首页 <
知识图谱:全部
-
报告Evaluation of Rice Stripe Virus Resistance in Japonica and Glutinous Rice Varieties (Breeding Lines)
出版时间:2007水稻条纹叶枯病由灰飞虱传播的发生严重的病毒病,近几年来该病在诸暨市发生面积不断扩大,发病程度越来越重,对水稻安全生产构成重大威胁。抗性品种选育推广是防治条纹叶枯病最经济有效的措施,为此,我们对诸暨市引种试验的晚粳糯新品种(系)和在本市进行的全省联合检验的晚粳糯新品种(系)系,进行了条纹叶枯病田间自然发病的抗性测定,现将结果报告如下:分4组处理。第一组本地引进试种品种,E44、杂2、杂1、杂3、杂4、杂5、浙粳22、E8、F104、加优04-1、加优06-1等11个新品种,以甬优1号作对照品种;第二组12个全省联合检验品种(系)(简称联检),春优59、05G354、浙优2611、春优658、05G361、浙优0630、春优6172、05G227、嘉花一号、A/XR155、05G290、嘉优06-2、八优158、秀水63(对照)等13个品种;第三组作苗情观察,浙糯5号、春江糯2号、浙粳22、春江026、春江026、加优06-1、加优04-1、秀优5号、加优1号、E8、甬优2号、甬优1号等12个本地推广品种;第四组全省展示品种,秀水63、E8、浙粳22、秀水09、秀优5号、春江026、浙优9号、加乐优2号、甬优5号、加优1号等10个品种。由迁入试验小区的灰飞虱自然传毒接种。引种品试和联检在江藻镇陈潘村进行,每个品种重复3次种植,随机区组排列,5月30日播种,6月24日移栽,小区面积13.3m2,株行距品试为23.3cm×20cm,联检为30cm×16.7cm。苗情品种分别在江藻镇陈潘村和浣东街道泰南村种植作两地观察,5月30日播种,6月25日移栽,小区面积陈潘村100m2,种植2352丛,泰南村20m2,种植516丛。展示品种分别在王家井镇楼许村和枫桥镇择墅下村两地种植,每个品种种植667m2以上,择墅下点在5月22~23日播种,6月18~20日移栽,楼许点6月2~3日播种旱地育秧,6月18日左右移栽。所有处理除条纹叶枯病没有进行专门预防外,其他病虫均进行常规防治,每个试验或观察区肥水管理基本一致。8月下旬水稻未抽穗时调查;调查数量为,品试或联检试验及苗情观察的品种全小区调查,展示品种每块田调查500丛,记载发病丛数、株数和5丛的苗数。计算丛发病率和株发病率,并作统计分析。引种试验品种和联检品种的条纹叶枯病发生况调查结果见表1和表2。引种试验品种中的E44、E8、F104、杂5等没有条纹叶枯病的发生,与其他品种相比达显著或极显著差异,而杂1、加优06-1、浙粳22、杂4和加优04-1等品种的丛发病率和株发病率分别在1%和0.2%以上,浙粳22和加优04-1发病程度最重,对照品种甬优1号发病最轻。联检品种中代号1、2、3号和8号没有条纹叶枯病发病,代号9、10、11、12号丛发病率和株发病率分别在1%和0.2%以上;另外,丛发病率在1%、株发病率在0.2%以上的还有代号4号和7号。联检品种中除代号10发病程度重,与其他品种比较有显著性差异外,其他品种间差异不显著。苗情点品种条纹叶枯病抗性测定结果见表3。在两地种植都没有发生条纹叶枯病的有E8,而丛发病率和株发病率分别在1%、0.2%以上的品种有浙糯5号、春江糯2号、加优06-1、加优04-1和加优1号,其中春江糯2号发病最重,与E8比较有显著差异,但与其他品种间无显著差异;秀优5号丛发病率1%、株发病率0.2%。品种平均发病丛发病率(%)株发病率(%)E440.00cB0.000cD杂20.86bAB0.210bBCD杂11.05abA0.257bABC加优06-11.05abA0.140bcCD浙粳221.63aA0.407aABE80.00cB0.000cD杂30.09cB0.009cD甬优1号0.09cB0.018cD杂41.21abA0.257bABCF1040.00cB0.000cD杂50.00cB0.000cD加优04-11.48abA0.427aA表1 引种试验品种条纹叶枯病发生情况表(浙江诸暨,2005~2006)品种代号平均发病丛发病率(%)株发病率(%)10.00bA0.000bB20.00bA0.000bB30.00bA0.000bB40.79abA0.340bAB50.00bA0.000bB60.32bA0.097bB70.95abA0.207bAB80.00bA0.000bB91.27abA0.510bAB101.90abA1.227aA111.11abA0.207bAB121.43abA0.253bAB130.48abA0.050bB表2 联检品种条纹叶枯病发生情况表 (浙江诸暨,2005~2006)品种丛发病率(%)株发病率(%)陈泮点泰南点平均陈泮点泰南点平均浙糯5号0.461.931.195aA0.080.410.245abA春江糯2号0.565.232.895aA0.150.780.465aA浙粳220.38—0.380.075—0.075春江026选0.04—0.040.007—0.007春江0260.17—0.170.016—0.016加优06-10.173.41.785aA0.0240.520.272abA加优04-10.531.871.2aA0.430.340.385abA秀优5号1.020.940.98aA0.240.160.20abA加优1号0.852.641.745aA0.130.420.275abAE8000.00aA000.00bA甬优2号0.510.340.425aA0.0760.030.053abA甬优1号0.170.0850.128aA0.0180.0290.024abA表3 苗情点品种条纹叶枯病发病情况(浙江诸暨,2005~2006)展示点品种抗条纹叶枯病测定结果见表4。在展示的10个品种中,E8在两地都没有发现病苗,丛发病率1%、株发病率0.2%以上的品种有浙粳22、秀水09、春江026和加优1号,这4个品种在两地都有发病,择墅下点重于楼许点;而秀优5号、浙优9号、加乐优2号和甬优2号在枫桥择墅下点均有发病,分析发病程度差异的原因可能与播种时间和方式不同有关。品种丛发病率(%)株发病率(%)楼许点枫桥点平均楼许点枫桥点平均秀水630.20.60.4aA0.010.060.035aAE8000.0aA000.000aA浙粳2212.81.9aA0.120.630.375aA秀水091.23.22.2aA0.170.560.365aA秀优5号010.5aA00.140.07aA春江02622.22.1aA0.240.490.365aA浙优9号01.20.6aA00.290.145aA加乐优2号00.60.3aA00.070.035aA甬优5号00.20.1aA00.040.02aA加优1号0.63.82.2aA0.121.210.665aA表4 展示品种发病情况调查表(浙江诸暨,2005~2006)从多点试验可以看出,多数晚粳糯品种(系)不抗条纹叶枯病,只是发病程度有轻重而异,而E8在多点调查或试验中都没有发现条纹叶枯病的发生,从种质资源看它是一个籼粳交品种,2006年浙江诸暨市进行较大面积示范种植,显示出产量较高、品质较优、抗病性较好、但耐肥能力较差的特性,具有一定的推广价值。其他如E44、F104、杂5等也有较好抗病表现。调查观察表明,甬优6号和甬优8号没有发生条纹叶枯病,甬优系列的其他品种发病也较轻,如甬优1号、甬优2号、甬优5号,几年调查结果趋势基本一致。但是秀优5号、加优1号和秀水09等品种,对条纹叶枯病比较容易感染,且发病程度较重,对这些品种种植区,条纹叶枯病的防范要采取更加严格的措施。 -
报告来源于梨的苹果茎痘病毒的分离与鉴定?? 基金项目:湖北省自然科学基金资助项目(2006ABA162)。
出版时间:2007苹果茎痘病毒(Apple stem pitting virus,ASPV)主要侵染苹果和梨,且分布范围十分广泛,可导致其产量明显下降和品质改变。本研究从湖北省农业科学院果茶蚕桑研究所国家砂梨资源圃采集砂梨样品52份,采用试管捕捉反转录-聚合酶链式反应(TC-RT-PCR)对这些样品中的苹果茎痘病毒进行了检测,其中33份样品的ASPV检测结果为阳性,带病毒率为63.5%。取RT-PCR检测为阳性的13个样品,在温室汁液摩擦接种草本指示植物西方烟,对该病毒的生物学特性进行了分析,大部分样品的病毒分离物在西方烟叶片上表现褪绿斑点或褪绿斑、坏死斑或坏死线或网状褪绿纹。从上述样品中选取5个分离物,接种不同的草本鉴别寄主植物,以明确其寄主范围。5个分离物在昆诺藜、心叶烟、本氏烟和克利夫兰烟上均产生明显的症状,但分离物间在症状出现时间和症状类型上存在一定的差异。在昆诺藜上症状表现最早,本氏烟和克里夫兰烟次之,心叶烟最晚。5个分离物在昆诺藜上均产生褪绿斑或斑点;在心叶烟主要产生褪绿斑;在本氏烟上主要产生褪绿斑点;在克里夫兰烟上只有个别分离物在叶片上产生边缘浅黄色,中间绿色的环斑;在千日红叶片上有不规则的凹陷的白斑;在苋色藜上没有明显症状。而心叶烟和苋色藜的ASPV检测结果为阴性,其他草本植物的ASPV检测结果为阳性。以上结果表明,ASPV可以侵染昆诺藜、本氏烟、克利夫兰烟和千日红。取症状表现明显的两个分离物进行了致死温度的测定,接种后观察症状表现发现两个分离物在处理55℃时仍表现症状,而在处理58℃和高于58℃的温度时都不表现症状,可以初步推测该病毒的致死温度为58℃。 -
报告Detection of Candidatus Liberibacter Asiaticus from Wampee (Clausena lansium) by Nested-PCR and Cloning and Sequenceing of 16S rDNA?
出版时间:2007黄皮原产于我国华南,在我国至少已有1500年的栽培历史,目前主要分布于广东、广西、福建、海南、台湾、四川、云南等地。越南、印度、泰国、马来西亚以及美国的佛罗里达州等有零星栽种。黄皮属于芸香科黄皮属植物,与柑橘同科,过去一直认为黄皮不会感染黄龙病病原。2006年8月,作者在广东罗定索龙镇柑橘园附近发现有些黄皮的叶片变黄,而且黄化的叶片一般从植株的顶端开始,逐渐向下扩展直至中部,这与柑橘黄龙病的黄化症状及发病规律很相似,那么黄皮的黄化症状是不是由黄龙病病原(Candidatus Liberobacter spp.)所引致的呢?黄皮是芸香科植物,同时也是柑橘木虱的寄主植物,究竟黄皮是否会发生黄龙病?其病原与柑橘黄龙病病原有何异同?值得进一步的探讨和研究。本研究从田间采集叶脉表现黄化症状的黄皮叶片,用CTAB法提取叶脉组织DNA。以α亚纲细菌的通用引物27F/1500R为外套引物,取2μl待测黄皮样品进行第一轮的PCR扩增,用已感染了柑橘黄龙病的病叶材料提取的DNA为阳性对照,健康黄皮材料提取的DNA模板为阴性对照,第一轮的PCR先进行10个循环;再以OI1/OI2c为内嵌引物,取第一轮扩增的2μl PCR为模板,在内嵌引物的引导下进行第二轮Nested-PCR扩增。通过Nested-PCR的扩增,在表现黄化症状的2个黄皮样品中则有1160bp的特异条带扩增,初步证明在表现黄化症状的黄皮样品中含有黄龙病病原。XbalⅠ酶切显示,该片段可被切成大小分别约为640bp和520bp的两个片段,初步证明黄龙病病原为亚洲种(Candidatus Liberobacter asiaticus)。扩增产物经纯化,与pMD18-TVector连接,转化大肠杆菌(Escherichia coli)DH 5α,筛选克隆重组子。对PCR产物进行测序及序列分析,结果表明黄皮黄龙病病原16SrDNA片段序列与柑橘黄龙病亚洲种16SrDNA片段序列的同源率为:98.3%~99.6%;与非洲种16SrDNA片段序列的同源率为96.8%;与美洲种16SrDNA片段序列的同源率为94.1%~94.6%;与非洲种亚种的16SrDNA片段序列的同源率94.5%。而与其他的根瘤菌、难培养菌和另外的α亚纲细菌的同源率都在87%~89%之间。因此,认为黄皮叶脉黄化的症状是由黄龙病病原引致的,称之为黄皮黄龙病,而且该黄皮黄龙病病原属于柑橘黄龙病病原亚洲种中的一个成员。系统进化树分析显示,黄皮黄龙病病原与中国柑橘黄龙病病原亲缘关系最近,推测是直可能来自柑橘黄龙病病原。过去人们对黄皮黄龙病关注较少,本研究从分子水平上证实了黄皮确实会感染黄龙病,建议今后在黄皮生产上应重视黄龙病的问题。但由于黄皮植株内的黄龙病病原含菌量却要比柑橘植株体内的要低得多,而且黄皮也较少表现柑橘黄龙病的典型的斑驳症状,这是否和黄皮的生理特性或者是其体内的某种物质有关,值得深入研究和探讨。 -
报告Analysis of Elongation Factor Gene and Ribosomal Protein Gene Sequence of Mulberry Dwarf Phytoplasma*
出版时间:2007桑叶是家蚕的唯一饲料,桑树是蚕丝产业的物质基础。桑树生长在各种不同气候和地貌的生态环境,桑树萎缩病是蚕桑生产最严重的病害之一,主要有黄化型、萎缩型和花叶型3种类型,分布于中国、日本、韩国、格鲁吉亚、越南等蚕桑生产国,特别是中国和日本受害最为严重。桑树萎缩病在我国主要蚕桑区江浙、湖广及北方的山东、陕西等省均有分布,对蚕桑生产造成严重甚至毁灭性的危害,且防治比较困难。本研究对山东省发生的症状为萎缩型的桑萎缩病,采用PCR技术对其16S rDNA、延伸因子和核糖体蛋白基因片段进行扩增和直接测序,并且与已知的植原体各组中代表的植原体序列进行同源性比较,确定了该分离物的亚组分类地位。现将研究结果报道如下。表现萎缩型症状的发病桑树材料采自山东省宁阳市。克隆载体pMD18-T、PCR产物回收试剂盒、限制性内切酶及其他酶类等分子生物学试剂产品均购自TaKaRa公司。提取方法参照漆艳香等[1]的方法进行,总DNA于-20℃保存备用。植原体16S rDNA基因扩增采用Lee等[2]报道的通用引物R16mF2/R16mR1,植原体延伸因子基因的引物对fTufu/rTufu序列及核糖体蛋白(rp)基因的引物对rpF1/rpR1序列分别根据Schneider等[3]和Lim等[4]文献设计合成(Table 1)。以提取得病组织总DNA为模板进行PCR扩增。NamePrImersequenceTm(℃)ReferencesR16mF25′-CATGCAAGTCGAACGGA-3′60[3]R16mR15′-CTTAACCCCAATCATCGAC-3′60[3]fTufu5′-CCTGAAGAAAGAGAACGTGG-3′50[4]rTufu5′-CGCAAATAGAATTGAGGACG-3′50[4]rpF15′-GGACATAAGTTAGGTGAATTT-3′55[5]rpR15′-ACGATATTTAGTTCTTTTTGG-3′55[5]Table 1 Primers used in this research to amplify three genePCR产物采用1%琼脂糖凝胶电泳检测,并用PCR纯化试剂盒进行纯化回收。PCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,挑取筛选平板上的白色菌落培养,提取质粒,经PCR和酶切鉴定为阳性的重组质粒送上海英骏生物技术有限公司测序。将所得DNA 序列输入GenBank进行Blast检索,采用DNAMAN和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的相应基因的核苷酸序列进行比对分析,并构建系统进化树。以带有桑萎缩病原(Mulberry dwarf-Ningyang,MDNY)的发病桑树病组织总DNA为模板,16S rDNA引物经直接PCR扩增,得到长度为1.5kb的片段,延伸因子基因引物经PCR扩增,得到长度为0.8kb的片段,PCR扩增核糖体蛋白基因,得到长度为1.2kb的片段,与预期的结果一致,表明该病组织中存在植原体。对含有目标外源片断的重组质粒进行序列测定,扩增得到16S rDNA基因片断为1431bp;延伸因子基因片断为842bp,共编码280个氨基酸;核糖体蛋白基因片断为1249bp,DNAMAN软件分析表明该序列包括部分rps19和全部rp122和rps3基因。将MDNY的16S rDNA序列与GenBank中22个植原体分离物16S rDNA的核苷酸序列进行比对和构建系统进化树,该分离物与植原体的16S rI组处于同一个分支,与16S rI-B和16S rI-D亚组同源性最高。该分离物MDNY的延伸因子基因序列与GenBank中植原体16S rI组的7个亚组分离物延伸因子基因的核苷酸序列进行比对和构建系统进化树(Figure 1)。从系统进化树中可以看出,该分离物MDNY与16S rI-B和16S rI-D亚组处于同一分支,同源性最高,与16S rDNA的结果一致。Figure 1 Phylogenetic tree of MDNY based on the elongation factor gene sequences using neighbor-joining in MEGA3.1该分离物MDNY的核糖体蛋白基因(rp)序列与GenBank中植原体16S rI组的6个亚组分离物核糖体蛋白基因的核苷酸序列进行比对并构建系统发育树(Figure 2),从系统进化树中可以看出,该分离物与16S rI-D 的Paulownia witches-broom处于同一分支,同源性最高,确定了该分离物的亚组分类地位。Figure 2 Phylogenetic tree of MDNY based on the rIbosomal protein gene sequences using neighbor-joining in MEGA3.1夏志松等对桑黄化性萎缩病病原体16S rRNA基因序列进行了分析[5],而刘清神等对广州桑萎缩病植原体进行检测时确定所检测的桑树植原体属于16S rI组[6],没有确定桑萎缩植原体的亚组分类地位。本研究对分离物MDNY的16S rDNA和延伸因子基因构建系统发育树,确定该分离物与16S rI-B和16S rI-D的同源性最高。通过核糖体蛋白基因构建系统发育树表明该分离物MDNY属于16S rI-D亚组,进一步明确了其亚组分类地位。20世纪80年代至今,由于分子生物学技术,特别是分子克隆和PCR技术的应用大大加快了包括植原体在内的细菌系统学研究进展。目前植原体的分类16S rDNA是一种非常有效的手段,但对于16S rDNA类群内的进一步划分,用16S rDNA类群作为分类标准显得过于保守,延伸因子和核蛋白基因序列可以作为系统学研究的依据。Schneider等[7]对STOL类群和AY类群的16S rRNA和延伸因子基因进行序列分析,利用延伸因子基因比16SrRNA序列建立的遗传距离要远。Lee等[8]对植原体各亚组的16S rRNA和核糖体蛋白基因进行了分析,证明16S rRNA和核糖体蛋白基因序列分析可以作为植原体鉴定和分类的依据。本试验以16S rDNA基因,延伸因子基因及核糖体蛋白基因作为分类依据,在亚组水平明确了桑树萎缩病的分类地位,为今后研究桑树萎缩病植原体的来源、进化关系及其致病的分子机理提供了理论依据。 -
报告柑橘溃疡病菌单链抗体文库构建及高亲和性特异单链抗体筛选
出版时间:20071.利用柑橘溃疡病菌细胞悬浮液免疫BALB/c小鼠,免疫后小鼠抗血清效价为2500倍左右。提取小鼠脾细胞mRNA,构建的单链抗体文库重链DNA大小为350bp左右,轻链为650bp左右,经linker(Gly3Ser)4连接后单链抗体DNA大小为1.2kb左右。将单链抗体文库DNA克隆到大肠杆菌JM109中,随机挑选了9个克隆子测序表明,9条单链抗体序列都是开放阅读框,其重链分别属于VH1、VH2、VH3基因家簇,轻链属于VKⅠ、VKⅢ、VKⅣ亚基因家簇。每个单链抗体的互补决定区(CDRs)都为不同的CDR,其中氨基酸序列变化多样,说明构建的单链抗体文库多样性好,适合于进一步进行单链抗体的筛选。2.采用核糖体展示技术对构建单链抗体文库进行了进化和富集。结果显示第一轮核糖体展示后回收的mRNA量非常少,分光光度计已测不出其浓度,反转录RCR后,扩增得到的条带非常弱,说明在原始未筛选的抗体文库中,能与柑橘溃疡病菌O-特异性脂多糖作用的单链抗体数量较少。经过三轮筛选后,得到的mRNA量逐渐增多,经RT-PCR后,产生了比较亮的扩增条带。说明在核糖体展示过程中,抗原阳性的单链抗体得到了富集。3.将未经过核糖体展示的原始单链抗体文库DNA和经过三轮展示的单链抗体文库DNA与噬菌体表达载体pCANTAB5E相连接后,转入大肠杆菌TG1中小量表达,表达后用间接ELISA测定单链抗体与抗原的结合活性。结果表明:从未经过筛选的原始单链抗体文库中随机挑取的60个克隆子表达产物与柑橘溃疡病菌O-特异性脂多糖几乎没有结合能力;而从经过三轮展示后的单链抗体文库中挑取的60个克隆子中有30%与柑橘溃疡病菌O-特异性脂多糖有较好的结合能力。从三轮展示后的单链抗体文库中共挑取了180个克隆子,用间接ELISA法初筛到60株抗原阳性的单链抗体;然后用生物分子相互作用技术(biosensor,biacore)对筛选的抗原阳性的单链抗体进行了复筛,筛选了3株高亲和力的单链抗体(GX13、GX44和GX95)以用于下一步的表达鉴定。4.将筛选的高亲和力抗原阳性的克隆子从大肠杆菌TG1中转入高表达菌株HB2151中进行可溶性表达。单链抗体表达后,其表达产物主要集中于细胞周质提取物中,具有抗体活性。将浓缩的周质提取物进行SDS-PAGE电泳,显示在32 kDa处有一蛋白条带产生。将表达产物纯化后进行SDS-PAGE电泳显示,在32 kDa处有单一蛋白条带产生。为了进一步验证表达的蛋白即目的蛋白,将表达产物进行了Western blot 杂交,结果显示,与纯化后的电泳结果一致,在32 kDa处有单一的条带产生,说明表达纯化的蛋白即目的蛋白。5.将筛选的抗原阳性单链抗体进行了特性研究。单链抗体(GX95、GX44、GX13)特异性强、亲和力高。其与柑橘溃疡病菌近源种Xanthomonas oryzae pv.oryzae(Xooc);Xanthomonas campestris pv.campestri(Xcc);Xanthomonas oryzae pv.oryzicola(Xoc);及从柑橘叶片上分离的10种腐生黄单孢菌及Bacillus subtilis;E.coli 都没有交叉反应。Biacore 分析其亲和力表明,单链抗体GX95、GX44和GX13的亲和常数分别为1.98×1010 M-1、1.89×1010 M-1、3.43×1010 M-1。6.对筛选的单链抗体进行了测序。用DNAplot 软件分析单链抗体序列。结果表明:单链抗体 GX44 和GX13重链分别属于VH1基因家簇,GX95 重链属于VH3基因家簇;GX44和GX13轻链属于Vk IV亚基因家簇,GX95轻链属于Vk III亚基因家簇。用Vector NTI软件对筛选的单链抗体的序列同源性进行了分析,表明GX44 和GX13重链有89.67%的同源性,GX95和GX13具有92.53%的同源性。 -
报告Study on Infection Mode of Chlamydospores of Usitilaginoidea vriens*
出版时间:2007稻曲病Usitilaginoidea vriens是影响水稻产量及品质的重要穗部病害。稻曲病厚垣孢子可以侵染水稻,引起稻粒发病[1,2]。陈永坚[2]用室内越冬的厚垣抱子接种水稻种子、芽鞘、苗期叶片、秧苗根系,穗苞均可引起稻曲病的发生,说明稻曲病很有可能在种子萌发或插秧时已侵染水稻,水稻生长后期穗部发病,是一种系统性侵染病害。也有研究认为稻曲病不是系统侵染的病害[3,4]。为进一步明确稻曲病的侵染方式问题,有必要用更严谨的试验加以研究,为稻曲病的防治及抗源筛选提供的理论指导。于2007年8月1日在湖北省宜昌市远安县莲花镇进行套袋试验。莲花镇海拔510m,峡谷地貌,7、8月份日平均温度低于30℃,8月份降雨量超过212mm,是稻曲病的重要疫区,田间累积了大量的厚垣孢子。供试水稻品种为“粤优938”,在水稻圆杆拔节期,用40cm×10cm的纸袋套住单株水稻,以避免田间厚垣孢子的自然侵染,套袋共计68穗,于水稻乳熟期回收套袋稻穗并逐一检查稻曲病的发病情况。1.2.1 供试菌源 将4℃保存的2006年中稻“粤优938”上采集的稻曲球粉碎后,用2%的蔗糖溶液配置为厚垣孢子悬浮液A,置于28℃的培养箱(LRH-250型,广东省医疗器械厂)中保存24h备用;将2007年采集的早稻“金优402”上的稻曲球,粉碎后用2%的蔗糖溶液配置为厚垣孢子的悬浮液B,过滤后加入少量土温-20,在涡漩振荡器上振荡5分钟,在28℃条件下保存24h。以上厚垣孢子悬浮液在100×显微镜下一个视野内有约1000个厚垣孢子。1.2.2 供试水稻 2007年5月9日将水稻种子“粤优938”在自然日光下暴晒8h后用杀菌剂浸泡72h,然后置于培养皿(φ=9cm)内在28℃培养箱(LRH-250型,广东省医疗器械厂)中催芽,72h后播种育苗,2007年6月8号移栽插秧。1.2.3 方法 试验地点位于湖北省农科院网室内,网室周边农田环境中没有稻曲病疫情发生。试验用土壤经200℃电热鼓风干燥箱(HN101-1型,南通沪南科学仪器有限公司)灭菌1h后,分装入瓷盆(φ=25cm,h=32cm)中备用,瓷盆置于聚乙烯薄膜棚(长×宽×高=4×3×1.5m)内,棚顶敞开,用遮阳黑网覆盖。供试水稻做作以下处理:1)种子带菌:经消毒后的种子催芽时用少量厚垣孢子液A浸泡,2007年6月8日移栽入装有无菌土的瓷盆中。2)根部带菌:年6月8日插秧时,用清水洗净秧苗根部,在厚垣孢子液A中浸泡8h后移栽入装有无菌土的瓷盆中。3)穗期接种:2007年9月4日下午6时,将处于破口或杨花初期的水稻用手提猴头喷雾器在穗部喷雾接种厚垣孢子液B,喷雾后用聚乙烯薄膜将稻穗封闭保湿48h。4)不做任何接种处理。以上每处理2个瓷盆,每瓷盆内3兜水稻,分蘖后期每瓷盆内水稻有30~40株。水稻生长期正常管理,同时在水稻孕穗期以后,每天喷水两次,保持环境的湿度,同时观察记录稻曲病的发病情况。田间套袋试验结果:在水稻乳熟期回收的68个套袋稻穗中发病稻穗有38个,病穗率为55.9%,按照唐春生[5]的病情分级标准,病情指数为24.58。网室盆栽试验结果:在水稻灌浆初期,浸根处理的水稻首先发病,稻粒内外颖壳接缝处出现白色的菌丝团,逐渐长成白色球状物,形成稻曲球,4d后露出黄色的厚垣孢子,厚垣孢子颜色由鲜黄色逐渐转暗。浸根处理发病一个星期后种子带菌及喷雾接种处理都开始出现稻曲球。种子带菌、根部带菌及破口期喷雾接种带菌的病穗率分别为:25.0%、1.6%、5.8%。王国良[1]认为稻曲病厚垣孢子主要在水稻破口前1~4天至破口时从水稻柱头侵入引起发病。本次田间套袋试验中,在水稻圆秆拔节期用纸袋隔离了田间厚垣孢子的自然侵染,但后期调查病穗率仍高达55.88%,说明稻曲病厚垣孢子在水稻生长早期可能已被上年累积在田间的厚垣孢子侵染。在网室试验中对土壤及种子都进行了严格消毒,土壤中无自然存在的稻曲病厚垣孢子;试验中对照没有发病排除了种子自身带菌的情况。在水稻育秧及移栽以后的生长阶段都实施了隔离措施,避免了未知自然侵染对结果的干扰。试验中无论是水稻营养生长期还是生殖生长期接种,在水稻生长后期都出现了稻曲病粒,而且试验结果以厚垣孢子接种水稻种子的发病率最高,进一步说明了厚垣孢子在水稻生长早期侵染的可能性。试验中接种水稻种子所用的厚垣孢子源于2006年的中稻稻曲病粒,穗部接种菌源是2007年早稻病粒,说明上茬水稻上的稻曲病厚垣孢子可能是田间的重要侵染源。以上两试验结果表明稻曲病厚垣孢子侵染水稻的方式至少包括两种:1)系统侵染:土壤中或依附于种子表面的厚垣孢子,在水稻种子萌发初期侵入水稻胚内或在插秧时侵染水稻根部,灌浆期出现穗部病症;2)局部侵染:在水稻孕穗期,直接侵染穗部,灌浆期发病,而且以系统侵染为主要侵染方式。因此郭荣华等根据水稻穗部接种的结果及王国良的试验结论认为稻曲病不是系统侵染病害值得商榷。王疏等[6]用Nested PCR方法成功检测出水稻生殖生长期稻曲病在植株茎秆、穗部的分布特征,为研究稻曲病的侵染提供了分子生物学方法。故对于本次试验中水稻材料,可以用分子生物学手段检测水稻不同生长期稻曲病菌在水稻根部、茎秆、叶片及穗部的分布情况从而进一步明确稻曲病的侵染方式。 -
报告Screening and Analysis on T-DNA Insertional Pathogenicity Mutants of Magnaporthe grisea
出版时间:2007Keywords:Magnaporthe grisea;pathogenicity;T-DNA insertional mutants;gene function稻瘟病菌[Magnaporthe grisea(Hebert)Barr.,无性世代为Pyricularia grisea(Cooke)Sacc.]侵染水稻引起的稻瘟病是水稻“三大病害”之一[1,2],严重限制世界水稻产量,但迄今为止对其致病性及其变异的机制了解得仍然不够透彻。已知水稻与稻瘟病菌之间的特异性互作,符合Flor提出的“基因对基因”关系假说[3]。对稻瘟病菌无毒基因的研究,将有助于进一步了解稻瘟病菌致病性变异的机制以及水稻与稻瘟病菌之间分子水平特异性互作的机制。目前,通过遗传分析或分子标记技术,已鉴定了至少30个稻瘟病菌无毒基因[4~7],其中仅有5个无毒基因(PWL1、PWL2、AVR1-CO39、AVR-Pita、ACE1)被克隆[8~12]。此外,稻瘟病菌的侵染过程是一个错综复杂的循环过程,涉及一系列形态结构与生理生化的变化,故而除了无毒基因之外,与稻瘟病菌致病过程有关的基因的研究也是研究者关注的焦点,目前已经克隆和分析了包括MPG1,CPKA1,PTH11,PMK1,MPS1,MAGB,MAC1,PDE1,PSL1,TPS1等40余个参与稻瘟病菌生活史各个阶段的功能基因[13,14]。稻瘟病菌基因组全序列测定已经完成[15],伴随着生物信息学的飞速发展,进一步以功能基因组学的研究方法从全基因组水平研究水稻与稻瘟病菌之间特异性互作的分子机制、诠释关键基因的功能已经成为解决持久抗瘟问题的关键所在。本研究正是通过接种筛选本实验室已建成的稻瘟病菌菌株FJ95054 B T-DNA插入突变体库,获得致病性变异稳定的突变体,运用TAIL-PCR方法获得了突变体被T-DNA标记的侧翼序列,并通过一系列表型分析、分子生物学实验及生物信息学分析初步分析了T-DNA插入区域的基因功能,为进一步获得相关病菌小种的无毒基因或与致病性相关的基因奠定良好的基础。稻瘟病菌菌株FJ95054B,是本研究的野生型对照菌株,由本实验室从福建田间单孢分离得到的菌株;供筛选的突变体菌株,是随机从本实验室已建成的稻瘟病菌菌株FJ95054B T-DNA插入突变体库中抽取的。供接种筛选的水稻品种CO39近等基因系:C101LAC Pi-1(t)、C101A51 Pi-2(t)、C104PKT Pi-3(t)、C101PKT Pi-4a、C105TTP-4L-23 Pi-4b及感病对照CO39,由国际水稻研究所提供。稻瘟病菌菌株的活化、扩大培养及产孢方法参照王宝华等[16],育苗及接种方法参照张学博等[17]。接种后8~10 天,采用目测法调查并记载各品种水稻叶片上的病斑反应型。病斑反应型的记载标准参照Valent等[18]的方法,具体分级标准如下:0级:无病斑;1级:只有针尖大小的褐色斑点(病斑直径可达0.5cm);2级:直径约0.5~1mm褐色病斑,病斑有明显黄褐色中心;3级:直径约为2mm的褐色眼状病斑,中央灰色,边缘褐色;4级:长约3~4mm中等大小的灰色梭形病斑,边缘褐色;5级:病斑达到最大(CO39的眼状病斑最长约为5mm),甚至多个病斑连片,叶枯死,如出现暗绿色急性病斑或叶节瘟也属于这一类型。其中,0~2级记为抗病反应,3~5级记为感病反应。参考李宏宇方法[19],观察所获得突变体的形态特征及其生长发育过程,记录菌落直径、产孢量、孢子萌发率、附着胞形态和形成率以及洋葱表皮侵入情况。稻瘟病菌基因组DNA的提取参照何月秋方法[20]。TAIL-PCR反应使用的T-DNA左、右边界嵌套引物为:LB1:5'-GGGTTCCTATAGGGTTTCGCTCATG-3';LB2:5'-CATGTGTTGAGCATATAAGAAACCCT-3';LB3:5'-GAATTAATTCGGCGTTAATTCAGT-3';RB1:5'-GGCACTGGCCGTCGTTTTACAAC-3';RB2:5'-AACGTCGTGACTGGGAAAACCCT-3';RB3:5'-CCCTTCCCAACAGTTGCGCA-3'。使用的随机引物为AD7:5'-TG(A/T)GNAG(A/T)ANCA(G/C)AGA-3';AD9:5'-TCGTTCCGCA-3';AD12:5'-(A/T)AGTGNAG(A/T)ANCANAGA-3'。以上引物由上海生工生物工程服务有限公司合成。10×PCR Bufer、dNTP、rTaq酶均购自宝生物公司(TAKARA)。TAIL-PCR反应程序参考文献[21]。将TAIL-PCR第2、3步扩增产物用0.5×TBE制备1.0%琼脂糖凝胶进行电泳检测,电泳电压为5 V/CM。电泳结束后,将凝胶放入含EB的0.5×TBE 中染色20~30min,用紫外透射反射仪观察并照相记录。TAIL-PCR扩增产物通过电泳分离后,回收目的片段,纯化后与pGEM-T Easy Vector(购自Promega公司)连接;连接产物通过热激转化到DH5α感受态细胞中,通过蓝白斑反应初筛转化子;采用碱裂解法少量提取转化子中的质粒DNA,通过PCR及酶切鉴定,挑选。将含正确插入的转化子的克隆,送由上海鼎安生物科技有限公司测序。测序获得的序列去除T-DNA载体序列后,将剩余的序列与GenBank数据库(http://www.ncbi.nlm.nih.gov)、稻瘟菌基因组数据库(http://www.broad.mit.edu/annotation/fungi/magnaporthe/index.html)进行Blast比较分析及相关生物信息学分析,以推断T-DNA所插入的基因及其可能的功能。此外,应用SignalP 3.0 server(Http://www.cbs.dtu.dk/services/SignalP/)推断所获得的基因序列中是否含有信号肽(signal peptide,SNP);应用Pfam(http://www.sanger.ac.uk/Software/Pfam/)推测基因编码的蛋白可能的结构域;应用TMHMM-v 2.0(http://www.cbs.dtu.dk/services/TMHMM/)预测基因编码的蛋白可能的跨膜结构域;应用Protcomp-v 6.0(http://sun1.softberry.com/berry.phtml)对基因编码的蛋白质进行亚细胞定位,该软件可将蛋白质按细胞核、质膜、胞外分泌、细胞质、线粒体、内质网等归属进行划分;应用TargetP-v 1.1(http://www.cbs.dtu.dk/services/TargetP/)进一步确定预测蛋白的亚细胞定位,其可将蛋白质的定位归属于线粒体、叶绿体、胞外分泌以及其他亚细胞定位。将随机选取的60个突变体与野生型菌株FJ95054B分别接种在国际水稻研究所提供的CO39近等基因系的6个水稻品种上,即C101LAC Pi-1(t)、C101A51 Pi-2(t)、C104PKT Pi-3(t)、C101PKT Pi-4a、C105TTP-4L-23 Pi-4b、CO39,每个突变体都进行3个平行以上的接种试验。接种后发病情况显示:野生型菌株FJ95054B对Pi-1(t)、Pi-2(t)、Pi-4a均无致病性,对Pi-3(t)、Pi-4b、CO39致病,而在随机选取的突变体中有3个突变体的致病性发生了稳定的变异,如表1、图1所示。其中,突变体2t-2 T940024501对水稻品种Pi-2(t)从无毒转变为有毒,突变体T940084501和T940086501在水稻品种CO39上的致病性减弱。菌株号IsolatesC101LACPi-1(t)C101A51Pi-2(t)C104PKTPi-3(t)C101PKTPi-4aC101TTP-4L-23Pi-4bCO39FJ95054B(WT)RRSRRS2t-2T940024501/++////T940084501/////—T940086501/////—表1 稻瘟病菌T-DNA插入致病性突变体接种CO39近等基因系的发病情况*Table 1 Virulence of T-DNA insertional pathogenicity mutants on CO39 NILs稻瘟病菌侵染过程中的任何一个环节被破坏均会导致致病性减弱或丧失,因此,对致病性减弱的突变体进行相关表型分析,有助于了解其致病性减弱的原因。筛选出的两个致病性减弱突变体的生长发育变化情况如表2所示。与野生型FJ95054 B相比,两个突变体均表现出生长速度减缓、单位面积产孢量显著减少、孢子萌发率和附着胞形成率降低的性状(在α=0.05水平上差异显著), 这些都可能是造成突变体致病性减弱的原因。图1 稻瘟病菌致病性突变体的变化情况Figure 1 Pathogenicity of mutants of M.grisea compared with wildtype FJ95054B菌株Isolate菌落直径Colonydiameter(cm)产孢量Sporulation(105spores/cm2)8h孢子萌发率Percentageofsporegermination8hpi(%)16h附着孢形成率Percentageofappressoriumformation16hpi(%)95054B(WT)5.20±0.100.7499.0693.68T-9400845014.17±0.030.001287.9073.17T-9400865014.22±0.070.003383.8963.69表2 稻瘟病菌致病性减弱突变体的生长发育变化Table 2 Morphology and development of pathogenicity-decreased mutants of M.grisea此外,在洋葱表皮侵入实验中,野生型FJ95054B侵入正常,能形成正常的附着胞以及侵染栓,并能观察到菌丝在洋葱细胞内广泛蔓延。相比之下,突变体T940084501的孢子能够形成附着胞,但随后并未形成侵染栓侵入,未发现菌丝在洋葱细胞内蔓延;而突变体T940086501的部分孢子能够形成附着胞,但同样未能形成侵染栓侵入,也未发现菌丝在洋葱细胞内蔓延,还有部分孢子甚至不会形成附着胞。这些都可能是其致病性减弱的原因。实验结果如图2所示。图2 稻瘟病菌致病性减弱突变体的洋葱表皮侵入实验结果Figure 2 The results of onion penetration assays of pathogenicity-decreased mutants of M.grisea使用右边界嵌套特异引物RB与随机简并引物AD7组合,扩增出了突变体2t-2 T940024501的T-DNA侧翼序列(如图3A所示);使用左边界嵌套特异引物LB与随机简并引物AD9组合,扩增出了突变体T940084501的T-DNA侧翼序列(如图3B所示)。突变体T940086501的T-DNA侧翼序列通过TAIL-PCR反应尚未获得。通过在稻瘟菌基因组数据库进行的比对分析,结果显示突变体2t-2 T940024501 T-DNA侧翼序列中的117~591 bp区段与稻瘟病菌基因组supercontig5.183的776534~777008 bp同源(同源率98%), T-DNA 插入位点位于基因 MGG_07927.5 的外显子区,该基因位于Chromosome/Linkage GroupⅢ,编码一个假定蛋白( hypothetical protein), 该蛋白属于Glyco-syl hydrolases family 18(糖基水解酶家族18)。图3 TAIL-PCR第二步和第三步产物的电泳图谱Figure 3 Electrophoresis patterns of secondary and tertiary TAIL-PCR products(secondary and tertiary products of the same isolate are loaded side by side)分别利用SignalP 3.0、Protcomp-v 6.0、TMHMM-v 2.0、TargetP-v 1.1以及Pfam对该基因编码的蛋白进行分析。首先通过Signal IP 3.0预测,并不包含信号肽结构;继而经TMHMM-v 2.0预测,不含跨膜结构;通过Protcomp-v 6.0和TargetP-v 1.1分析表明,含有胞外分泌信号,是一种胞外分泌蛋白,在胞内无定位。另外,Pfam分析结果表明,该基因可能具有某种糖基水解酶活性。目前仅知该基因被T-DNA阻断后,突变体菌株对水稻品种Pi-2(t)从无毒转变为有毒,至于其在病原菌致病过程中的具体功能尚需通过进一步的基因敲除和功能互补实验加以确定。至于突变体T940084501的T-DNA侧翼序列,在稻瘟病菌基因组数据库中未比对到其同源序列,而在GenBank数据库中同样未比对到与稻瘟病菌相关的同源序列。由于该序列可能是FJ95054B菌株的特异序列,拟根据该序列扣除与载体有关序列及引物序列后的剩余序列设计引物,筛选FJ95054B BAC文库。对稻瘟病菌无毒基因以及致病过程有关基因的研究一直是了解稻瘟病菌致病性及其变异机制乃至水稻与稻瘟病菌特异性互作机制的关键所在,而研究某一个具体基因的功能最便捷的方法就是对该基因的突变体进行分析,这也正是本研究筛选T-DNA插入所致致病性突变体的初衷所在。获得致病性变异稳定的突变体是本研究的关键之一。本研究通过大量平行、重复实验初步筛选出致病性表型稳定的突变体,随后为避免由于菌株污染而造成的致病性变异的假象,还进一步将所获得的致病性突变体进行单孢分离,将分离的单孢与原菌株一同进行接种实验,结果显示单孢与原菌株的发病情况基本保持一致。这为进一步的分子水平的研究奠定了良好的基础。本研究对所获得的基因的功能还只是做了初步的预测,为了明确其功能尚需要借助进一步的基因敲除和功能互补实验。另外,为了明确致病性变异是否为单基因作用所致,尚且需要对致病性突变体的后代群体进行接种实验和潮霉素抗性分析,通过检测其后代的表型分离比率加以验证。 -
报告主要结论与创新点
出版时间:2019利用4个抗感杂交组合 (‘富士’ב金冠’ ‘金冠’ב富士’‘嘎拉’ב富士’ ‘富士’בQF-2’) 进行了苹果炭疽菌叶枯病抗性鉴定和遗传分析。结果表明,4 个群体中抗、感植株的分离比分别符合1∶1、1∶1、0∶1和1∶0的理论比值,初步推测苹果抗炭疽菌叶枯病性状受隐性单基因控制,抗病基因型为 rr,感病基因型为 RR和Rr。由此推测供试杂交群体的亲本品种 (系) ‘富士’ ‘金冠’‘嘎拉’ ‘QF-2’ 的基因型分别为rr、Rr、RR和rr。利用207株 ‘金冠’ב富士’ 的杂交后代为试材,构建了抗感基因池用于BSA分析。从HiDRAS和GenBank网站上下载了300 对均匀覆盖苹果染色体组的 SSR 引物,通过在亲本及抗感池中的初步筛选,将产生多态性条带的引物进行群体验证,获得了两个位于苹果15号连锁群上与抗病性状相关的分子标记 CH01d08 和 CH05g05。通过MapMarker 4.0 软件分析,将这两个标记定位于Rgls基因两侧,重组率分别为7.3%和 23.2%。依据苹果基因组 CH01d08 和 CH05g05 标记之间的序列,自行设计了276对SSR引物。经过亲本及抗感池的初步筛选及群体验证,最终筛选出 9 对与 R gls基因位点连锁的分子标记。将表型抗性鉴定结果与标记基因型数据相结合采用 JoinMap ver.4.0软件,完成了SSR标记与Rgls基因位点的连锁图谱。这11个标记覆盖了49.2 cM的遗传距离,最近的标记为 S0405127 遗传距离为 0.5 cM。Rgls基因位点两侧最近的两个标记 S0304673 和 S0405127 之间的物理距离为500kb。以‘金冠’和‘富士’及‘金冠’ב富士’的F1代群体中20株极端抗和20株极端感炭疽菌叶枯病的单株为材料,利用全基因组重测序(whole genome re-sequencing,WGR)技术,结合混合分组分析法(bulked szegregate analysis,BSA)共开发SNP位点3399950个,InDel位点573040个,SNP位点位于内含子上的465317个,位于外显子上的13029个,其中同义变异7330个,InDel位点位于内含子上的108996个,位于外显子上的19957个,其中插入或缺失3或3的整数倍的碱基,不改变蛋白质的编码框的有6928个。在全基因组范围内共得到33个候选的SNP位点及所对应的29个候选基因。通过对△(SNP-index)的筛选,将抗性基因位点快速定位于苹果第15条染色体的2~5Mb的区域内,结合SSR标记定位结果,最终锁定18个SNP位点、30个InDel位点,以及5个候选基因。通过对5个候选基因在接种病原菌后不同时间点的表达量差异及生物信息学分析,结果显示,基因MDP0000686092、MDP0000205432、MDP0000120033为功能未知蛋白,基因MDP0000945764具有CCHC型锌指结构,是丝氨酸/精氨酸富集剪接因子,具有核酸绑定、锌离子结合分子功能,参与RNA剪切生物过程,调节基因产物的表达。基因MDP0000864010具有烟酰胺腺嘌呤二核苷酸(磷酸盐)NAD(P)绑定区域,属于NAD依赖差向异构酶/脱氢酶家族,具有辅酶绑定功能,可能与鼠李糖生物合成酶1有关。通过qRT-PCR验证,5个候选基因均不同程度的响应炭疽叶枯病病原菌的诱导,是苹果炭疽叶枯病抗病相关基因。通过高分辨熔解曲线 (HRM) 分析技术对SNP 及InDel标记进行验证。对SNP 及InDel引物在亲本和抗感基因池中进行初步筛选,将出现不同分型的引物在分离群体上进行验证,获得了6个SNP 及5 个InDel标记与Rgls基因位点紧密连锁。从中挑选了10 个标记对所检验出的重组个体进行了分析,将 Rgls基因位点定位于标记 InDel4199 和SNP4257之间,范围缩小为58 kb以内。以青岛农业大学苹果试验基地 (山东省胶州市) 栽培的50 个田间栽培品种和品系为试材,利用四个紧密连锁的分子标记 S0405127、S0304673、SNP4236和InDel4254验证了分子标记的可靠性。结果表明,SSR标记 S0405127,S0304673,SNP 标记 SNP4236,InDel标记InDel4254鉴定的准确率分别为 90.0%,94.0%,98.0%,96.0%,其鉴定结果的准确率均达到90%以上,可以应用于田间栽培品种、品系、种质资源以及杂种后代幼苗对炭疽菌叶枯病抗性的鉴定。一是通过对4个杂交组合的F1 群体及4个亲本进行苹果炭疽菌叶枯病抗性鉴定和遗传分析,推断出苹果抗炭疽菌叶枯病性状受隐性单基因控制,抗病基因型为rr,感病基因型为RR和Rr。二是通过300对均匀覆盖苹果染色体组的SSR引物和自行设计的276对SSR引物在亲本及抗感池中进行筛选,得到的多态性标记经作图群体验证,共获得了11个与Rgls基因位点连锁的分子标记,将抗病基因定位于苹果第15条染色体上,并完成了SSR标记与Rgls基因位点连锁图谱的构建。将 Rgls基因位点定位在 SSR 标记 S0304673 和S0405127之间,物理距离为500 kb,与最近的标记 S0405127 的遗传距离仅为0.5 cM。三是开发了与抗炭疽菌基因相关的 SNP 标记和 Indel标记,并对部分SNP 及 InDel 标记进行了验证,将 R gls基因位点进行精细定位,将抗病基因的范围进一步缩小至58 kb,并获得了14 个与抗病相关的候选基因。