酶保护分析法间接的检测mRNA,适用于基因调控方面的研究,但是费时费力费用高;噬菌斑原位杂交可以分离cDNA中的目的基因,但费用较高;基因表达指纹技术,它采用酶切代替了PCR扩增,所获结果含有一定的编码信息,但是仅能得到高表达的基因,并且受电泳技术限制。在植物病理学研究领域,基因表达分析技术已经广泛的应用于病原菌的检测、转基因植物的检测、植物病原物互作机理的研究以及植物抗病信号转导研究等方面,使植物病理学研究者根据不同时期基因表达的变化,揭示植物抗感病机理、防治病虫害的发生以及选育植物抗病品种。虽然目前还有一些问题需要解决,但是相信随着各种基因表达研究方法的不断完善和改进,在植物病理学研究上将会有越来越广泛的应用。 -
报告Effects on Resistance to Grey Mould in Tomato after Induced Leaves at Different Positions
出版时间:2007灰霉病是番茄栽培中的重要病害,长期依赖农药防治该病严重污染环境和产品。利用诱导抗性是植物病害可持续控制的一条有效途径。E.A.Achuo和K.Audenaert等用适宜浓度的BTH处理土壤或叶片,显著降低番茄灰霉的发病程度[1]。众多研究表明,诱导植株下位叶片,可增强诱导叶和其上非诱导叶的抗病性[2~4];而诱导上位叶片对诱导叶及其下位非诱导叶的抗病性的影响鲜见报道。本试验比较了5种化学物质诱导不同部位叶片对番茄灰霉病发生程度的影响,为诱抗剂的使用技术提供参考和依据。番茄品种为L402,灰霉菌(Botrytis cinerea)由田间分离所得。供试化学物质分别为:CaCl2(Calcium chloride,Ca),上海化学试剂公司生产;水杨酸(Salicylic acid,SA),沈阳化学试剂厂生产;茉莉酸甲酯(Methyl jasmonate,MJ)、龙胆酸(Gentisic acid,GeA)和β-氨基丁酸(3-Aminobutyric acid,BABA),购自Sigma公司。番茄穴盘育苗,苗期管理与一般生产相同。6叶期用20mmol/L的CaCl2,3mmol/L的SA、MJ、GeA和9mmol/L的BABA涂抹第3叶片(下位叶)或第5叶片(上位叶)。5天后用浓度为106个孢子/ml的灰霉菌孢子悬液接种第4真叶的前5片小叶,接种方法采用微量注射法[7]。接种后第5天调查发病程度并计算病指数。病害分级标准为:0级,无病斑;1级,病斑面积占叶面积5%以下;3级,病斑面积占叶面积5%~15%;5级,病斑面积占叶面积15%~25%;7级,病斑面积占叶面积25%~50%;9级,病斑面积占叶面积50%以上[7]。每处理3次重复,数据均用SPSS软件进行统计分析。无论是诱导第3叶片还是第5叶片,番茄灰霉病发生程度均显著低于对照。其中CaCl2、SA和GeA 诱导第3叶片和诱导第5叶片,番茄灰霉病发生程度之间没有显著差异;而MJ和BABA诱导第3叶片番茄灰霉病发生程度显著低于诱导第5叶片的发病程度(图1)。这一现象说明,CaCl2、SA、GeA、MJ和BABA诱导番茄的抗病信号既可以向上传递,也可以向下传递;而CaCl2、SA和GeA诱导的抗病信号向上和向下传递的能力相同,MJ和BABA诱导番茄的抗病信号向上传递能力高于向下传递能力。Figure 1 Disease index after induced leaves at different positions of tomato试验结果表明,CaCl2、SA、GeA、MJ和BABA均可诱导番茄抗病性增强,而且诱导的抗病信号可以在植株中进行双向传递,但诱导的抗病信号向植株下部传递能力不高于向上传递能力。蔡新忠等用叶霉菌非亲和小种4诱发接种番茄第3叶片,5天后用其亲和小种5挑战接种第3叶和第4叶,结果表明,诱导植株的第3叶和第4叶发病程度均显著低于对照,发病面积下降率分别为90%和85%[2]。童蕴慧等发现,用拮抗细菌处理番茄叶片可诱导番茄抗灰霉性增加,处理叶的上一叶位叶片中PAL、POD、PPO、SOD活性均显著高于对照,处理叶和上一叶位叶片中SA含量分别是对照的2.6倍和1.6倍[3]。张穗等用井冈霉素A处理珊西烟,处理叶和其上位叶片中几丁质酶和β-1,3-葡聚糖酶的活性均比对照植株相同叶位叶片显著增加,而这两种酶活性与TMV引起的烟草叶片枯斑数目呈负相关[4]。上述研究结果与本试验结果一致。所以在所用诱抗剂价格昂贵或数量不足时,建议用少量诱抗剂处理植株下位叶片来达到防病目标。 -
报告Evaluation of Rice Stripe Virus Resistance in Japonica and Glutinous Rice Varieties (Breeding Lines)
出版时间:2007水稻条纹叶枯病由灰飞虱传播的发生严重的病毒病,近几年来该病在诸暨市发生面积不断扩大,发病程度越来越重,对水稻安全生产构成重大威胁。抗性品种选育推广是防治条纹叶枯病最经济有效的措施,为此,我们对诸暨市引种试验的晚粳糯新品种(系)和在本市进行的全省联合检验的晚粳糯新品种(系)系,进行了条纹叶枯病田间自然发病的抗性测定,现将结果报告如下:分4组处理。第一组本地引进试种品种,E44、杂2、杂1、杂3、杂4、杂5、浙粳22、E8、F104、加优04-1、加优06-1等11个新品种,以甬优1号作对照品种;第二组12个全省联合检验品种(系)(简称联检),春优59、05G354、浙优2611、春优658、05G361、浙优0630、春优6172、05G227、嘉花一号、A/XR155、05G290、嘉优06-2、八优158、秀水63(对照)等13个品种;第三组作苗情观察,浙糯5号、春江糯2号、浙粳22、春江026、春江026、加优06-1、加优04-1、秀优5号、加优1号、E8、甬优2号、甬优1号等12个本地推广品种;第四组全省展示品种,秀水63、E8、浙粳22、秀水09、秀优5号、春江026、浙优9号、加乐优2号、甬优5号、加优1号等10个品种。由迁入试验小区的灰飞虱自然传毒接种。引种品试和联检在江藻镇陈潘村进行,每个品种重复3次种植,随机区组排列,5月30日播种,6月24日移栽,小区面积13.3m2,株行距品试为23.3cm×20cm,联检为30cm×16.7cm。苗情品种分别在江藻镇陈潘村和浣东街道泰南村种植作两地观察,5月30日播种,6月25日移栽,小区面积陈潘村100m2,种植2352丛,泰南村20m2,种植516丛。展示品种分别在王家井镇楼许村和枫桥镇择墅下村两地种植,每个品种种植667m2以上,择墅下点在5月22~23日播种,6月18~20日移栽,楼许点6月2~3日播种旱地育秧,6月18日左右移栽。所有处理除条纹叶枯病没有进行专门预防外,其他病虫均进行常规防治,每个试验或观察区肥水管理基本一致。8月下旬水稻未抽穗时调查;调查数量为,品试或联检试验及苗情观察的品种全小区调查,展示品种每块田调查500丛,记载发病丛数、株数和5丛的苗数。计算丛发病率和株发病率,并作统计分析。引种试验品种和联检品种的条纹叶枯病发生况调查结果见表1和表2。引种试验品种中的E44、E8、F104、杂5等没有条纹叶枯病的发生,与其他品种相比达显著或极显著差异,而杂1、加优06-1、浙粳22、杂4和加优04-1等品种的丛发病率和株发病率分别在1%和0.2%以上,浙粳22和加优04-1发病程度最重,对照品种甬优1号发病最轻。联检品种中代号1、2、3号和8号没有条纹叶枯病发病,代号9、10、11、12号丛发病率和株发病率分别在1%和0.2%以上;另外,丛发病率在1%、株发病率在0.2%以上的还有代号4号和7号。联检品种中除代号10发病程度重,与其他品种比较有显著性差异外,其他品种间差异不显著。苗情点品种条纹叶枯病抗性测定结果见表3。在两地种植都没有发生条纹叶枯病的有E8,而丛发病率和株发病率分别在1%、0.2%以上的品种有浙糯5号、春江糯2号、加优06-1、加优04-1和加优1号,其中春江糯2号发病最重,与E8比较有显著差异,但与其他品种间无显著差异;秀优5号丛发病率1%、株发病率0.2%。品种平均发病丛发病率(%)株发病率(%)E440.00cB0.000cD杂20.86bAB0.210bBCD杂11.05abA0.257bABC加优06-11.05abA0.140bcCD浙粳221.63aA0.407aABE80.00cB0.000cD杂30.09cB0.009cD甬优1号0.09cB0.018cD杂41.21abA0.257bABCF1040.00cB0.000cD杂50.00cB0.000cD加优04-11.48abA0.427aA表1 引种试验品种条纹叶枯病发生情况表(浙江诸暨,2005~2006)品种代号平均发病丛发病率(%)株发病率(%)10.00bA0.000bB20.00bA0.000bB30.00bA0.000bB40.79abA0.340bAB50.00bA0.000bB60.32bA0.097bB70.95abA0.207bAB80.00bA0.000bB91.27abA0.510bAB101.90abA1.227aA111.11abA0.207bAB121.43abA0.253bAB130.48abA0.050bB表2 联检品种条纹叶枯病发生情况表 (浙江诸暨,2005~2006)品种丛发病率(%)株发病率(%)陈泮点泰南点平均陈泮点泰南点平均浙糯5号0.461.931.195aA0.080.410.245abA春江糯2号0.565.232.895aA0.150.780.465aA浙粳220.38—0.380.075—0.075春江026选0.04—0.040.007—0.007春江0260.17—0.170.016—0.016加优06-10.173.41.785aA0.0240.520.272abA加优04-10.531.871.2aA0.430.340.385abA秀优5号1.020.940.98aA0.240.160.20abA加优1号0.852.641.745aA0.130.420.275abAE8000.00aA000.00bA甬优2号0.510.340.425aA0.0760.030.053abA甬优1号0.170.0850.128aA0.0180.0290.024abA表3 苗情点品种条纹叶枯病发病情况(浙江诸暨,2005~2006)展示点品种抗条纹叶枯病测定结果见表4。在展示的10个品种中,E8在两地都没有发现病苗,丛发病率1%、株发病率0.2%以上的品种有浙粳22、秀水09、春江026和加优1号,这4个品种在两地都有发病,择墅下点重于楼许点;而秀优5号、浙优9号、加乐优2号和甬优2号在枫桥择墅下点均有发病,分析发病程度差异的原因可能与播种时间和方式不同有关。品种丛发病率(%)株发病率(%)楼许点枫桥点平均楼许点枫桥点平均秀水630.20.60.4aA0.010.060.035aAE8000.0aA000.000aA浙粳2212.81.9aA0.120.630.375aA秀水091.23.22.2aA0.170.560.365aA秀优5号010.5aA00.140.07aA春江02622.22.1aA0.240.490.365aA浙优9号01.20.6aA00.290.145aA加乐优2号00.60.3aA00.070.035aA甬优5号00.20.1aA00.040.02aA加优1号0.63.82.2aA0.121.210.665aA表4 展示品种发病情况调查表(浙江诸暨,2005~2006)从多点试验可以看出,多数晚粳糯品种(系)不抗条纹叶枯病,只是发病程度有轻重而异,而E8在多点调查或试验中都没有发现条纹叶枯病的发生,从种质资源看它是一个籼粳交品种,2006年浙江诸暨市进行较大面积示范种植,显示出产量较高、品质较优、抗病性较好、但耐肥能力较差的特性,具有一定的推广价值。其他如E44、F104、杂5等也有较好抗病表现。调查观察表明,甬优6号和甬优8号没有发生条纹叶枯病,甬优系列的其他品种发病也较轻,如甬优1号、甬优2号、甬优5号,几年调查结果趋势基本一致。但是秀优5号、加优1号和秀水09等品种,对条纹叶枯病比较容易感染,且发病程度较重,对这些品种种植区,条纹叶枯病的防范要采取更加严格的措施。 -
报告来源于梨的苹果茎痘病毒的分离与鉴定?? 基金项目:湖北省自然科学基金资助项目(2006ABA162)。
出版时间:2007苹果茎痘病毒(Apple stem pitting virus,ASPV)主要侵染苹果和梨,且分布范围十分广泛,可导致其产量明显下降和品质改变。本研究从湖北省农业科学院果茶蚕桑研究所国家砂梨资源圃采集砂梨样品52份,采用试管捕捉反转录-聚合酶链式反应(TC-RT-PCR)对这些样品中的苹果茎痘病毒进行了检测,其中33份样品的ASPV检测结果为阳性,带病毒率为63.5%。取RT-PCR检测为阳性的13个样品,在温室汁液摩擦接种草本指示植物西方烟,对该病毒的生物学特性进行了分析,大部分样品的病毒分离物在西方烟叶片上表现褪绿斑点或褪绿斑、坏死斑或坏死线或网状褪绿纹。从上述样品中选取5个分离物,接种不同的草本鉴别寄主植物,以明确其寄主范围。5个分离物在昆诺藜、心叶烟、本氏烟和克利夫兰烟上均产生明显的症状,但分离物间在症状出现时间和症状类型上存在一定的差异。在昆诺藜上症状表现最早,本氏烟和克里夫兰烟次之,心叶烟最晚。5个分离物在昆诺藜上均产生褪绿斑或斑点;在心叶烟主要产生褪绿斑;在本氏烟上主要产生褪绿斑点;在克里夫兰烟上只有个别分离物在叶片上产生边缘浅黄色,中间绿色的环斑;在千日红叶片上有不规则的凹陷的白斑;在苋色藜上没有明显症状。而心叶烟和苋色藜的ASPV检测结果为阴性,其他草本植物的ASPV检测结果为阳性。以上结果表明,ASPV可以侵染昆诺藜、本氏烟、克利夫兰烟和千日红。取症状表现明显的两个分离物进行了致死温度的测定,接种后观察症状表现发现两个分离物在处理55℃时仍表现症状,而在处理58℃和高于58℃的温度时都不表现症状,可以初步推测该病毒的致死温度为58℃。