首页 <
知识图谱:全部
-
报告Review of the Research Advances of Biocontrol Factor of Plant Parasitic Nematode
出版时间:2007植物寄生线虫是重要的植物病原物,全世界已报道的植物寄生线虫达200多属5000余种[1],我国粗略统计到2005年底报道的植物线虫约有40属,400种[2]。植物寄生线虫不但为害植物根部,而且还为害茎、叶、花和果实。据估计全球每年因植物寄生线虫造成的经济损失达1000亿美元[3]。植物寄生线虫的生防因子包含天敌(真菌、细菌、病毒、立克氏体、捕食性线虫、涡虫、螨类、昆虫和原生动物等)、动植物、微生物等[4]。1917年美国的Cobb最早提出植物寄生线虫的生物防治,1924年Thorne在美国犹他州将捕食性线虫Iotonchus amphiogonicusy引入甜菜地中并获得成功。其后,各国学者做了大量工作,到20世纪70年代,又开始研究利用捕食线虫防治植物寄生线虫,在法国Cayrol及其合作者利用Arthrobotrys robusta和A.irregularis首先研制成功防治蘑菇栽培中的有害线虫和蔬菜根结线虫的商品制剂Royal 300[5]和Royal 350[6]。从20世纪80年代开始,国内外开始大量调查定殖于固着性线虫卵、雌虫、胞囊上的真菌,国际马铃薯中心组织了40多个国家和地区的专家对Paecilomyces lilacinus进行了防治根结线虫的试验并取得一定结果[7],Paecilomyces lilacinus被研制成商品制剂应用于根结线虫的防治[8]。90年代之后,植物寄生线虫的生防资源挖掘工作大量增加,新的生防因子不断被发现。据统计,关于线虫生物防治的文献中,以真菌为材料的占76%,捕食性线虫占7%,细菌和放线菌占5%左右,其余在3%以下[9]。目前,国内外发现的线虫生防因子主要包括以下几种类型:植物寄生线虫生防真菌包括捕食性真菌、线虫内寄生真菌、卵寄生真菌、产毒真菌、菌根真菌、机会真菌。研究较多的有寡孢节丛孢(Arthrobotrys oligospora)、指状节丛孢(A.dactyloides)、淡紫拟青霉(Paecilomyces lilacinus)、黑曲霉(Aspergillus niger)、木霉属(Trichoderma spp.)、尖孢镰刀菌(Fusarium oxysporum)以及担子菌中的粗皮侧耳(Pleurotus ostreatus)等[10]。应用于植物寄生线虫的生防真菌有:节丛孢属(Arthrobotrys)的A.irregularis,A.robusta,A.conoides,A.oligospora,A.dactyloides[11]等;单顶孢霉属(Monacrosporium oudemans)的椭圆单顶孢M.ellipsosporium[12];指状节丛孢A.dactyloides[13]。其中不规则节丛孢(A.irregularis)已经制成了商品制剂Royal 300和Royal 350。目前报道的线虫内寄生真菌主要有被毛孢菌(Hirsutella rhossiliensis=Hirsutella heteroderea)[14]和Hirsutella minnesotensis[15]。轮枝霉属(Verticillium)的8种:V.catenulatum,V.chlamydosporium(厚垣轮枝孢),V.sinensis(中国轮枝孢),V.lamellicola(菌褶轮枝霉),V.leptobactum,V.lecanii(蜡蚧轮枝霉),V.psalliotae(蘑菇轮枝霉),V.inseatorum。还有Drechmeria coniospora等[11]。我国已用厚垣孢普可尼亚菌(Pochonia chlamydospora)ZK7菌株制成了“线虫必克”商品制剂。目前研究最多的是淡紫拟青霉Paecilomyces lilacinus。该菌是一类广泛存在的线虫卵寄生土壤真菌。不少研究表明,淡紫拟青霉可以寄生根结线虫Meloidogyne spp.[16]、胞囊线虫Heterodera spp.等植物病原线虫的卵[17],对南方根结线虫卵的寄生率高达60%~70%[7]。刘畅在18℃和25℃条件下,室内测定厚垣轮枝菌V10菌株对南方根结线虫卵的寄生效果,结果表明,在18℃和25℃条件下,V10菌株对南方根结线虫卵的相对寄生率分别为77.22%、73.00%[18]。除寄生作用外,Cayrol等还报道了淡紫拟青霉的培养滤液中含有杀线虫物质。目前,该菌株已被各国学者广泛应用于线虫的生防并成为商品制剂[19]。目前发现的有90多个杀线虫菌物毒素,其中包括担子菌、子囊菌、半知菌中的部分菌物产生杀线虫的毒素。1984年Thorn&Barron报道了侧耳属真菌的5个种具有侵染和消解线虫的活性,1987年他们证明了侧耳属侵染线虫的机制是通过产生毒素作用于线虫,向红琼等的研究也认为糙皮侧耳对腐生线虫的作用机制是杀虫寄生。到目前为止,已经证明侧耳属的P.ostreatus,P.pulmonarius,P.tuberregium,P.strigosus,P.subareo latus,P.cornucopiae,P.cystidiosus,P.citrinopileatus,P.colombinus,P.shodophyllus,P.salmon seostramineus,P.sapidus,P.sajorcaju,P.florrida,P.flabellatus,P.dryinus,P.euosmus,P.eryngii,P.levis,.ferulae,P.spodoleucus,P.memberan cens,P.certicautus等23个种对线虫有活性。汪来发等对草皮侧耳属真菌对松材线虫的作用也进行了初步研究。在对线虫抑制活性的测定中,经过测定的该属的不同种都对线虫有活性,但还没有活性显著强于其他种的优势种,毒力高、活性强的菌株都分属于不同的种[20]。在菌根真菌的研究中,最为关注并被研究最多的是丛枝菌根Arbusculare Mycorrhiza 简称为AM。据报道AM真菌对Globodela rostochiensis,Meloidognearenaria,M.incognita,M.javanica,Heterodera cajani,H.glycines,Helicolylenchus dihstera,Pratylenchus subrachyurus,P.pene-trans,P.zeae,Potylenchulus reniformis,Radopholus citrophilus,R.semilis,Tylenchulus semipenetrans等引起的花生、大豆、蚕豆、鹰嘴豆、棉花、燕麦、番茄、黄瓜、马铃薯、桃、葡萄、柑橘等各种线虫病害,都能不同程度地降低其为害[21]。机会真菌是可以寄生线虫的卵、胞囊或雌虫的一类真菌,有的学者把这种菌物称为机会真菌。对此类真菌的侵染机制已进行了超微结构观察和分子机制研究[22]。Chen和Dickson对12种真菌对大豆胞囊线虫卵的侵染做了扫描电镜和透射电镜观察,其中10种能够侵染[23]。Galper等报道,Cuninghamella elegans可以产生胶原蛋白酶,其菌物在胶原蛋白培养基上的培养滤液可以抑制爪哇根结线虫卵的孵化,影响幼虫的活动和侵入[24]。1982年Zavaleta-Mejia和Van Gundy首次报道了根际细菌对番茄和黄瓜根结线虫侵染的抑制作用,随后Becker在1988年报道了根际细菌对南方根结线虫的防治作用,Jaworski等于1986年将2株对根结线虫具有防治作用的荧光假单胞Pseudomons fluorescens申请了专利。2001年据Copping报道,美国CCT Corp.公司用洋葱假单胞菌Pseudomonas cepacia制成了杀线剂“Deny”。到目前为止,发现有效的根际拮抗细菌有Pseudomons spp.,Bacillus spp.,Agrobacterium radiobacter,Gluconobacter spp.,Sporolactobacillus spp.,Serratia spp.,Acinebacter spp.等,这些根际细菌的作用机理和应用技术都在进一步的研究中 [25]。1906年美国线虫学家Cobb首次报道了巴氏杆菌Pasteuria penetrans对线虫的寄生作用。1996年,Ebert等从水蚤上重又分离到细菌寄生物P.ramosa,并以此作为巴氏杆菌的模式种。现今报道巴氏杆菌可根据其寄主类型及内生孢子分为4个种,即水虱寄生菌P.ramos、根结线虫Meloidogne spp.成虫上的寄生物P.penetrans、仅寄生短体线虫Pratylenchusbrachyurus的P.thornei及可以寄生胞囊线虫Heterodera spp.、球形胞囊线虫Globodera spp.成虫的P.nishizawae。另外有两个未鉴定的种:从德国豌豆胞囊线虫上分离的菌株和从佛罗里达长尾刺线虫上分离的菌株[26]。鉴于巴氏杆菌具备生防菌的诸多优良性状,许多国家和地区都十分重视对该菌的研究。我国在这方面起步较晚,相关研究虽然取得了很大进展,但距离开发成商品制剂还有许多工作要做。苏云金杆菌是一种广谱微生物杀虫剂,它的最大的优点就是能够形成芽孢的同时,也能够形成不同形态且具蛋白性质的伴孢晶体。苏云金杆菌(BT)目前已广泛应用于鳞翅目害虫的防治。1990年Davidas报道,苏云金杆菌β-外毒素对南方根结线虫、大豆胞囊线虫有毒杀作用[27]。放线菌和真菌、细菌一样,是植物寄生线虫的重要天敌类群之一。尽管对放线菌研究很少,但阿维菌素及其衍生物的研究和开发利用是少数成功例子中典型的一个。我国于20世纪80年代末引进和分离到阿维菌素产生菌。1994年由中国农业大学和上海农药研究所等单位开发成功首个AVM产品—北农爱福丁,到2003年6月登记的AVM产品品种达到658个。近30年来国内外陆续发现了莫比霉素(Milbemycin)、戒台霉素(Jietaicin)、阿维菌素(Avermectin)、南昌霉素(Nanchangmycin)等高活性杀虫杀线虫抗生素[28~29]。病毒作为植物寄生线虫的天敌因子研究甚少。迄今为止发现的受病毒感染的线虫只有6种:南方根结线虫Meloidogyne incognita、鼠膀胱线虫Trichosomoides crassicauda、异头锥线虫Dolichodorus heterocephalus、食蚊罗索线虫Romanomermis culicivorax、马氏矮化线虫Tylenchorhynchus martini、Thaumamermis cosgrovei等 [30]。1973年Shepherd等首次报道豌豆胞囊线虫Heterodera goettingiana和马铃薯金线虫Globodera rostochiensis体内存在有立克次氏体,从而证实立克次氏体是线虫的致病因子。1979年Endo也报道大豆胞囊线虫Heyerodera glycines细胞受到立克次氏体的感染。尽管30多年前就证实立克次氏体能够感染胞囊线虫,但利用立克次氏体进行植物寄生线虫的生物防治至今未见报道。研究发现,一些植物能产生对线虫的行为和发育有较强影响的物质,最终可引起线虫死亡,或干扰卵孵化、蜕皮和激素调控,作用方式也多种多样。目前已知约有75科植物含有杀线虫物质,其中菊科和豆科植物是研究最多的杀线虫植物。非洲万寿菊(Tagetes erecta)的根部、叶部提取物都表现明显的杀线虫活性或抑制卵孵化。日本杉(Cryptomeria japonica)的叶片对南方根结线虫有显著防效[31];毛鱼藤(Derrielliptica)根有极强杀线活性,三尖杉(Cephalotaxus fortunei)茎叶、粗榧(Cephalotaxus sinensis)树叶、狼牙刺(Sophora viciifolia)种子、紫斑牡丹(Paeonia suffruticosa var.papaveracea)茎的抽提物对南方根结线虫和水稻潜根线虫具极强的杀线虫活性[32]。众多研究表明,万寿菊是应用植物防治线虫的生防研究中使用最多的一种植物[33]。有机改良剂种类繁多,主要有壳质粗粉、植物残体及加工废料、绿肥、饼肥、堆肥和粪肥等。在有机改良剂防治根结线虫病方面国内外也有不少的报道,例如 Singh 等报道了不同植物饼肥提取物对根结线虫卵孵化的影响,发现菜子饼和棉子饼的水煮提取物可降低孵化率 90%以上[34]。本课题组研究了不同植物有机质对黄瓜根结线虫病的防治效果。盆栽试验结果表明:蓖麻叶、麦糠、楝叶和花生饼粕对黄瓜根结线虫病防治效果分别达到70.44%、68.17%、56.09%和54.92%;田间小区的试验结果与盆栽试验结果基本一致,防效较好的有麦糠、楝叶、蓖麻叶和菜籽饼粕4个处理,防效分别达到71.55%、69.99%,63.14%和62.19%[35]。刘辉志研究发现将不同有机改良剂及其生防菌混用,可以提高防治效果[36]。捕食性线虫一直是国内外线虫学家关注的重点之一,其中最重要的属有Odontopharynx,Butlerius,Onchulus,Mononchuus,Ironus,Labronema,Aporcelaimus,Sectonema,Actinoloaimus,Carcharolaimus和Nygolaimus。此外Discolaimium,Discolaimus,Eudorylaimus,Tripyla中的一些种也捕食线虫。捕食性线虫在土壤中分布广、数量大,Rahaman 和Ahmad从90个土壤样品中分离的64个种中,捕食线虫占第二位,并且Aporcelaimellus密度大,数量多[37]。捕食性节肢动物的研究也很广泛,可取食植物线虫的节肢动物主要有4种功能类型:①普通捕食者:主要有吸食猎物的螨、捕食猎物的蜈蚣、Symphylan也在此列;②线虫捕食者:主要有螨类如犹伊螨属(Eviphis)、异伊螨属(Alliphis)、Crasscheles三类吸食体液的螨类以及Alycus和无爪螨属Alicorhagia;③吸食真菌或线虫体液者:如Tydeus,Eupodes,Tarsonemus,Bakerdania,Pediculaster,Scutacarus,Speleorchestes等;④摄取线虫某一部分:如Oribatula,Zygoribatula,Pilogalumna,Tyrophagus,Folsomia,Isotoma,Oppiella,Joshuella,Ceratocepheus,Anotylus,Tullbergia,Hypogastura 等 [38~39]。经过国内外植物寄生线虫研究工作者的共同努力,植物寄生线虫的生物防治研究取得了很大成就,大量的生防资源被挖掘出来并进行了深入研究,一些生防因子也已被开发利用,除广泛使用的阿维菌素(AVM)和线虫必克外,还有防治蔬菜根结线虫的Pasteuria penenteans;防治植物根结线虫和胞囊线虫的Paecilomyces lilacinu,Pochonia chlamydosporia;防治大豆胞囊线虫的不产孢真菌(ARF18);防治植物寄生线虫的Myrothecium verrucaria和H.rhossilienesis,防治松材线虫的植物杀线剂杀线一号等。线虫分子生物学技术近年来也取得长足发展,尤其是在线虫生防资源调查、高效生防菌株的选育、基因改良、菌剂研制、抗病育种及线虫与植物的互作等研究领域得到广泛应用[11]。此外,其他一些相关的研究方法和评价办法也日臻成熟,这些都为我们进一步开展更深入和更广泛的研究奠定了良好的基础。在植物寄生线虫的生物防治研究中,存在的突出问题主要是:(1)在生防因子方面,筛选出的生防因子主要是真菌,而细菌和放线菌很少,并且在植物寄生线虫的生防因子的作用机制研究方面还较匮乏。(2)所开发出的生防制剂仍然存在稳定性差、自然条件下存贮时间短的问题,并且剂型单一,推广应用难度大。(3)优良菌株筛选模型和评价体系不完备。优良菌株筛选模型和评价标准是植物寄生线虫生物防治及生防制剂开发的基础,但至今国内外仍然没有统一的、科学的筛选模型和评价标准,尤其是生防制剂的安全评价标准。(4)在杀线植物、杀线植物产品和有机改良剂利用研究方面仍较少,一些植物病原线虫如禾谷胞囊线虫的生防研究仍较滞后。(5)在植物寄生线虫的生防微生物代谢产物的生防作用研究方面,国内外报道较少,如何利用微生物高活性代谢产物为模板,开发出更多的生物源杀线剂,仍是需要进一步深入研究解决的问题。运用有益生物防治植物病害,包括植物寄生线虫在内,是今后植物病害防治的重要手段。在自然界,线虫的天敌数量大、种类多、分布广,有着极大的生防潜力;杀线虫植物在自然界也广泛存在。国内外学者虽然对植物寄生线虫的生物学、生态学、生防因子等方面进行了深入研究,并开发出一些生防制剂,但在植物寄生线虫的生防因子的作用机制研究方面还较匮乏,对筛选出来的生防因子进行产品开发和利用技术研究还相对滞后,致使能够在生产中应用的生防产品还相对较少,而且效果不够稳定。今后需要重点研究解决的问题包括土壤的抑菌作用问题、生防菌的风险评估、生防制剂的质量评价标准和体系问题等。在生防制剂的开发和应用技术研究方面,应投入更多人力物力进行攻关,有关研究单位应加强合作和交流。此外,在利用微生物高活性代谢产物为模板,开发生物源杀线剂,对杀线植物的调查和挖掘工作也需进一步深入开展。 -
报告Preliminary Studies on the Effect of Coniothyrium minitans ZS-1 on Sclerotinia sclerotiorum Hypovirulent Strain Ep-1PN
出版时间:2007真菌病毒广泛存在于真菌中,其核酸类型多为dsRNA,也有少数为ssRNA。大多数真菌被侵染后不表现症状,但有些真菌病毒可以对寄主造成显著影响,如引致寄主真菌生长缓慢、菌落形态异常和致病力显著下降等,即弱毒现象(Hypovirulence)。由于真菌病毒在植物病原真菌间扩散可导致病原真菌群体出现致病力衰退。因此,与植物病原真菌衰退相关的真菌病毒在植物病害控制中有重要的作用。前期研究证实核盘菌Ep-1PN菌株的衰退与真菌病毒SsDRV(核盘菌致病力衰退相关病毒)有关。但是我们发现Ep-1PN菌株可以通过有性繁殖摆脱SsDRV的为害,而恢复生长和致病,通过RT-PCR检测,Ep-1PN菌株的子囊孢子子代不携带有SsDRV;在Ep-1PN菌株的菌核分离物中,也可以获得恢复正常表型的培养物,这些培养物或携带SsDRV或不携带SsDRV。这即表明,在自然界感染真菌病毒(SsDRV)的核盘菌仍然有可能摆脱SsDRV的影响。带毒真菌的这种脱毒作用对利用真菌病毒控制植物病害造成了潜在的风险。植物病原真菌周遍存在众多的微生物,它们是否对带毒真菌的脱毒作用目前并不明了。盾壳霉(Coniothyrium minitans)是核盘菌的重寄生菌,其所需的适宜温度与核盘菌的相似,随核盘菌生长而生长。我们推定盾壳霉可能对Ep-1PN菌株的脱毒作用存在一定影响。将核盘菌Ep-1PN菌株在PDA平板上于20℃培养2~4天后,形成小菌落,移走菌落中接种时遗留的Ep-1PN菌株的菌丝块,并在此部位接种盾壳霉ZS-1菌株的菌丝块,继续置于20℃培养7~10天。依据混合菌落边缘的特征将其分成4种类型:A.菌落边缘长出生长速度较快的核盘菌菌丝,出现的频率为16.3%;B.菌落边缘大部分是类似核盘菌Ep-1PN菌株的菌落,出现的频率为47.1%;C.菌落边缘大部分是盾壳霉ZS-1菌株菌落,出现的频率为28.8%;D.菌落边缘全部是ZS-1菌株的菌落,出现的频率为7.7%。对A型菌落,挑取核盘菌菌丝尖端进行继代培养。随机选择34株进行表型分析,测定其菌丝生长速度、致病力和观察其菌落形态。结果表明这些继代培养物均恢复为强毒力菌株的特性,称恢复菌株。这些恢复菌株的菌落形态正常、生长速度在1.7~3.0cm/天,其中17株培养物集中于2.2~2.4cm/天,8株培养物的生长速度大于2.4 cm/天。它们的致病力较强,病斑扩展速度在1.0~1.4cm/天之间,其中16株培养物的病斑扩展速度在1.15~1.3cm/天之间,有9株培养物的扩展速度大于1.3cm/天;而Ep-1PN菌株仅能形成微小的病斑,或不形成病斑。这些恢复菌株对SsDRV不具有抗性,与Ep-1PN菌株对峙培养后又重新被感染表现弱毒特性。对这些恢复菌株提取dsRNA发现大部分含有7.4 kb的片段,小部分菌株同时含有7.4kb和6.4kp的片段,还有一部分未检测出含任何dsRNA。未发现含有1.0kb或仅含6.4 kb,但不含7.4 kp片段的培养物。我们的研究证实核盘菌寄生真菌盾壳霉对Ep-1PN菌株摆脱SsDRV的影响具有一定的促进作用,盾壳霉促进Ep-1PN菌株摆脱SsDRV的影响的机理有待进一步研究。 -
报告生物土壤添加剂减轻黄瓜连作障碍的机制初探?
出版时间:2007黄瓜连作障碍的主要症状为根系生长受到抑制,吸收养分能力减弱,枯萎病等土传病害严重发生。导致黄瓜连作障碍的原因主要是土壤养分供应失衡,土壤中病原微生物、根结线虫增多,根系残茬及病原微生物产生的有毒物质积累。尽管连作障碍产生的原因很多,但主要原因来自土壤,其中微生物种群结构失衡是导致作物减产、土壤质量下降的主要原因之一。将丛枝菌根真菌,作为缓解连作障碍的有益菌株,利用筛选的合成有机物或菇渣为营养,与培养好的拮抗木霉制剂一起合成生物土壤添加剂,结合太阳能消毒土壤,从改善土壤养分促进养分吸收,抑制土传病害、分解或转化自毒物质,诱导抗性物质等方面,减缓连作障碍的发生。本研究组配制的生物土壤添加剂已在盆栽黄瓜和连作温室内应用,表现较好的抑菌防病作用。有必要对生物土壤添加剂克服黄瓜连作障碍的防病机制,特别是土壤微生物群落变化和诱导抗病性进行系统深入全面的研究。明确其促进植株生长,抑菌防病的机制,为合理利用生物土壤添加剂减轻连作障碍提供理论依据。供试生物土壤添加剂(Biologic soil amendment BSA)为天津市农业科学院植保所研制的一种由有机物、无机物及生防木霉菌和VA菌剂组成的混合物。生物土壤添加剂中含有机发酵肥60%以上,木霉菌剂的孢子数达106cfu/g,VA菌剂孢子20个/g,具有改良土壤,抑制病害的作用。木霉菌剂(Tr9801)为菇渣培养物含量为107cfu/g。黄瓜品种:津春2号,经25℃催芽露白后挑选发芽一致的种子播于营养钵内。供试土壤采自天津郊区北辰区日光温室,每年春秋两茬黄瓜,黄瓜枯萎病等土传病害严重发生的连作9年的重茬土。供试病原菌:黄瓜枯萎病菌(Fusarium oxysporum f.sp.cucumerinum),天津市农业科学院植保所病害研究室保存。将F.oxysporum用PDA液体培养基25℃ 培养1周后,血球计数板镜检,将孢子悬浮液调整为106cfu/ml,备用。生物土壤添加剂分别按1%、3%、5%与土壤搅拌混匀,每营养钵装土400g,以不加添加物的连作土为空白对照。用枯萎病菌的孢子悬浮液浸泡已催芽的黄瓜种子30s,每钵3粒种子,每处理12盆,3次重复。播种后7天、14天、21天、28天调查黄瓜根际土壤微生物数量及区系。取根部样品,自来水强力冲洗后,用滤纸吸干,装入保鲜袋,放入-20℃低温冰箱中保存。土壤中微生物的分离采用土壤稀释分离法。土壤和根际真菌、放线菌、细菌分别以10-3, 10-5,10-7的稀释浓度,分别采用马丁氏培养基、改良高氏一号培养基和牛肉膏蛋白胨培养基进行分离。在26℃,28℃,30℃培养箱内培养6天、8天、10天,统计平板上的菌落数。对优势菌属进行鉴定并用平板对峙培养法测定对黄瓜枯萎病菌抑菌作用。不同处理根系的酶活性测定,过氧化物酶POD活性的测定,采用愈创木酚法;多酚氧化酶PPO活性的测定,参照朱广廉的方法,采用邻苯二酚为底物,测定525 nm处的OD值,以每分钟OD值变化0.001为1个酶活单位U;根系脱氢酶采用TTC法。根系酚类物质含量的测定参照Folin 试剂比色法。施用生物土壤添加剂后各种微生物数量明显上升,各处理间真菌数量变化不大,细菌数量明显增加。随施着用量增加,根际微生物总量呈上升趋势,细菌数量增多,放线菌的数量也呈上升状态。细菌和放线菌数量较对照增幅较大,真菌变化相对较小。各处理土壤细菌的优势菌株主要为假单胞菌属和芽孢杆菌属的不同菌株。枯草芽孢杆菌、假单胞菌可以拮抗黄瓜尖镰孢菌(Fusarium oxysporum),可减少土壤中的病原菌。真菌主要为半知菌类,是土壤中常见的类群,不同处理产生的真菌类群主要为木霉菌,其次是青霉菌、毛霉属、根霉属、镰孢霉属及曲霉属,其他菌属所占比例较少。优势菌中的青霉、木霉和毛霉对黄瓜枯萎病菌有不同程度的抑菌作用。土壤放线菌主要为链霉菌,其中优势菌为黄孢类群、灰褐类群、白孢类群及粉孢类群,放线菌大多可以分泌抗生素抑制病原真菌,添加剂处理中黄孢类群、灰褐类群较对照增加,并且这两类菌株对黄瓜枯萎病镰刀菌有较强的抑制作用。在接种后第7天达到酶活性高峰,随着病原菌的侵染,POD酶活性下降,生物土壤添加剂的各处理显著高于对照。根系PPO活性随着添加剂施用量的增加呈现上升,在接菌后7天出现明显的酶活高峰,之后各处理逐渐下降,添加剂各处理的酶活性一直高于仅接枯萎病菌的对照。根系脱氢酶的活性随着施用量的增加其活性增强,随着病菌的侵入各处理的根系活力均有所下降。植株根系防御酶系POD酶及PPO酶活性变化与生物土壤添加剂的抗病性有直接关系,即抗病性越强,其植株内这两种酶的活性越高。酶活性含量越高,变幅越小,其抗性越强。生物土壤添加剂的应用显著提高了根系脱氢酶的活性。增强了根主动吸收的能力,有利于植株的生长。在病原菌的侵入期至潜育期总酚含量逐渐下降,但施用添加剂处理其酚类含量始终高于对照,这可有效阻止病原菌的入侵,植株开始发病时,根系酚类物质含量显著增加。酚类化合物是由植物体内自身合成的一些具有抗菌作用的次生代谢物质。酚类物质在植株体内的含量会受到外源病菌的侵入而发生相应的变化。与启动自身防御体系有关,以此来抵抗病原菌的侵害。生物土壤添加剂防病机制复杂,还有待进一步研究。既有土壤微生物的调节作用,又有添加物的诱导抗病性。生物土壤添加剂对连作障碍的防治作用可归为:①土壤中有益微生物对土传病原菌的拮抗作用增强。②土壤添加剂中含有丰富的营养物质及多种微量元素,可以补充作物生长的需要,促进根系的发育,增强植株的抗病性。③施用添加剂后,改善了土壤微生物的营养条件,提高了土壤微生物多样性,从生态水平上缓解了连作的发生。④生物土壤添加剂具有诱导抗病性,可以诱导植株体内与抗病有关的POD酶、PPO酶及根系脱氢酶的活性,提高植株体内抗病物质酚类化合物的含量。⑤生物土壤添加剂中的一些有机物对土传病原菌具有抑制作用。 -
报告Inhibition of A New-type Bioagent“luye”to Primary Postharvest Pathogens
出版时间:2007植物生产在产前、产中、产后都受到环境条件和病原微生物及附生微生物的影响,在适宜的条件下植物及其产品都会产生病害,严重影响到植物及产品的产量和品质。联合国在1975年第七次特别会议就通过一项采后损失的决议,来要求一些国家重视减少采后损失的问题。但化学防治也带来了一系列生理生态问题,如农残、药害等现象得到了人们的充分重视,绿色食品、有机食品成为人们的关注对象。生物防治在这种情况下应时而生。为了生产“绿色食品”的需要,安徽省农业科学院绿色食品研究所在研制对人体无毒的植物源农药、兽药,获得了实验室产品“绿液”。“绿液”在动物上对鸡新城疫I系病毒、马立克氏火鸡疱疹有良好的防治效果;在医药上,对格兰氏阴性菌、格兰氏阳性菌、链球菌、乳杆菌、大肠杆菌、兼性厌氧菌,口腔中的梭杆菌、牙龈卟啉单胞菌、小韦荣氏球菌、放线菌、罗氏普氏菌、产黑普氏菌均具有杀灭作用。此外,对乙肝病毒中的HBSAg具有灭活作用,对菱孢774亦有抑制作用;在植物上对水稻白叶枯病、稻瘟病、烟草花叶病毒、芫菁花叶病毒均有防治效果,在食品上对酵母菌、黄曲霉菌、黑曲霉菌均有抑制作用。为此,本文研究了生物制剂“绿液”对采后主要病原菌的抑制作用,以期为采后病害防治提供新途径。“绿液”,由安徽省农业科学院绿色食品研究所提供。苹果轮纹菌(Physalospora piricola Nose),苹果炭疽菌(Gloeospirium fructigenum Berk),青霉菌(Penicillum sp.),草莓灰霉菌(Botrytis cinerea),黄曲霉菌(Aspergillus flavus),由安徽农业大学植物保护学院提供。将“绿液”原液分别配成一定浓度的母液,然后分别吸取2ml至培养皿,把冷却到45~50℃的PDA培养基18ml加入含药剂的培养皿中,混匀凝固,配成相应浓度分别为0.10μg/ml、0.33μg/ml、0.65μg/ml、1.00μg/ml、3.33μg/ml、6.54μg/ml、10.00μg/ml、100.00μg/ml和1000.00μg/ml的含药平板。每皿移接一枚直径为0.6cm的供试病原菌的菌碟于其中央,置25℃光照培养箱中培养,重复3次,逐日定时定点在菌丝生长前沿划线,按十字交叉法测定菌落直径。计算药剂对菌丝生长的相对抑制率。按最小二乘法求回归式,计算EC50。结果见表1。可以看出在低浓度下,苹果轮纹菌、苹果炭疽菌、青霉菌、黄曲霉菌的菌丝生长抑制率都为负值,苹果轮纹菌在“绿液”浓度为1.00μg/ml时,才对苹果轮纹菌有抑制作用;苹果炭疽菌在“绿液”浓度为0.65μg/ml时,才对苹果炭疽菌有抑制作用;烟青霉菌在“绿液”浓度为0.65μg/ml时,才对青霉菌有抑制作用;黄曲霉菌在“绿液”浓度为0.65μg/ml时,才对黄曲霉菌有抑制作用。从而说明“绿液”在低浓度下对苹果轮纹菌、苹果炭疽菌、青霉菌和黄曲霉菌有促进生长的作用,在高浓度下才有明显的抑制作用。相比较而言,“绿液”对草莓灰霉菌的抑制效果最好,在低浓度下就能抑制草莓灰霉菌的菌丝生长。在高浓度下,“绿液”对苹果轮纹菌、苹果炭疽菌和草莓灰霉菌的抑制效果最好,在“绿液”浓度为100μg/ml与1000μg/ml时对苹果轮纹菌、苹果炭疽菌和草莓灰霉菌的抑制率达到100%;而对烟青霉菌和黄曲霉菌是抑制作用就相对较差,在“绿液”浓度为1000μg/ml时对烟青霉菌的抑制率为50.6%,对黄曲霉菌的抑制率为54.0%。结果见表2。“绿液”对草莓灰霉菌的抑制效果最好,EC50为2.18μg/ml;对苹果炭疽菌和苹果轮纹菌抑制效果较好,EC50分别为3.97μg/ml和7.39μg/ml;“绿液”对青霉菌和黄曲霉菌的抑制效果也较差,EC50分别为982.06μg/ml和472.79μg/ml。浓度(μg/ml)苹果轮纹菌苹果炭疽菌烟青霉菌草莓灰霉菌黄曲霉0.10-23.3-2.60-6.801.00-10.80.33-18.5-0.70-3.101.90-4.300.65-9.603.707.409.205.401.008.9011.011.711.210.23.3317.034.112.345.018.36.5423.759.719.891.023.410.0023.779.927.295.128.1100.00100.0100.029.0100.032.41000.00100.0100.050.6100.054.0表1 不同浓度对各菌种的菌丝生长的抑制率菌株回归方程相关系数EC50(μg/ml)苹果轮纹菌Y=2.5992lgx+2.74120.91417.39苹果炭疽菌Y=2.4640lgx+3.52530.99193.97烟草青霉菌Y=0.4198lgx+3.74390.9623982.06草莓灰霉菌Y=2.1732lgx+4.26460.98482.18黄曲霉菌Y=0.4709lgx+3.74050.9540472.79表2 绿液对不同病原菌的毒力作用从试验结果可以看出,“绿液”对草莓灰霉菌、苹果轮纹菌和苹果炭疽菌的作用效果明显,EC50分别为2.18μg/ml、3.97μg/ml和7.39μg/ml;而对烟草青霉菌和黄曲霉菌的抑制作用最差,在“绿液”溶液浓度为1000μg/ml时对青霉菌的抑制率才达50.6%,对黄曲霉的抑制率达54.0%。此外“绿液”溶液在低浓度的时候对苹果轮纹菌、苹果炭疽菌、烟青霉菌和黄曲霉菌的菌丝生长不仅没有抑制作用,还对其菌丝有促进生长的作用。因此,在应用“绿液”时应注意浓度的使用。“绿液”在低浓度下对病菌生长的促进作用以及在较高浓度下对病菌的抑制作用机理有待于深入研究。 -
报告早春保护地薄皮甜瓜苗期病害的发生与防治?
出版时间:2007甜瓜为一年生草本植物,按其生态形分为薄皮甜瓜和厚皮甜瓜。济宁市种植薄皮甜瓜具有悠久的历史,但大面积集中栽培还是在近些年随着农业产业结构的调整而发展,目前仅在任城区、金乡县、鱼台县西部、嘉祥县南部保护地种植面积就达5万余亩,成为山东省最大的薄皮甜瓜种植基地。随着种植时间的延长和种植面积的不断扩大,甜瓜病害不断加重,特别是苗期病害,由于甜瓜多采用大棚育苗,育苗时间一般在1月下旬,常常遭遇低温,棚内温湿度不宜控制,病害容易发生,经常因防治不当,苗床大量死苗或移栽后造成大量死亡,若控制不力,将会对甜瓜的发展带来严重危害。几年来笔者针对为害较大的甜瓜苗期病害的发生及防治进行了试验研究,目的在于了解、掌握该类病害的发病特点和防治方法,进行经济有效的防治。已有国内外学者对该类病害进行了研究,特别是对露地栽培条件下的发生与防治研究较多[1~4],而对保护地苗床期的发病特点和防治方法却少见报道。1.1.1 症状 发病初期,出土幼苗茎基部出现水烫状病斑,继而病斑逐渐加深为淡黄褐色,同时绕茎扩展,病部缢缩呈细线状,幼苗因失去支撑而折倒,刚折倒的病苗子叶短期内仍为绿色。发病严重时,种子未萌发或刚发芽时,即受病菌侵害,造成烂种、烂芽。湿度大时,成片幼苗猝倒,在病苗或病芽附近常密生白色棉絮状菌丝。1.1.2 病原菌 该病原菌为真菌Pythium aphanidermatum(Eds.)Fitsp.属鞭毛菌亚门,为瓜果腐霉菌。此外,甜瓜疫霉(P.melonis Katsura)和辣椒疫霉(Phytophthora capsici Leonian)等也可引起蔬菜幼苗猝倒病。1.1.3 传播途径和发病条件 病菌以菌丝体、卵孢子等随病残体在土壤中越冬,并可长期存活。遇有适宜条件,卵孢子萌发产生孢子囊,以游动孢子或直接长出芽管侵入寄主。田间病菌主要随水的移动、飞溅等进行传播蔓延。湿度大时,病苗上产生孢子囊和流动孢子,进行重复传染。低温高湿是猝倒病发生的必要条件。这是因为低温高湿不利于幼苗生长,但病菌仍能活动。一般猝倒病适宜地温为10℃左右。所以猝倒病多发生在早春育苗床上,尤其当幼苗期遇连阴天,光照不足,出现低温高湿环境,极易发生猝倒病。有的苗床开始发病时,是从棚顶滴水处的个别幼苗上先表现病症,几天后以此为中心,向周围蔓延扩展。该病也是甜瓜苗期的一种重要病害。据笔者几年调查,新苗床30%以上,老苗床50%以上可发现该病害。特别是老苗床,如不注意温湿度管理和及时防治,整个苗床可在几天基本死光,为害很大。是所有甜瓜种植区均能形成为害的一种病害。1.2.1 症状 刚出土的幼苗即可受害,以中后期发病为多。发病初期,病苗茎基部变褐,产生椭圆形病斑,叶片白天萎蔫,早晚尚可恢复。随病情发展,病斑渐凹陷、扩大,绕茎一周,叶片萎蔫不能复原,最后病部收缩干枯,病苗枯萎死亡。但病苗不呈猝倒状,病部有同心轮纹及淡褐色蛛网状菌丝。这一特点是本病与猝倒病相区别的主要特征。1.2.2 病原菌 该病原菌为真菌Rhizoctonia solani Kuhn.属半知菌亚门,为立枯丝核菌。该菌不产生孢子,主要以菌丝传播和繁殖。菌丝从无色变为黄褐色。病菌可产生菌核,菌核近球形或无定形,无色、浅褐色至黑褐色。有性阶段Pellicularia filamentosa(Pat.)Rogers.为丝核薄膜革菌。1.2.3 传播途径和发病条件 病菌以菌丝体和菌核在土中越冬,能存活2~3年。菌丝能直接侵入寄主,通过水流及带菌的堆肥传播为害。病菌生长适温为24℃。播种过密,间苗不及时,温度过高,易诱发此病。1.3.1 症状 该病害为一种生理性病害。幼苗出土后不长新根或不定根,幼根表面开始为锈褐色,尔后腐烂。沤根后地上部子叶或真叶呈黄绿或乳黄色,叶缘开始枯焦,严重的整叶皱缩枯焦,生长极为缓慢。在子叶期出现沤根,子叶即枯焦。在真叶期发生沤根,真叶就会出现枯焦。1.3.2 病因及发生条件 主要是苗床地温12℃以下持续时间较长,地势低洼、土壤黏重加之浇水过量或遇阴雨天气,苗床地温过低,致使幼苗根部呼吸作用减弱,活性降低。如此持续时间较长就会发生沤根。甜瓜育苗应选择土壤松而不散、黏而不硬、通气透水性良好、保肥保水力强的壤土新地或轮作3~5年的无病地育苗,大棚苗床必须选用无病土育苗。如用连作地或病地土壤,则苗床需深翻或用药剂消毒,常用50%福美双可湿性粉剂与40%五氯硝基苯粉剂消毒,或50%多菌灵可湿性粉剂,每平方米苗床8~10g,与20~30kg细干土拌匀成药土,待苗床所浇底水渗下后,取1/3药土作垫土铺底,种子播下后再将其余2/3药土覆在种子上,播后保持床面湿润;或将以上药土制成营养钵,再播种育苗。应用该方法进行防治,两年平均防治效果达到88.63%,实践证明这是一种经济有效的防治方法,可以兼治甜瓜猝倒病和甜瓜立枯病。加强苗床管理应以促进幼苗健壮生长,提高地温、降低苗床湿度为中心。为给幼苗创造良好生长条件,增强抗病能力,育苗前选用土质肥沃,不积水的苗床,施足优质腐熟有机肥,采用营养土育苗;提供使用无土育苗基质进行育苗。播种前浇足底水,出苗后尽量不浇水或少浇水,播种要均匀,密度不宜过大,防止床土过湿。出苗后,如果后,如果苗床出现过湿情况,可用小锄划锄或撒施干草木灰,以降低湿度;早春采用大棚育苗,必须做好增温保温工作。为了有效增加苗床温度,可结合实际情况,选用地热线育苗或火坑育苗,以缩短苗期时间。苗床还要尽量多地增加光照,并且苗床的通风、降湿,尤其在连续阴天、光照不足时更要抓住时机通风降湿;苗床要早分苗,使苗健壮,提高抗病力。出苗后如有少量病苗时应立即挖除,移出苗床处理,并选择下列杀菌剂在病苗及全苗床喷雾防治:以猝倒病为主时使用72.2%普力克水剂400~600倍液,72%克露可湿性粉剂500~600倍液,70%百得富可湿性粉剂600倍液,64%杀毒矾可湿性粉剂500倍液,50%多菌灵悬浮剂500倍液,75%百菌清可湿性粉剂600倍液;以立枯病为主时使用20%甲基立枯磷乳油800倍液,70%甲基托布津800倍液,70%敌克松原粉1000倍液,50%福美双可湿性粉剂500倍液,64%杀毒矾可湿性粉剂500倍液,50%多菌灵悬浮剂500倍液,75%百菌清可湿性粉剂600倍液,每平方米苗床喷淋药液2~3L,视病情发展情况,间隔7~10天再喷一次;在瓜苗移栽定植前选择广谱性杀菌剂如百菌清、杀毒矾、代森锰锌、多菌灵等再喷雾一次,带药移栽定植。选用土壤疏松,透气、透水性好的田园土,施足优质腐熟有机肥或生物肥,采用营养土育苗,提倡使用无土育苗基质进行育苗,播种前浇足底水,出苗后尽量不浇水或少浇水,播种密度不宜过大,出苗后如果出现苗床过湿,可采用小锄划锄或撒施干草木灰,以降低湿度,白天温度控制在20~25℃,夜间15℃,最低应在12℃以上,如果苗床出现沤根,应立即控制浇水,采取各种降湿升温措施。除划锄或撒施干草木灰以外,还可用生石灰降湿除潮。方法是:选新烧制的生石灰,分散放入苗床小拱棚内,充分吸潮后,进行更换,但注意生石灰不能与瓜苗直接接触。 -
报告Application of Gene Expression Research Methods in Plant Pathology
出版时间:2007基因表达是基因在生物体内转录、翻译以及所有加工的过程,在真核生物中,约有10万个基因,而表达的基因只占基因组的15%左右,了解不同条件下细胞内基因表达的变化,可以帮助我们了解控制生命过程的机理[13]。对于植物来说,在植物不同的发育阶段和不同的环境条件下,基因的时空表达受到严密的调控。当植物受到病原物,如细菌、真菌、病毒、线虫等的侵袭时,植物体内存在防御机制,诱导相关基因表达,或者诱导相关基因表达量增加,产生次生代谢产物或表达抗性基因,从而抵御病原物的侵袭。因此研究植物基因表达变化水平对于揭示植物抗感病机理有重要的意义。在人类控制植物病虫害的措施中,抗病虫转基因植物是其中的重要手段之一,这样可以减少农药的使用,减少对环境的污染,并且符合可持续发展农业的要求,而基因表达分析又是其中必不可少的一步。它可以检测抗病虫基因能否高效的表达,以及能否在特定的发育阶段或者特定的组织器官中表达。基因表达研究方法有Northern杂交法、表达序列标签、mRNA差别显示技术、基因表达的系列分析方法和基因表达芯片等,本文对主要基因表达研究方法在植物病理学上的应用进行了简单概述。Northern杂交技术是用于测定真核生物RNA样品中特定mRNA分子的量和大小以及估计其丰度的技术,是研究基因转录产物的重要手段[14]。Northern杂交技术是在Southern技术的基础上建立起来的,具体的步骤是首先从要研究的组织或细胞中分离完整的mRNA,然后将RNA根据大小用变性琼脂糖凝胶电泳分离,再通过毛细管作用或负压法装置使RNA条带转移到纤维膜上,进行必要的处理后,用固相RNA与探针分子杂交,对特异结合的探针分子的图象进行检测、捕获和分析[15]。这种方法具有较高的特异性,主要是应用于检测特异rnRNA,以分析已知基因的表达情况。李子银等[16]根据已知植物抗病基因的保守区域设计引物,从抗稻瘟水稻品种窄叶青8号第一链cDNA和基因组DNA中扩增出3个与植物抗病基因同源的序列,利用Northern杂交技术,显示其中一个基因在水稻叶片、幼茎和根中均有转录。程志强等[17]利用已知的植物R类基因保守结构域,设计简并引物作为随机引物,分析水稻愈伤组织受白叶枯病菌诱导的mRNA表达丰度差异,获得3个差异片段。Northern杂交结果证实该片段受白叶枯病菌诱导表达,且在抗性品种中的诱导表达明显强于感病品种的诱导表达。黄萱等[18]根据已知植物抗病基因的保守结构域设计引物,从抗锈病小麦品种西农88基因组DNA扩增触3条与植物抗病基因同源的序列,通过Northern杂交表明其中一个同源序列在小麦中受水杨酸调控,属于诱导型表达的抗病基因。表达序列标签(EST)技术是由Adams等[1]提出的。典型的真核基因mRNA是由5’帽子,5’-UTR,编码区,3’-UTR,3’polyA尾巴五部分组成,其中5’-UTR和3’-UTR对基因具有特异性,3’或5’端的一段序列就可以表示在某种条件下基因的表达情况[19]。表达序列标签即在不同的组织构建的cDNA文库中,随机挑选不同的克隆,进行克隆的部分测序从而产生的cDNA序列。目前,已经建立了大量的EST数据库,可以根据不同时间,不同处理、不同组织,不同条件下EST数据的比对,鉴别特异表达的基因。但是,此技术对实验室的仪器、测序、经费等要求高。马金彪等[20]利用EST技术构建条锈菌诱导的小麦叶片cDNA文库,通过序列分析,了解小麦与条锈菌互作过程中表达的基因,为从分子水平揭示寄主与病原菌亲和互作机理奠定了理论基础。mRNA差别显示技术,又称差示反转录PCR(differential display of reverse transcriptional PCR),简称DDRT-PCR,它是将mRNA反转录技术与PCR技术二者相互结合发展起来的一种RNA指纹图谱技术。几乎所有的真核基因mRNA分子的3’末端都带有poly(A)尾巴,在RNA聚合酶的作用下,以mRNA为模板,以oligo(dT)为引物合成出cDNA链[21]。此技术的优点在于简单方便、灵敏度高,但同时它也存在局限性,如:假阳性比例高,可达50%~70%;扩增的片段分子量比较小;工作量大等[13]。mRNA差别显示技术最初是为动物研究设计的,但是从其原理来看,在植物基因表达的研究上也存在很大的潜力,可以应用于植物抗病基因的表达研究上,研究发现,抗病基因中很多都是多基因家族,这样的多基因家族在抗、感病品种中都存在,只是其中的成员有所不同,有的基因缺失,这可能就是造成抗病品种抗病、感病品种感病的原因。所以,可以应用mRNA差别显示技术分析比较抗病品种和感病品种的差异表达的基因,从而进行进一步的分析。黄旭等[22]通过外源DNA浸泡幼胚将普通野生稻(Oryza rufipogen)抗稻瘟系YD1005总DNA导入受体粳稻寒丰S(Oryzasativa ssp.japonica)育成一抗稻瘟病变异株(D1代),利用mRNA 差别显示技术分离得到一个原品种中没有的与抗稻瘟病相关的一个cDNA。饶志明等[23]人利用mRNA差别显示技术对水稻感病品系G71受苯并噻二唑诱导3天的应答反应进行分析,从抗病及其相关基因保守结构域设计的10个引物组合的反应中获得11个受BTH诱导的cDNA差异片段,进一步利用Northern杂交证实其中一个阳性片段的表达受BTH和稻瘟病菌的诱导。由于差别杂交技术、mRNA差别显示技术各有缺点,不能够提供全面的表达分析图谱,不能够全面系统的分析基因转录组。因此,在此基础上,1995年Velculesue等[2][3]描述了一种基因表达的序列分析技术(SAGE),该技术能快速详细的分析成千上万个转录子,能够全面的对基因组的表达进行分析,而无须依赖以前的转录信息。在一个转录物中,可以找到一段特异的序列,这个特异的序列就可以代表这个转录物,该序列即转录序列标签(SAGE标签),一般为9~10bp;SAGE 标签经随机连接、扩增并集中在1个克隆中测序,标签重复出现的次数代表该转录物的拷贝数。根据其占总标签数的比例即可分析出其所对应的编码基因的表达频率。SAGE是分析诱导表达的抗病基因的一种有效的方法,Matsumara等[4]应用SAGE 技术研究水稻在白粉病菌侵染后基因表达的整体变化,旨在发现与稻瘟病抗性相关的新基因;Mitchell 等[5]利用SAGE 方法对水稻与稻瘟病菌之间相互识别及病理反应进行全基因组分析,以了解与病原菌致病力和寄主抗性相关的基因。Mysore 等[6]以番茄为材料,分析了不亲和的植物病原菌互作过程中经诱导产生或被抑制的基因表达图谱。基因芯片技术最早是由Fodor[7]等提出的,基因芯片是一种用于合成和分析生物分子的微型装置。其原理是指是指将大量生物讯息密码,以预先设计的方式固定在玻片、硅片、塑料和尼龙膜等固相载体上组成的密集分子阵列。微阵列在一定条件下进行生化反应,反应结果用化学荧光法、酶标法、同位素法显示,再用扫描仪等光学仪器进行数据采集,最后通过专门的计算机软件进行数据分析[8]。微阵列芯片主要有两种:基于寡核苷酸微阵列芯片和基于cDNA 片段的微阵列芯片。虽然寡核苷酸阵列芯片的检测灵敏度高,可检测出一个碱基的错配,但寡核苷酸芯片的制作是基于DNA 序列已知的基础上,而cDNA 片段可以来自序列未知的cDNA 克隆、EST 克隆,隐含的基因组克隆,或已知的基因组序列的扩增ORFs [24]。因此,基因表达芯片技术是一种高通量的对两种组织或细胞基因表达进行检测和分析的方法。该方法并且克服了核酸杂交技术的操作繁杂、自动化程度低、操作序列数量少、检测效率低等问题[19]。Whitham等[9][25]通过使用微阵列技术,对不同种RNA病毒对易感的拟南芥基因表达的影响进行了研究,结果发现,不同种RNA病毒在易感植物宿主中诱发相同的反应,此研究有利于深入理解RNA病毒致病机理。在遗传上有显著差异的植物病原菌Xylellafastidiosa(Xf)的菌株导致了许多种植物病害,在全世界造成了巨大的经济损失。Nunes 等[10]以Xf 9a5c 菌株(导致柑橘花斑缺绿症)的基因组为参照,使用以微阵列技术为基础的方法,比较了12 个Xf 分离菌株,并对菌株间的基因组组成差异进行全面的评价。定量RT-PCR技术是在反转录和定量PCR的基础上发展起来的一种检测特定基因表达量的技术,可以根据PCR扩增产物的量确定目的基因的表达水平[26]。包括相对定量RT-PCR,竞争性定量RT-PCR、比较定量RT-PCR 和实时定量RT-PCR[27]。朱建裕等[28]根据番茄环斑病毒(ToRSV)各株系RNAⅠ聚合酶基因的保守序列,设计并合成1对引物和1条Taqman荧光探针,建立了对ToRSV的实时荧光RT-PCR检测方法。Chang JH等[11]根据番茄Pto基因家族的序列,设计特异性引物,应用RT-PCR技术,验证了Pto基因家族成员在抗感病番茄中的表达情况,结果发现Pto基因家族成员LescFen、Lescpth2和Lescpth5在感病番茄Rio Grande 76S中表达,Pto、Fen、Lpimpth2和Lpimpth5在抗病番茄Rio Grande 76R中表达。Gene calling是Shimkets等[12]人于1999年提出的,该技术受专利保护(USPYO5871697和USPYO5972693)。主要分为三步:①限制内切酶双酶切②加接头③PCR扩增,并对每个片段回收测序,测序结果数据库比对。具体步骤如下:合成双链cDNA,限制内切酶双酶切,对酶切产物加接头,然后用接头特异性的引物进行PCR扩增,引物分别用生物素和FAM标记,扩增产物毛细管电泳分离,并对每个片段回收测序,测序结果数据库比对。它可以对同一位点的基因表达种类和表达丰度进行分析[29]。此技术的应用有以下几个方面:①确定新的、稀少的表达基因;②当植物受到病原物侵袭时,可以快速检测到特异表达的基因;③可以利用比较基因组学比较种间基因差异,从而确定基因功能;④可以敏感地确定基因表达的微量变化等。另外,还有一些基因表达研究方法,如差异杂交,但仅适用于基因组基因组复杂程度较低的基因组,如酵母;S1核酸酶保护分析法间接的检测mRNA,适用于基因调控方面的研究,但是费时费力费用高;噬菌斑原位杂交可以分离cDNA中的目的基因,但费用较高;基因表达指纹技术,它采用酶切代替了PCR扩增,所获结果含有一定的编码信息,但是仅能得到高表达的基因,并且受电泳技术限制。在植物病理学研究领域,基因表达分析技术已经广泛的应用于病原菌的检测、转基因植物的检测、植物病原物互作机理的研究以及植物抗病信号转导研究等方面,使植物病理学研究者根据不同时期基因表达的变化,揭示植物抗感病机理、防治病虫害的发生以及选育植物抗病品种。虽然目前还有一些问题需要解决,但是相信随着各种基因表达研究方法的不断完善和改进,在植物病理学研究上将会有越来越广泛的应用。 -
报告Primary Study of Oligochitosan Inducing Resistance to Sclerotinia sclerotiorum on Brassica napus
出版时间:2007菌核病为我国油菜三大病害之首,严重影响油菜的产量和品质,目前通过使用化学农药等措施对其进行防治,但是效果不很明显,且长期使用化学农药会造成对环境的严重污染。所以利用植物自身诱导抗病性对菌核病进行防治是现在农业生产中的新趋势。植物诱导抗病性是植物抵御病害侵袭的重要机制之一,具有作用效果明显,广谱性及环境友好等优点,作为一种经济有效的抗病策略,在农业可持续病害防治中具有广阔的应用前景,日益受到人们的关注。我们实验室开发研制的生物农药中科六号(壳寡糖)在田间及温室实验中被证实可诱导烟草等作物对相应的病害产生防治作用[1];田间使用中科六号可减轻油菜菌核病对油菜的影响,故本文中利用植物生理生化方法进行温室实验及生化实验,初步探讨壳寡糖诱导油菜抗菌核病的作用机制。1.1.1 供试药剂 壳寡糖(oligochitosan、COS),脱乙酰度>95%,聚合度为3-10,由中国科学院大连化学物理研究所研制;配制成50μg/ml使用。1.1.2 供试植物 甘蓝型油菜沪油15(Brassica napus L.)温室中培养至4~6片叶期。1.1.3 供试病原菌 油菜菌核病病原菌 核盘菌(Sclerotinia sclerotiorum)本实验室保存。1.2.1 实验设计 为考察接菌前不同时间壳寡糖预处理对诱抗作用的影响,分别在接菌前0~4天处理油菜植株。新鲜配置的50μg/ml壳寡糖溶液喷雾油菜植株,每株取两片叶子,确保其正反面均润湿,确保其他叶片未被喷上壳寡糖溶液。1.2.2 油菜菌核病接种方法 保存的菌核用70%乙醇浸泡30s,1%的升汞消毒10min,无菌水冲洗3次后,接种于PDA(potato dextrose agar)培养基中。在25℃下暗培养3~5天,待菌丝长满培养皿后即可进行接种。接种试验之前,先将4~6片叶期油菜植株喷上雾状水珠,用打孔器将菌丝截成直径为0.15cm大小的菌丝琼脂块,将有菌丝的一面与壳寡糖预处理的油菜叶片接触,每株取一片叶子,每片叶子上放一块菌丝琼脂块,然后用保鲜膜盖上,再喷一次雾状水珠,保持温度20℃左右,接种后每天喷一次水。1.2.3 病情指数调查方法 在接菌后第五天根据病斑占叶片面积比例调查病情指数,分级标准为:0=没有病斑;1=病斑面积占叶面积11%以下;2=病斑面积占叶面积11%~30%;3=病斑面积占叶面积31%~50%;4=病斑面积占叶面积51%以上。1.3.1 粗酶提取 取提前三天壳寡糖预处理植株进行试验,以正常、壳寡糖处理不接核盘菌和未经壳寡糖预处理接核盘菌的植株为对照。每个试验点选取4株植株,每株取系统叶和处理叶各一片,迅速放入液氮中保存。取样叶1.4g,10.0ml含5mmol/L巯基乙醇的硼酸缓冲液(0.05M,pH 8.8),加入0.5g PVP和石英砂在研钵中研磨,在冰水中研磨成浆。10000r/min 4℃离心10min,上清液即为酶液。考马斯亮蓝法测定总蛋白含量。1.3.2 脂氧合酶(LOX)活性测定 0.1ml粗酶液与3ml 0.20mM亚麻酸溶液混匀后放入30℃水浴中反应,监测5min后OD234变化值,酶活由以下公式计算:(A234末-A234初)/0.001/总蛋白含量(mg)。用滤纸片法在PDA培养基平板上进行抑菌试验,在培养基平板正中央接0.15cm大小的核盘菌菌丝琼脂块,打孔器取直径5~6mm的滤纸片,在无菌条件下浸泡壳寡糖溶液均匀后放置平板上,每皿放置5点,其中一点为对照即浸无菌水,另设不放滤纸片的培养皿平板为阴性对照,观察不同浓度处理滤纸片后其周围病菌生长状况,与对照相比,经72h恒温培养后,根据抑菌圈大小判断抑菌效果。壳寡糖溶液浓度50mg/kg,200mg/kg,500mg/kg,1000mg/kg。依据田间试验诱抗效果取最佳浓度50μg/ml进行温室试验,试图寻找防效最好的预处理时间点。对照植株在12h时就发病明显,96h后叶片枯萎。而经壳寡糖预处理者接核盘菌后12h内症状不明显,24h时产生病症,120h后叶片出现枯萎现象(图1),说明壳寡糖处理能延缓菌核病发病,壳寡糖预处理的植株都表现出一定的抗菌核病的能力接菌(表1),提前三天(72h)预处理有最佳效果,在120h时防效为54.60%,试验结果显示防效可达120h以上。图1 壳寡糖提前三天预处理后油菜接菌核病后表型变化(0h,12h,24h,48h,120h)Figure 1 Appearance of 72h before COS pretreated B.napus leaves challenged with S.sclerotiorum.(0h,12h,24h,48h,120h)预处理时间病情指数(%)防效(%)022.91—提前24h15.6231.8提前48h14.5836.35提前72h10.4154.60提前96h12.5045.44表1 不同时间壳寡糖预处理对油菜菌核病的影响Table 1 The resistance of COS pretreated B.napus to S.sclerotiorum不同处理后油菜植株LOX的活性变化如图2所示。处理叶在只接菌和COS预处理后接菌情况下,72h小后活力提高,而COS处理的植株96h后活力才提高,且COS处理后的植株LOX活力高于只接菌者。在系统叶中获利变化更明显,在48时有一个峰值,96h水平又明显提高一个途径使SOD酶活升高。这些复杂现象说明在油菜中COS可通过多种途径诱导LOX活力升高。图2 壳寡糖和核盘菌引起的LOX酶活力变化 (A)处理叶 (B)系统叶Figure 2 Effects of oligochitosan and S.sclerotiorum on activities of LOX enzymes in B.napus leafs.(A)Treat leafs (B) System leafs如表2所示,低浓度壳寡糖对核盘菌的直接抑制作用不明显。壳寡糖浓度(mg/kg)抑菌圈直径(cm)壳寡糖浓度(mg/kg)抑菌圈直径(cm)0—5000.34±0.0550无抑制10000.75±0.11100无抑制表2 不同浓度壳寡糖对核盘菌的抑菌圈直径Table 2 The inhibitory diameter of S.sclerotiorum by different concentration COS壳寡糖作为近几年研究较多的一种植物诱抗剂,已经被广泛应用于烟草、棉花、油菜等作物生产中。然而其作用机制尚不明了,本文首次进行了壳寡糖对油菜抗菌核病的研究。发现使用50μg/ml的壳寡糖溶液预处理油菜植株,可以提高其抗菌核病能力,其抗性可持续96h以上,防效可达到54.60%。防治效果虽然没有化学药剂作用明显[2],但与其他诱抗剂效果相当[3,4],在环境友好前提下具有良好的防治效果。壳寡糖对核盘菌的生长没有显著抑制作用,于汉寿等人也发现壳聚糖对核盘菌的直接抑制作用也不明显[3,5],说明喷施壳寡糖使油菜对菌核病产生抗性主要是因为壳寡糖诱导油菜产生了系统抗性,而不是来源于壳寡糖对菌核病的直接作用。提前三天预处理的植株有最高防效,说明壳寡糖诱导对菌核病的抗性可能有一个响应和滞后期,Molloy等人[6]报道壳寡糖诱导胡萝卜防治菌核病的最佳处理期也是接菌前三天,说明这种现象是广泛存在的。脂氧合酶(LOX)在植物抗胁迫响应时扮演重要角色[7],脂氧合酶可催化多不饱和脂肪酸转化为氢过氧化物,并最终生成重要的植物抗性反应信号分子茉莉酸(JA)。Kim等人[8]报道LOX酶水平可以被JA诱导升高,我们的实验结果说明壳寡糖可同时诱导油菜处理叶和系统叶中LOX酶活性升高,揭示壳寡糖可能是通过JA酸途径诱导植物产生抗病性的,这与我们之前利用基因芯片得出的结论相吻合[9],但具体的信号转导网络仍有待进一步研究。 -
报告Effects on Resistance to Grey Mould in Tomato after Induced Leaves at Different Positions
出版时间:2007灰霉病是番茄栽培中的重要病害,长期依赖农药防治该病严重污染环境和产品。利用诱导抗性是植物病害可持续控制的一条有效途径。E.A.Achuo和K.Audenaert等用适宜浓度的BTH处理土壤或叶片,显著降低番茄灰霉的发病程度[1]。众多研究表明,诱导植株下位叶片,可增强诱导叶和其上非诱导叶的抗病性[2~4];而诱导上位叶片对诱导叶及其下位非诱导叶的抗病性的影响鲜见报道。本试验比较了5种化学物质诱导不同部位叶片对番茄灰霉病发生程度的影响,为诱抗剂的使用技术提供参考和依据。番茄品种为L402,灰霉菌(Botrytis cinerea)由田间分离所得。供试化学物质分别为:CaCl2(Calcium chloride,Ca),上海化学试剂公司生产;水杨酸(Salicylic acid,SA),沈阳化学试剂厂生产;茉莉酸甲酯(Methyl jasmonate,MJ)、龙胆酸(Gentisic acid,GeA)和β-氨基丁酸(3-Aminobutyric acid,BABA),购自Sigma公司。番茄穴盘育苗,苗期管理与一般生产相同。6叶期用20mmol/L的CaCl2,3mmol/L的SA、MJ、GeA和9mmol/L的BABA涂抹第3叶片(下位叶)或第5叶片(上位叶)。5天后用浓度为106个孢子/ml的灰霉菌孢子悬液接种第4真叶的前5片小叶,接种方法采用微量注射法[7]。接种后第5天调查发病程度并计算病指数。病害分级标准为:0级,无病斑;1级,病斑面积占叶面积5%以下;3级,病斑面积占叶面积5%~15%;5级,病斑面积占叶面积15%~25%;7级,病斑面积占叶面积25%~50%;9级,病斑面积占叶面积50%以上[7]。每处理3次重复,数据均用SPSS软件进行统计分析。无论是诱导第3叶片还是第5叶片,番茄灰霉病发生程度均显著低于对照。其中CaCl2、SA和GeA 诱导第3叶片和诱导第5叶片,番茄灰霉病发生程度之间没有显著差异;而MJ和BABA诱导第3叶片番茄灰霉病发生程度显著低于诱导第5叶片的发病程度(图1)。这一现象说明,CaCl2、SA、GeA、MJ和BABA诱导番茄的抗病信号既可以向上传递,也可以向下传递;而CaCl2、SA和GeA诱导的抗病信号向上和向下传递的能力相同,MJ和BABA诱导番茄的抗病信号向上传递能力高于向下传递能力。Figure 1 Disease index after induced leaves at different positions of tomato试验结果表明,CaCl2、SA、GeA、MJ和BABA均可诱导番茄抗病性增强,而且诱导的抗病信号可以在植株中进行双向传递,但诱导的抗病信号向植株下部传递能力不高于向上传递能力。蔡新忠等用叶霉菌非亲和小种4诱发接种番茄第3叶片,5天后用其亲和小种5挑战接种第3叶和第4叶,结果表明,诱导植株的第3叶和第4叶发病程度均显著低于对照,发病面积下降率分别为90%和85%[2]。童蕴慧等发现,用拮抗细菌处理番茄叶片可诱导番茄抗灰霉性增加,处理叶的上一叶位叶片中PAL、POD、PPO、SOD活性均显著高于对照,处理叶和上一叶位叶片中SA含量分别是对照的2.6倍和1.6倍[3]。张穗等用井冈霉素A处理珊西烟,处理叶和其上位叶片中几丁质酶和β-1,3-葡聚糖酶的活性均比对照植株相同叶位叶片显著增加,而这两种酶活性与TMV引起的烟草叶片枯斑数目呈负相关[4]。上述研究结果与本试验结果一致。所以在所用诱抗剂价格昂贵或数量不足时,建议用少量诱抗剂处理植株下位叶片来达到防病目标。