首页 <
知识图谱:全部
-
报告Molecular Identification of Phytoplasmas Associated with Witches' Broom in Rose and Spiraea
出版时间:2007植原体(Phytoplasma),原称 Mycoplasma-like Organism(MLO),是一类无细胞壁、不能人工培养、存在于植物筛管内的专性寄生菌。植原体主要依靠叶蝉等从韧皮部取食的半翅目昆虫传播,也可由菟丝子和嫁接等传播,能够引起植物丛枝、黄化、簇生、矮化、顶枯等症状[1]。我国已报道的植原体病害约有70多种,造成了巨大的经济损失[2]。传统上,主要是根据寄主的种类及其症状等生物学性状和介体昆虫的特性对植原体进行鉴定和命名。但该方法非常复杂和费力,难以鉴定多种植原体复合侵染引起的病害,经常导致片面甚至错误的结论[3]。近年来,随着分子生物学的迅速发展,核酸杂交、RFLP、PCR等技术的广泛应用极大推动了植原体分子鉴定等方面的研究。Lee等[4]根据植原体的16S rRNA基因的RFLP分析将植原体34个典型的株系划分为14个组32个亚组,其中翠菊黄化组(16SrⅠ)变异最大、分布最广。Schneider等[5]对翠菊黄化组、stolbur组和X-disease组的tuf基因进行RFLP分析,认为tuf基因可以作为划分植原体的依据,并且对植原体的检测可以达到单拷贝基因的水平。Marcone等[6]将翠菊黄化组划分为6个亚组。2004年,国际比较菌原体学研究计划署(IRPCM)将植原体划分为17个组,24个种,至少40个亚组,并制定了相应的分类标准[7]。本研究利用巢式PCR对表现丛枝症状的绣线菊和玫瑰进行植原体分子检测,并将克隆到的16S rRNA基因、延伸因子tuf基因及核糖体蛋白基因序列与已知植原体16Sr各组中植原体序列进行同源性比较分析,初步明确了两分离物的分类地位。表现丛枝、黄化、小叶和顶枯症状的绣线菊样品采自山东省青州市;表现叶片畸形、丛枝、顶枯症状的玫瑰样品采自山东省平阴县玫瑰研究所;克隆载体pMD18-T、PCR产物回收试剂盒、限制性内切酶及其他酶类等分子生物学试剂产品均购自TaKaRa公司。以有病害症状的玫瑰为接穗,通过芽接的方法嫁接到5株无症状的玫瑰上。嫁接后放置于无虫温室中,5~7周后观察症状。取表现典型症状的玫瑰韧皮部组织(2mm×2mm),放入3%戊二醛、1%四氧化锇中双重固定,乙醇(10%~70%)、丙酮(0~100%)系列脱水,Epon 812包埋,超薄切片后醋酸铀和柠檬酸铝双染色,在JEM-1200 X型透射电镜下观察。提取方法按参照文献[8]的方法进行,总DNA于-20℃保存备用。参照文献[9,10]所报道的植原体16S rRNA基因通用引物R16mF2/R16mR1进行PCR扩增,然后以此扩增产物为模板用R16F2/R16R1进行巢式PCR(表1)。以提取的玫瑰丛枝植原体的总DNA为模板,参照Schneider等[11]和Lim等[12]报道的延伸因子tuf基因、核糖体蛋白基因的引物对进行PCR扩增(表1)。引物名称Primername引物序列Primersequence退火温度TmR16mF25′-CATGCAAGTCGAACGGA-3′60R16mR15′-CTTAACCCCAATCATCGAC-3′60R16F25′-ACGACTGCTAAGACTGG-3′55R16R15′-TGACGGGCGGTGTGTACAAACCCCG-3′55fTufu5′-CCTGAAGAAAGAGAACGTGG-3′50rTufu5′-CGGAAATAGAATTGAGGACG-3′50rpF15′-GGACATAAGTTAGGTGAATTT-3′55rpR15′-ACGATATTTAGTTCTTTTTGG-3′55Table 1 Primers used in this research to amplify 16S rRNA gene tuf gene and rp genePCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,挑取筛选平板上的白色菌落培养,提取质粒,经PCR和酶切鉴定为阳性的重组质粒送上海英骏生物技术有限公司测序。将所得DNA 序列输入GenBank进行Blast检索,采用DNASTAR和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的相应基因的核苷酸序列进行比较和分析,并构建系统进化树。感病绣线菊植株表现为节间短缩,部分枝条丛生,叶片黄化、变小畸形、顶部嫩梢枯死,植株矮化。感病玫瑰植株表现典型丛枝症状,叶片变小畸形、顶部嫩梢枯死(图1)Figure 1 Symptoms of spiraea witches' broom and rose witches' broom将健康玫瑰嫁接到表现病害症状的玫瑰上,5~7周后,接穗新长出的嫩枝表现黄化、丛枝、畸形等症状。对玫瑰丛枝植原体进行电镜超微结构观察,在嫩茎韧皮部筛管中观察到典型的植原体。其主要形态为圆形和椭圆形,有明显的单位膜结构,直径为300~600nm,胞内可见核糖体蛋白体颗粒和DNA细链。以表现丛枝、叶片黄化等症状的绣线菊总DNA为模板,用巢式PCR扩增其16S rRNA基因,得到长度约为1.2kb的片段。以玫瑰丛枝植原体的总DNA为模板,用PCR扩增16S rRNA基因、tuf基因和核糖体蛋白基因,分别得到了约1.5kb、830bp和1.3kb的目的片断,与预期大小一致,表明植株中存在植原体。将此植原体分离物分别暂命名为绣线菊丛枝植原体(spiraea witches'broom,SWB)、玫瑰丛枝植原体(rose witches'broom,RWB)。通过测定2个PCR克隆到的片段的序列,确定了SWB的16S rRNA基因含有1236个核苷酸,G+C的含量为47.09%;RWB的16S rRNA基因含有1432个核苷酸。GenBank登录号分别为EF176608、EF199938。将两分离物与GenBank中17个植原体分离物的核苷酸序列进行比对和系统进化分析。从系统进化树中可以看出,两个分离物全部聚类到16SrⅠ组中,与16SrⅠ-B亚组的西方翠菊黄化植原体、马里兰翠菊黄化植原体及16SrⅠ-D亚组的泡桐丛枝植原体聚集为一簇。两个分离物与植原体16SrⅠ组中各亚组的分离物核苷酸同源性均达到99%以上,其中SWB与16SrⅠ-B亚组中的西方翠菊黄化植原体(SAY)同源性高达99.6%,与本研究的另外两个分离物RWB、PaWB的同源性为99.7%和99.8%。而RWB分离物与PaWB的同源性最高为99.9%,与植原体僵顶病组(Stolbur group)(16Sr Ⅻ)的草莓花瓣变绿症(Strawberry virescence,AY377868)植原体核苷酸的同源性为95.8%,与其他各组的核苷酸同源性为89.5%~92.8%。说明SWB、RWB分离物属于西方翠菊黄化植原体(图2)。Figure 2 Phylogenetic tree based on 16S rRNA nucleotide sequence with maximum-likelihood method in MEGA3.1 software package经序列测定,确定玫瑰丛枝植原体的延伸因子(EF-Tu)tuf基因序列长度为810个核苷酸,G+C的含量为37.5%,核糖体蛋白基因含有1174个核苷酸,G+C的含量为35.4%。将玫瑰丛枝植原体分离物与GenBank中17个植原体分离物的延伸因子(EF-Tu)tuf基因进行比对,结果表明:玫瑰丛枝植原体与植原体各个组的核苷酸同源性为70.4%~99.6%,该分离物与16SrⅠ组中各亚组的分离物核苷酸同源性为96.3%~99.6%,其中与16SrⅠ-D亚组中的泡桐丛枝(PaWB)同源性高达99.6%,该分离物与植原体其他组中的僵顶病组(Stolbur group)(16Sr Ⅻ)核苷酸同源性最高为88.6%,与其他各组的核苷酸同源性为70.4%~88.6%。将玫瑰丛枝植原体分离物与GenBank中21个植原体分离物的rp基因进行比对,结果表明:玫瑰丛枝植原体与植原体16SrⅠ组中各亚组的核苷酸同源性为96.7%~99.4%,其中与16SrⅠ-D亚组中的泡桐丛枝(PaWB)同源性最高为99.4%,从而表明该分离物属于Candidatus Phytoplasma asteris。本研究利用巢式PCR从表现丛枝症状的绣线菊中扩增到了1236bp的片段。序列测定和比较的结果表明,与这两种病害相关的植原体均为西方翠菊黄化植原体。前人对植原体侵染绣线菊研究较少,国外仅报道由植原体‘Ca.Phytoplasma pruni'引起的绣线菊矮化病[13]。我们采集了表现丛枝、顶枯症状的玫瑰和表现丛枝症状的泡桐,经PCR检测表明其病原为植原体。序列分析表明,两分离物的16S rRNA基因、延伸因子(EF-Tu)tuf基因和核糖体蛋白基因核苷酸同源性都在99.9%以上,从而确定玫瑰丛枝植原体与泡桐丛枝植原体属同一病原物,属于西方翠菊黄化植原体。尽管翠菊黄化组植原体的报道多在欧洲和美国,但本文是第一次中国关于植原体侵染玫瑰的报道。与2001年和2003年Kaminska M等[14,15]感病玫瑰表现畸形和顶枯不同的是,在本研究中的感病玫瑰表现出丛枝和顶枯的症状。有趣的是,在本研究中的玫瑰、泡桐分离物是在同一玫瑰园内得到,两者之间仅相隔数米,而在同一玫瑰园的其他地方也发现植原体侵染的玫瑰。在调查中发现感病植株多出现在新嫁接的玫瑰上,长势强的玫瑰发病较少,与表现丛枝症状泡桐较近的地块发病严重,其他地块发病较轻。在根据16S rRNA基因进行序列比对及构建系统进化树时发现,两个分离物与16SrⅠ-B亚组的西方翠菊黄化植原体、马里兰翠菊黄化植原体及16SrⅠ-D亚组的泡桐丛枝植原体在构建的系统进化树中聚集成一簇。Lee等[16]认为在基于16S rRNA基因进行序列比对时,16SrⅠ-D亚组的泡桐丛枝植原体会聚集到16SrⅠ-B亚组中,本研究结果与此相符。根据国际比较菌原体学研究计划署(2004)的建议,泡桐丛枝植原体、SAY植原体等都属于同一个种,‘Candidatus Phytoplasma asteris'。 -
报告Pathogen Identification of Tomato Bacterial Stem Necrosis
出版时间:2007番茄营养丰富、酸甜可口、人们喜食、用途多、产量高,已成为蔬菜的主要品种。它的丰产与歉收,直接影响着市场的供需。近10年来由于保护地栽培,发展很快,引进番茄品种种类繁多,种植技术不断改进,生态环境也随之发生变化,促使新的病虫害种类不断出现,给番茄生产带来了新的问题。在2002~2003年,在北京的密云、延庆和大兴县大棚种植的番茄上发生了一种新的病害,受害番茄植株呈现失水萎蔫,后期植株干枯死亡,纵剖受害植株主茎,髓部呈现褐色腐烂坏死,导致全株凋萎干枯死亡。该病2002~2003年冬季在密云县发生,有212个大棚发病,品种为加西亚,平均受害株率达到100%,造成拔园毁种、绝产无收,给生产带来了惨重的损失。该病已经成为番茄生产上的一种潜在危险性病害。按Koch法则,从接种病株上,分离到原始接种细菌菌株。依此确认,该病是一种细菌性病害,暂称为番茄茎髓黑腐病。该病害与国内已知有发生记载的6种番茄细菌性病害:番茄青枯病[7](Pseudomonas solamaearum)、番茄溃疡病[7](Clavibacter michigabensis subsp.michigabensis)、番茄疮痂病[7,8](Xanthomonas campestris pv.vesicatoria)、番茄斑点病[9](Pseudomonas syrimgae pv.tomato)、番茄软腐病[7](Erwinia carotovora subsp.carotovora)和番茄髓部坏死病[10](Pseudomonas corruga)的受害症状和菌落形态特征不同。故认为该病是一种新的细菌性病害,本文对获得的22个菌株进行了病原菌的鉴定,结果报道如下:1.1.1 供试菌株 供试的22个菌株是2002~2003年从北京市的密云、延庆、大兴等地番茄上分离并纯化后获得的(表1),对照菌株为绿黄假单胞菌典型菌株PDDCC2848[Pseudomonas viridiflava(Burkholder;1930;Dowson 1939)]和边缘假单胞菌边缘致病变种典型菌株PDDCC3553[P.marginalis pv.marginalis(Brown)Stevens 1925]。1.1.2 供试植物 番茄品种加西亚和中蔬四号、烟草、马铃薯。1.1.3 培养基制备 KB固体培养基[1]、牛肉汁固体培养基[1]。1.2.1 病原菌的分离[4] 用灭菌解剖刀切取病株茎部,用75%酒精消毒2min,经无菌水冲洗后取髓部病组织置于小瓷皿中研磨,加无菌水浸泡10min,然后用接种环蘸取该组织液在KB培养基上划线。长出单菌落后用该培养基再划一次线使细菌纯化。纯化后用于致病性测定和病原菌的鉴定。1.2.2 烟草过敏反应[11,12] 将从各地分离获得的22个菌株和对照菌株(表1)在KB培养基上培养24h,以无菌水配制成细菌悬浮液,浓度为1×108cfu/ml,用注射针将细菌液从烟草下表皮注入叶肉细胞间[2]。选用未开花的烟草植株,用灭菌水作阴性对照。接种后,保持在25~28℃,相对湿度85%,日照16h条件下。24h后,调查过敏性反应。菌株号No.strain致病性Pathogenicity采集地点Location分离时间Timeisolated烟草过敏TobaccohypersensitivityPnt1+北京密云(Miyun)2003-1-28-Pnt2+北京密云(Miyun)2003-1-28-Pnt3+北京密云(Miyun)2003-1-28-Pnt4+北京密云(Miyun)2003-1-28-Pnt6+北京密云(Miyun)2003-1-28-Pnt8+北京密云(Miyun)2003-1-28-Pnt9+北京密云(Miyun)2003-1-28-Pnt10+北京密云(Miyun)2003-1-28-Pnt11+北京密云(Miyun)2003-1-28-Pnt12+北京密云(Miyun)2003-1-28-Pnt13+北京密云(Miyun)2003-1-28-Pnt14+北京密云(Miyun)2003-1-28-Pnt15+北京密云(Miyun)2003-1-28-Pnt18+北京密云(Miyun)2003-1-28-Pnt19+北京密云(Miyun)2003-1-28-Pnt23+北京延庆(Yanqing)2003-6-9-Pnt24+北京延庆(Yanqing)2003-6-9-Pnt27+北京延庆(Yanqing)2003-6-9-Pnt20+北京大兴(Daxing)2003-5-20+Pnt21+北京大兴(Daxing)2003-5-20-Pnt30+北京延庆(Yanqing)2003-9-2+Pnt31+北京延庆(Yanqing)2003-9-2-表1 番茄茎髓黑腐病菌株及致病性和烟草过敏1.2.3 马铃薯腐败[1] 选取新鲜无病而且较大的马铃薯块茎,将其表面洗净,在无菌条件下,用75%酒精表面消毒,超净工作台上风干。在无菌条件下,用灭菌牙签蘸取适量在KB培养基上培养24h的细菌,插入马铃薯中,随后将其放在24℃培养箱内,并且用不接菌的马铃薯作对照,调查马铃薯腐败情况。1.2.4 番茄上致病性测定 在温室培养的加西亚和中蔬四号上接种。用灭菌牙签蘸取适量在KB培养基上培养24h的供试细菌,包括对照菌株,插入枝条和茎的交界处,置于自然条件下,调查发病情况。1.2.5 鉴定方法 细菌的形态特性、培养特性、生理生化反应及碳源利用等项实验方法,主要参照《一般细菌常用鉴定方法》[1]、《植物病害研究方法》[2]、N.W.Schaad编著的《植物病原细菌鉴定实验指南》[3]、《植物病原细菌的分类与鉴定》[4]等书中的方法进行。2.1.1 病原菌分离 共获得了22株细菌(表1),纯化后用于致病性测定和病原菌的鉴定。2.1.2 烟草过敏反应 pnt21,pnt30和对照菌株3553注射部位表现过敏性枯斑反应(HR),这证明了其对植物有致病作用。试验结果见表1。2.1.3 马铃薯腐败 供试菌株均对接种马铃薯产生不同程度的症状。其中供试菌株pnt1、pnt2、pnt13、pnt14、pnt15、pnt21、pnt30、pnt31和对照菌株2848、3553均表现出明显的腐烂症状,其余菌株所接种马铃薯都出现水浸状。2.1.4 番茄上致病性测定 致病性测定试验结果见表1。2.2.1 病原细菌革兰氏染色 所有供试菌株革兰氏染色阴性。2.2.2 培养性状 供试的菌株在KB培养基上28℃培养箱里培养48h,形成圆形菌落,全缘,不透明,表面光滑,均能产生荧光。其中菌株pnt1~pnt19的菌落绿黄色,直径1~3mm;菌株pnt20、pnt21、pnt30和pnt31产生黄色菌落,黏稠状,微隆,直径3~5mm;pnt23、pnt24和pnt27为乳黄色菌落,黏稠状,隆起,直径1~2mm。2.2.3 生理生化性状 生理生化性状试验结果见表2~表4。2.2.4 碳源利用 碳源生长利用结果见表2~表4。项目测定Characteristics供试菌株(Strains)Pnt1~pnt19对照菌株(CKstrains)28483553P.f.biovarⅠKB培养基产荧光FluorescentpigmentonKB++++淀粉水解Starchhydrolysis-(2、8、10、12)---[5]配糖体的分解EsculinHydrolysis-(11)+-耐盐性试验Salttolerance3%(1∶5%)3%3%与氧的关系Relationtofreeoxygen好氧好氧好氧好氧[6]马铃薯腐败Potatodecaycapacity水渍状(1、2、13、14、15:+)++表2 番茄茎髓黑腐病病原细菌生理生化性状试验结果(Pnt1~Pnt19)项目测定Characteristics供试菌株(Strains)Pnt1~pnt19对照菌株(CKstrains)28483553P.f.biovarⅠ酪氨酸酶测定Tyrosinasetest+(6、12、18、19)+-氧化酶Oxidase+-++[5]冰核测定Icenucleationactivity-(8、12-18未做)--3%KOH实验3%KOHtest---生长因素要求性测定Growthfacterre-quirement-(2-11、15、19)--烟草过敏实验Tobaccohypersensitivity--+苯丙氨酸脱氨酶Phenylalaninedeaminase---乙酰甲基甲醇测定Voges-Proskauer---甲基红测定Methylred-+-过氧化氢酶Catalase+++硝酸盐的还原Nitrateredution-(2)---[5]3-酮基乳糖的产生3-Ketolactose---精氨酸双水解酶Argininereaction---+[5]蔗糖还原物质产生Reducingsubstancesfromsucrose+(6、11-14、18、19)-+果聚糖的产生Levanformation++++[5]41℃生长Growthat41℃----[5]果胶溶解Pectinaseactivity+-+H2S的产生H2Sproduction---卵磷酸酶Lecithinasetest+(1-3、12、13)+++[5]葡萄糖酸氧化Gluconateoxidation+++葡萄糖氧化发酵试验OFtestOOO脱氮反应Denitrification----[5]尿素测定Ureasetest+(1、2、4、19)++吲哚的产生Indoleproduction---吐温80的测定Tween80hydrolysis+(6、9、10、18)+++[5]明胶液化Gelatinliquefaction++++[5]NH3的产生Ammoniaproduction-(23)-+碳源利用Carbonsourcesusedforgrowth木糖Xylose++++[5]蔗糖Sucrose++++[5]乳糖Lactose-(2、4、11)---[5]麦芽糖Maltose-(3、11-14)---[5]鼠李糖Rhamnose+(6、12、13、19)--山梨醇Sorbitol++++[5]肌醇Insoitol+++d[5]赤藓醇Erythritol+++d[5]丙酸Propionate-(1、11)--+[5]组氨酸Histidine++++[5]L-半乳糖L-Galactose++++[5]葡萄糖Gluconate++++[4,5]甘露醇Mannit++++[5]抗坏血酸Ascorbate---柠檬酸Citricacid+++续表2项目测定Characteristics供试菌株(Strains)Pnt20、pnt21、pnt30、pnt31对照菌株(CKstrains)28483553Pv.syringaeKB培养基产荧光FluorescentpigmentonKB++++淀粉水解Hydrolysisofstarch-(21、31)---[5]配糖体的分解Esculinhydrolysis+(20、31)+-耐盐性试验Salttolerance3%(31:5%)3%3%与氧的关系Relationtofreeoxygen好氧好氧好氧好氧[6]马铃薯腐败Potatodecaycapacity+(20:水渍状)++-[4]酪氨酸酶测定Tyrosinasetest++-氧化酶Oxidase-(20)-+-[4,5]冰核测定Icenucleationactivity+(20未做)--+[4]3%KOH实验3%KOHtest---生长因素要求性测定Growthfacterre-quirement-(31)---[6]烟草过敏实验Tobaccohypersensitivity+(20、31)-++[4]苯丙氨酸脱氨酶Phenylalaninedeaminase---乙酰甲基甲醇测定Voges-Proskauer----[6]甲基红测定Methylred++--[6]过氧化氢酶Catalase++++[6]硝酸盐的还原Nitrateredution----[4]3-酮基乳糖的产生3-Ketolactose---精氨酸双水解酶Argininereaction---蔗糖还原物质产生Reducingsubstancesfromsucrose-(21、30)-+果聚糖的产生Levanformation++++[3~5]41℃生长Growthat41℃----[4,5]果胶溶解Pectinaseactivity+-++[3,4]H2S的产生H2Sproduction----[6]卵磷酸酶Lecithinasetest-++d[5]葡萄糖酸氧化Gluconateoxidation+++葡萄糖氧化发酵试验OFtestOOO脱氮反应Denitrification----[5]尿素测定Ureasetest+(20)++吲哚的产生Indoleproduction----[6]吐温80的测定Tween80hydrolysis++++[5]明胶液化Gelatinliquefaction++++[4,5]NH3的产生Ammoniaproduction-(23)-+碳源利用Carbonsourcesusedforgrowth木糖Xylose+++d[5]蔗糖Sucrose++++[4,5]乳糖Lactose---+[3~5]麦芽糖Maltose---表3 番茄茎髓黑腐病病原细菌生理生化性状试验结果(Pnt20、pnt21、pnt30、pnt31)项目测定Characteristics供试菌株(Strains)Pnt20、pnt21、pnt30、pnt31对照菌株(CKstrains)28483553Pv.syringae鼠李糖Rhamnose-(31)--山梨醇Sorbitol++++[3,4,5]肌醇Insoitol++++[3,4,5]赤藓醇Erythritol+(20)+++[3,4,5]丙酸Propionate---d[4,5]组氨酸Histidine+++d[4,5]L-半乳糖L-Galactose+++葡萄糖Gluconate+++d[4,5]甘露醇Mannit++++[3,4,5]抗坏血酸Ascorbate----[5]柠檬酸Citricacid+++续表3项目测定Characteristics供试菌株(Strains)Pnt23、pnt24、pnt27对照菌株(CKstrains)28483553P.viridiflavaKB培养基产荧光FluorescentpigmentonKB++++淀粉水解Hydrolysisofstarch+(24)---[5]配糖体的分解Esculinhydrolysis-+-耐盐性试验Salttolerance3%3%3%与氧的关系Relationtofreeoxygen好氧好氧好氧好氧[6]马铃薯腐败Potatodecaycapacity水渍状+++[4]酪氨酸酶测定Tyrosinasetest++-氧化酶Oxidase+(24)-+-[3,4,5]冰核测定Icenucleationactivity-(24未做)--3%KOH实验3%KOHtest---生长因素要求性测定Growthfacterre-quirement-(27)---[6]烟草过敏实验Tobaccohypersensitivity--++[4]苯丙氨酸脱氨酶Phenylalaninedeaminase---乙酰甲基甲醇测定Voges-Proskauer----[6]甲基红测定Methylred-(24)+--[6]过氧化氢酶Catalase++++[6]硝酸盐的还原Nitrateredution---3-酮基乳糖的产生3-Ketolactose---精氨酸双水解酶Argininereaction----[3~5]蔗糖还原物质产生Reducingsubstancesfromsucrose+(24)-+果聚糖的产生Levanformation+++-[4,5]表4 番茄茎髓黑腐病病原细菌生理生化性状试验结果(Pnt23、pnt24、pnt27)项目测定Characteristics供试菌株(Strains)Pnt23、Pnt24、Pnt27对照菌株(CKstrains)28483553P.viridiflava41℃生长Growthat41℃----[3~5]果胶溶解Pectinaseactivity+-+H2S的产生H2Sproduction----[6]卵磷酸酶Lecithinasetest-+++[5]葡萄糖酸氧化Gluconateoxidation+++葡萄糖氧化发酵试验OFtestOOO脱氮反应Denitrification----[5]尿素测定Ureasetest+(24)++吲哚的产生Indoleproduction----[6]吐温80的测定Tween80hydrolysis+++-[5,6]明胶液化Gelatinliquefaction++++[4,5]NH3的产生Ammoniaproduction-(23)-+碳源利用Carbonsourcesusedforgrowth木糖Xylose+++d[5]蔗糖Sucrose++++[4,5]乳糖Lactose---麦芽糖Maltose---鼠李糖Rhamnose-(27)---[3,5]山梨醇Sorbitol++++[3~5]肌醇Insoitol++++[5]赤藓醇Erythritol+(23)+++[5]丙酸Propionate---d[5]组氨酸Histidine++++[5]L-半乳糖L-Galactose+++葡萄糖Gluconate+++d[5]甘露醇Mannit++++[3,5]抗坏血酸Ascorbate---柠檬酸Citricacid+++续表4从表2~表4可以看出,供试菌株和对照菌株的试验结果存在不一致性。但在如下的试验中表现出相同的结果,超过41℃不能生长,严格好氧,对葡萄糖能氧化(OF试验)不能发酵,3%KOH拉丝,不产生吲哚,不产生硫化氢,在pH值5.0和pH值7.0下果胶凹陷,明胶液化、过氧化氢酶(接触酶)和葡萄糖酸氧化均为阳性;乙酰甲基甲醇测定(V.P.试验)、3-酮基乳糖的产生、苯丙氨酸脱氨酶和脱氮反应均为阴性。在淀粉水解、配糖体的分解、酪氨酸酶测定、耐盐性测验、甲基红测定、氨气的产生、尿素的测定、生长因素要求性的测定、氧化酶反应、冰核测定、卵磷酸酶测定等生理生化试验项目中结果不同。由表2~表4可知,各菌株均能利用木糖、葡萄糖、山梨醇、肌醇、甘露醇、组氨酸、柠檬酸、L-半乳糖、蔗糖;不能利用抗坏血酸。只有pnt1和pnt11能利用丙酸,试验各菌株对乳糖、麦芽糖、鼠李糖和赤藓醇利用结果不一致。根据上述致病性试验结果,供试的22个菌株和对照菌株PDDCC2848,PDDCC3553分别接种番茄品种中蔬四号和加西亚后,均表现发病症状。细菌学特性鉴定结果表明,供试番茄菌株为革兰氏阴性,接触酶(过氧化氢酶)阳性,对葡萄糖不能厌气发酵产酸,不产生吲哚,不产生硫化氢,乙酰甲基甲醇测定为阴性,据此可确定该病属于假单胞属(Pseudomonas)[5]。供试的22个菌株在各试验项目上表现出不同的结果,综合各个试验结果,可大致将供试菌株分为三类,其中pnt1、pnt2、pnt3、pnt4、pnt6、pnt8、pnt9、pnt10、pnt11、pnt12、pnt13、pnt14、pnt15、pnt18和pnt19可归为一类,记为A类;pnt23、pnt24和pnt27可归为一类,记为B类;pnt20、pnt21、pnt30和pnt31可归为一类,记为C类。A类菌株在KB培养基上产生绿色荧光素,可确定为腐生荧光假单胞类群[4,5]。氧化酶测定、明胶液化、过氧化氢酶试验结果均为阳性;甲基红测定、吲哚的产生、硫化氢的产生等试验结果均为阴性;能利用葡萄糖、蔗糖、肌醇、山梨醇、甘露醇、组氨酸、赤藓醇、L-半乳糖、木糖,据此可初步确定A类菌株属于荧光假单胞生物变种Ⅰ(Pseudomonas fluorescens biovarⅠ),但在鼠李糖和麦芽糖的利用、淀粉水解、生长素要求性的测定、吐温80的测定、卵磷酸酶测定等试验上存在差异。Saygili H[11]报道该病菌可以侵染番茄。B类菌株能利用组氨酸、肌醇、山梨醇、甘露醇、葡萄糖、木糖,不能利用蔗糖、抗坏血酸和鼠李糖;耐盐性测验3%、无冰核活性,在吐温80的分解、酪氨酸酶测定的试验结果中呈阳性,与对照菌株2848完全相同;在氧化酶测定、淀粉水解、卵磷酸酶测定、配糖体的分解、尿素测定、生长素要求性的测定等试验上略有差异,据此初步确定该菌类属于绿黄假单胞菌(Pseudomonas viridiflava)。Alippi A.M.(2003)[12]报道该病菌可以侵染番茄。对于C类,在卵磷酸酶测定、氨气的产生试验结果中呈阴性;在吐温80的分解、酪氨酸酶测定、甲基红测定的试验结果中呈阳性;根据LOPAT试验,从蔗糖形成果聚糖(Levan formation),氧化酶反应(Oxidase),马铃薯软腐试验(Potato decay capacity),精氨酸双水解酶(Arginine reaction),烟草过敏反应(Tobacco hypersensitivity)的结果;不能利用鼠李糖,能利用木糖、葡萄糖、山梨醇、肌醇、甘露醇、组氨酸、赤藓醇;葡萄糖酸氧化呈阴性反应,可以初步确定属于丁香致病变种(P.syringae pv.syringae)。近年来番茄发生茎髓黑腐病,分析其原因,一是可能与品种有关,即引进的番茄品种不抗细菌病害;二是与栽培有关,发病的番茄大棚前茬栽培过芦荟,有线虫为害,可能是线虫为害番茄造成了伤口使得细菌侵入,鉴定出的3种细菌均是弱寄生菌,也正说明了这一点,它们可以侵染生长势弱的番茄。 -
报告First Report of Bermudan Grass(Cynogon dactylon)Smut in China
出版时间:2007狗牙根草是一种重要的草坪牧草。普遍用于城市的绿化。2007年5月从湖北华中农业大学校园的草坪上,采集到狗牙根草(Cynogon dactylon)黑粉病的病株标本,发病症状是花序的小穗变为线状的粉末状黑褐色的孢子堆,除小穗的中轴外完全被破坏,黑粉易脱落(图1-A)。用稀释分离法自发病植株的黑粉部位分离获得该病原菌,并对其进行了形态学鉴定和rDNA-ITS序列分析等研究。结果表明:狗牙根草黑粉菌在PDA培养基上,菌落初期形态为乳白色,呈酵母式增殖,多为短棒状的担孢子。后期逐渐变为暗黄色,有不均匀的皱褶隆起,菌落边缘有少量菌丝产生。冬孢子黑色或黑褐色,圆形至椭圆形,表面有轮纹,大小为(10.3~6.2)μm×(10.9~5.5)μm,见图1-B。对病原菌进行了rDNA-ITS序列分析结果表明:该病菌5.8S rDNA及两侧的ITS区序列与狗牙根黑粉菌U.cynodontis AY740168的同源性达到99%。将同一株狗牙根草的小孽分别取样,用CTAB法自各样本组织的总DNA,并对其进行ITS-PCR的扩增。结果表明:取自同一株狗牙根草的不同小孽,无论有症状还是没有症状均含有狗牙根黑粉菌的特异性条带,这说明该病菌对狗牙根草是系统性侵染为害的。这是国内首次报道相关狗牙根草黑粉病病害。图1 狗芽根黑粉病状(A)及其冬孢子形态(B)(标尺:10μm)Figure 1 The symptom(A)of Bermudan grass(Cynogon dactylon)smut and teliospore (B),bar=10μm -
报告Identification of Pathogen Associated with Root-rot Disease of Bupleurum chinense DC.
出版时间:2007柴胡(Bupleurum chinense DC.),别名北柴胡、竹叶柴胡,为伞形科多年生草本植物。野生资源主要分布于我国的华北、西北和东北,主产于陕西、山西、河南、吉林、辽宁、黑龙江等地[1]。柴胡过去多为野生,病害零星发生,随着人工抚育及栽培面积的逐年扩大,柴胡根腐病害的发生和为害程度不断增加。目前,国内外尚未见有关柴胡根腐病的系统报道,对其发生、流行规律,病原菌种类及病原菌生物学特性尚不清楚,因此生产过程中缺乏有针对性的防治手段。为了尽快明确上述问题,本研究在对柴胡根腐病病原菌进行分离鉴定的基础上,就病原菌的生物学特征进行了较为系统的研究,这为进一步开展柴胡根腐病害的防治奠定了理论基础。从北京市延庆县永宁镇和本所柴胡试验基地采集病害标样。病原菌的分离采用常规的组织分离法,具体操作参照方中达[2]编著的《植病研究方法》。观察柴胡根腐病对柴胡根部的为害症状;菌落的形状、色泽;在显微镜下观察大、小分生孢子的形状及多少,测量其大小,观察有无隔膜及隔膜的数目,观察产孢细胞的类型,厚垣孢子的有无以及着生部位和子实体类型等。1.3.1 室内离体根组织接种 选取健康无病的柴胡根组织,用无菌水清洗干净,采用针刺法接种,保湿培养。1.3.2 室内活体植株接种 将取自田间的柴胡植株移栽于室内花盆,将配好的孢子悬浮液用微孔注射器注入柴胡根部,定期观察柴胡发病情况。1.4.1 温度对菌丝生长的影响 将病原菌接种PDA培养基,分别于5℃、10℃、15℃、20℃、25℃、30℃和35℃恒温培养箱中培养,6天后测量菌落直径,每个处理重复3次。1.4.2 培养基pH值对菌丝生长的影响 培养基灭菌后,分别调节pH4、6、8、10、12,接种后于25℃恒温培养箱中培养,6天后测量菌落直径。每个处理重复3次。1.4.3 分生孢子萌发 孢子萌发试验采用载玻片孢子悬滴萌发法。每1h计数孢子萌发数量,计算孢子萌发率。1.4.4 温度对分生孢子萌发的影响 共设5℃、10℃、20℃、25℃、30℃和35℃共6个温度梯度,24h镜检记录孢子萌发数,计算萌发率。每个处理重复3次。1.4.5 pH值对分生孢子萌发的影响 用pH值分别为2、4、6、8、10、12的水溶液配制孢子悬浮液,于25℃恒温培养箱中培养,24h后测定孢子萌发率。每个处理3次重复。1.4.6 湿度对分生孢子萌发的影响 在密闭容器中分别配制(NH4)2SO4、ZnSO4、NH4H2PO4和CaSO4饱和溶液,使其相对湿度(RH,Relative Humidity)分别维持在81%、90%、93%和98%,以清水(RH=100%)作对照,于25℃下培养,24h后测定孢子萌发率。每个处理3次重复。1.4.7 不同培养基对病原菌产孢的影响 分别配制PDA和小麦汁培养基,25℃恒温箱中培养,8天后观察分生孢子的产生情况。每个处理3次重复。1.4.8 分生孢子致死温度测定 将孢子悬浮液装在200μl离心管中,在PCR仪上以温度35~70℃(温度间隔为5℃)处理10min后,于25℃恒温箱中培养24h,观察孢子萌发情况。得到分生孢子致死的大致温度范围后,再以1℃为温度间隔求得精准致死温度。2.1.1 病害症状 该病主要为害柴胡的主根,亦可为害侧根。发病初期,自根茎交界处产生黑褐色斑点,后逐渐扩大呈圆形、近圆形或不规则病斑。发病后期,根部表皮自顶端向下产生纵向干裂,裂口变褐或发黑并逐渐加宽、加深。裂口多为竖条形,椭圆形或菱形。发病初期地上部分与健株无明显区别。发病后期裂口遍及根部整个外周,病部稍膨大、变硬、变脆,裂口深及木质部并造成水分、营养运输中断,最终导致整个植株萎蔫死亡。一年生柴胡当年秋季地上部枯萎后至结冻前即有发生,来年5~8月份为病害盛发期。2.1.2 柴胡根腐病菌培养性状 自柴胡根部病组织分离的病原菌在PDA培养基培养,菌落呈乳白色,气生菌丝发达,菌落底部呈浅褐色;在麦汁培养基上培养后菌落颜色呈灰白色,气生菌丝稀少。显微镜观察发现,麦汁培养基上培养的菌丝有分生孢子梗,分生孢子大量簇生,且菌丝上直接长有大量厚垣孢子。PDA培养基上培养的菌丝中间有隔,上面无分生孢子梗,也未发现分生孢子及厚垣孢子。图1 柴胡根腐病田间发病症状Figure 1 The symptom of root-rot disease in Bupleurum chinense DC.图2 柴胡根腐病菌的菌落形态Figure 2 The appearance of Fusarium solani isolated from Bupleurum chinense DC.2.1.3 病原菌鉴定 室内镜检发现大量分生孢子梗和大、小分生孢子。分生孢子梗一般簇生、直立,分隔。小分生孢子数量多,卵形、长椭圆形或短棒状,无隔膜;大分生孢子镰刀形或细长椭圆形,1~3个隔膜(3个隔膜者占到总数的96%以上)。厚垣孢子近圆形,在菌丝顶端单生。参考真菌分类相关文献,确认柴胡根腐病的病原菌为茄镰孢菌(Fusarium solani)。2.1.4 致病性测定 接种一定时期后,接种部位开始表现症状,且与田间发病症状类似。在接种病株上再次分离病原菌,经PDA培养基培养数天后,显微镜观察发现再次分离到的病原菌与接种的病原菌为同一病原菌。图3 柴胡根腐病菌孢子形态Figure 3 Fusarium solani Conidia isolated from Bupleurum chinense DC.2.2.1 温度对菌丝生长的影响 温度对病原菌菌丝的生长具有显著影响,菌丝在10~30℃范围内均能生长,25~30℃是菌丝生长的最佳温度范围。环境温度≤5℃或≥35℃均对菌丝的生长产生明显的抑制作用。2.2.2 培养基pH值对菌丝生长的影响 柴胡根腐病菌菌丝在pH值4~12的PDA培养基上均能够生长。在pH值4培养基上菌丝的生长速度较其他培养基上的菌丝慢,且菌落的背面呈红褐色,其他培养基上的菌落背面呈暗白色。2.2.3 分生孢子萌发 在20℃条件下培养,分生孢子萌发速度较快。4h萌发率达到14%,6h萌发率为46%,9h萌发率达到98%,10h后分生孢子全部萌发。图4 柴胡根腐病菌分生孢子在20℃下的萌发率Figure 4 Germinating ratio of Fusarium solani Conidia isolated from Bupleurum chinense DC.at 20℃2.2.4 温度对分生孢子萌发的影响 温度对分生孢子的萌发十分关键。由表1可以看出,20~25℃是最适宜的产孢温度,温度低于10℃,孢子不能萌发,温度高于30℃,孢子萌发率显著降低。温度(℃)Temperature(℃)分生孢子Conidia萌发率(%)Germinationrate(%)重复1Repeat1重复2Repeat2重复3Repeat3平均值Mean51020253035Ma0000Mi0000Ma0000Mi0000Ma100969898Mi80848684Ma95969395Mi90949292Ma80838181Mi40454644Ma60646262Mi10868表1 温度对镰刀菌分生孢子萌发的影响Table 1 The effect of temperature to germination of Fusarium solani conidia isolated from Bupleurum chinense DC.2.2.5 pH值对分生孢子萌发的影响 pH值对分生孢子存在显著影响,且大、小分生孢子对pH值的敏感程度也明显不同。从表2可以看出,大分生孢子在pH值2~10的范围内均能维持较高的萌发率(>90%),pH值大于12值萌发率显著降低;而小分生孢子在pH值4~6的范围内能够维持较高的孢子萌发率(大于或接近90%),pH值小于2或大于6时,孢子萌发率均显著降低。pH值pH分生孢子Conidia萌发率(%)Germinationrate(%)重复1Repeat1重复2Repeat2重复3Repeat3平均值Mean24681012Ma90949091Mi40353737Ma100989999Mi95979495Ma100969898Mi90869289Ma100949697Mi40453639Ma90928990Mi20182421Ma60566259Mi10121011表2 pH值对镰刀菌分生孢子萌发的影响Table 2 The effect of pH to germination of Fusarium solani conidia isolated from Bupleurum chinense DC.2.2.6 湿度对分生孢子萌发的影响 研究发现,病原菌分生孢子在相对湿度≥90%的环境下均能够萌发,萌发率与相对湿度呈线性正相关,分生孢子的最适相对湿度为100%;相对湿度低于90%,分生孢子不能萌发。2.2.7 不同培养基对病原菌产孢的影响 分别用PDA和麦汁培养基培养柴胡根腐病菌。培养8天后,PDA培养基上的病菌气生菌丝发达,颜色纯白,挑取少量菌丝在显微镜下观察,未发现分生孢子;麦汁培养基上培养的病菌气生菌丝稀少,颜色发暗,挑取少量菌丝在显微镜下观察,可见大量的大、小分生孢子。2.2.8 分生孢子致死温度测定 研究发现,柴胡根腐病菌分生孢子在35~50℃之间均能够萌发,而在55~70℃均不能正常萌发。进一步研究发现,51℃为柴胡根腐病菌分生孢子的致死温度(表3)。处理时间(min)Treattime(min)温度(℃)Temperature(℃)35404550515253545560657010++++--------表3 柴胡镰刀菌分生孢子的致死温度测定Table 3 Lethal temperature of Fusarium solani conidia isolated from Bupleurum chinense DC.本研究通过对柴胡根腐病病原菌的分离鉴定、致病性测定以及病原菌的生物学特征的初步研究,得出如下结论:3.1 根据病原菌的形态特征和致病性测定结果,确认柴胡根腐病病原为镰刀菌(Fusarium solani)。3.2 实验结果表明,柴胡根腐病菌菌丝生长的最适温度为25~30℃,在pH值6~12条件下均能正常生长;分生孢子萌发的最适温度为20~25℃,最适相对湿度为100%,最适pH值为4~6。分生孢子的致死温度为51℃。3.3 柴胡根腐病早有发现,但因以前多为野生,病害只是零星发生。近年来,随着柴胡需求量的逐年提高,柴胡的人工栽培面积不断扩大,这为柴胡根腐病的发生和发展提供了便利条件,柴胡根腐病的发生逐年加重。目前,尚未见有关柴胡根腐病的发生、流行及防治策略的研究报道,开展柴胡根腐病害的侵染、流行及综合防治领域的研究工作势在必行。 -
报告Identification of Pathogens Causing Wilt of Coleus Forskohlii
出版时间:2007毛喉鞘蕊花(Coleus forskohlii Briq)系唇形科鞘蕊花属植物,是一种多年生、半肉质的脆性草本药用植物。可用于治疗感冒、咳嗽等疾病,其提取物forskolin 具有降压、强心和抗炎等作用,可治疗心血管疾病、皮肤病等。同时它还可以通过激活腺苷酸环化酶而调节各种组织,是一种其他药物的活化剂。也可作为生化试剂而广泛应用。湖北通城县新磨苗圃基地从云南昆明植物所引种的毛喉鞘蕊花,最近几年连续发生严重的枯萎病,直接降低当地经济效益以及药用开发。其种植土壤为砂壤土,pH值5.5~6.5。每年7月初开始发病,7月下旬到8月初发病最严重,9月份开始减轻。阴雨连绵天气其发病程度加重。因此,自2004年起对其发生为害、病原以及防治进行研究。毛喉鞘蕊花整个生育期都可发病,但不同生育阶段为害程度有所不同,苗期表现较轻,生长中期发病较重。苗期症状表现为:下部叶片最先卷曲,而后下垂,接着整株叶片逐渐萎蔫,似缺水状,数日后叶片呈褐色干枯状,植株萎缩,严重时全株死亡;中后期发病时,接近地面的根茎最先显现症状,表皮粗糙明显变褐,接着沿着根茎向上蔓延,直至全株根茎变褐,剖开其茎部,可见其维管束腐烂呈黑褐色。阴雨天气可见病部表面有白色霉层,即病菌的分生孢子。病株采自湖北省通城县新磨苗圃基地。在发病根茎病健交界处切取小块根茎组织,按常规的组织分离法在PDA培养基上分离菌株。在菌落边缘挑取形态比较单一的小块菌丝块转移到新的平板上培养,重复纯化2~3次。最后进行单孢纯化后保存于PDA斜面上置4℃冰箱内贮存备用。采用伤根蘸孢悬液接种法进行致病性测定,接种7天后可观察到与田间病株相同的发病情况。再分离可得到与接种菌一致的分离物,说明病害即为该病原菌所致。在 PDA平板上观察培养的菌落,再根据病原菌产孢表型、分生孢子及分生孢子梗等形态特征对病原菌进行形态学鉴定。结果表明,该病原菌在 PDA 培养基上,生长3天气生菌丝茂盛,白色絮状,略带浅紫色;培养基反面菌丝呈辐射状分布,5天菌丝由浅紫色变为深紫色。产孢表型观察,气生菌丝有隔、分枝、透明,直径3~5μm,产孢细胞瓶梗状。小型分生孢子0~1 个分隔,卵形或椭圆形,假头状着生,大小为4~11μm× 1.8~4μm。大型分生孢子为典型的镰刀状轻度弯曲,向两端逐渐狭细,顶细胞渐尖并弯曲成喙状,基细胞足状,多数为3隔,少数4~7隔,大小为19~45μm× 2.5~3.5μm。菌落生长 10 天左右大量产生厚垣孢子,多数单个,球形,细胞壁粗糙,直径7~10μm。根据病原菌的形态特征将该菌鉴定为尖孢镰刀菌(Fusarium oxysporum)。在形态学鉴定的基础上,采用分子鉴定进行辅助鉴定。利用CTAB法提取菌株的DNA,以ITS1与ITS4为引物进行扩增,扩增的DNA测序结果与GenBank中的相关序列进行比对,该菌株与登陆号为DQ002550.1、DQ016211.1~DQ016203.1 Fusarium oxysporum的菌株序列达到最高的同源性,能够比对上的碱基数目最多,E-value值为最小值0。根据生物信息学同源性比对的结果再结合形态学鉴定,将该菌鉴定为尖孢镰刀菌。 -
报告Report of Rust Disease on Calystegia soldanella in Qingdao District
出版时间:2007肾叶打碗花[Calystegia soldanella(Linn.)R.Br.]为多年生匍匐性草本植物,地下茎较粗长,地上茎光滑,平卧,不缠绕,叶互生,肾形至近圆形,基部凹缺,边缘波状,具长柄。在我国分布于吉林、辽宁、河北、山东、江苏、浙江、福建、台湾省等沿海省区的砾石海滩上,是我国沿海地带盐性砾土的指示植物,在世界各海滩也均有分布。它总是作为沙质、沙砾质、砾石质草场优势种或伴生种出现在海滨,具有很高的护滩抗风性能。由于其茎秆脆嫩、纤维素含量少,叶片肥厚,气味纯正,为多种家畜所喜食,所以是一种近海沙滩地上的好盐牧草。肾叶打碗花还具有一定的再生能力,花前期放牧或刈割,其再生草量可达第一次收草量的75%以上,这在土壤条件比较差的盐性海涂沙地上,确系一种高产牧草,因而具有很高的利用和饲用价值[1]。2006年在黄岛进行植物采样中发现肾叶打碗花上发生一种由旋花柄锈菌(Puccinia convolvuli Castagne)引起的锈病。该锈病严重的降低了肾叶打碗花的产量和饲用价值,因而本文将从该病的症状、病原菌、发病规律入手,详细报道该病的发生情况,为该病的防治提供依据。肾叶打碗花锈病标本于2006~2007年采集于山东省青岛市黄岛海滩和仰口海滩。从病叶片的正反两面用挑或刮的方法将病原菌制片,进行初步观察。为进一步观察病原菌在寄主体上的着生状况,可进行冷冻切片的制作,即将病斑从叶片上切下,约4mm×4mm大小,然后用石蜡冷冻切片机进行冷冻切片,把切好的组织用细毛刷挑在载玻片上摆放整齐,然后在体视镜下观察,将切得较好的组织用细挑针挑于另一载玻片上,在显微镜下观察、测量、描述形态特征并进行拍照。5月初至5月中旬开始发病,初期在叶片正面形成红褐色圆形病斑(图1),边缘色稍淡,性孢子器米黄色或红褐色,单生或聚生。5月中下旬在病斑背面对应性孢子器处产生淡黄色突起,后突破寄主表皮形成杯状锈孢子器(图2),淡黄色至米黄色,边缘白色。6月初至6月中旬,在叶片病斑两面产生淡褐色的疱状斑,后破裂露出褐色的粉状物,为病原菌的夏孢子(图3)。10~11月在夏孢子堆上产生肉桂褐色冬孢子堆(图4),散生或聚生,隆起,后期破裂,在叶片上及茎蔓上均可产生。图1 叶片正面的性孢子器;图2 叶片背面的杯状锈孢子器; 图3 叶片上的夏孢子堆; 图4 叶片上的冬孢子堆;图5 性孢子器(白箭头)及锈孢子器(黑箭头); 图6 锈孢子;图7 夏孢子;图8~9 冬孢子堆;图10 冬孢子性孢子器黑色,球形,80~100μm(图5);锈孢子器杯状,336~432μm×250~384μm(图5),锈孢子无色,但内部具黄色的内容物,因而稍显淡黄色,双壁,不光滑,具细刺,圆形至不规则形,17.5~20μm×12.5~5μm(图6);夏孢子褐色,圆形或卵圆形,双层壁,较厚,壁光滑或有细刺,25.0~30.0μm×22.5~27.5μm(图7);冬孢子双胞,具柄,淡黄色至黄褐色,25~42.5μm×15.3~25μm(图8~图10)。经查阅资料并进行鉴定,肾叶打碗花锈病的病原菌为旋花柄锈菌(P.convolvuli Castagne)。经过观察和鉴定,肾叶打碗花锈病的病原菌是柄锈菌属旋花柄锈菌(P.convolvuli Castagne)。通过对病原菌在寄主上的生长状况的观察,发现其为单主寄生全锈型锈菌,在叶片正面产生性孢子器,背面产生杯状的锈孢子器,在叶片两面产生夏孢子堆和冬孢子堆[2],对于担孢子未进行冬孢子的萌发观察。旋花柄锈菌(P.convolvuli Castagne)仅在我国旋花科6属9种植物上引起锈病[3~6],如头花银背藤[Argyreia capitata(Vah.)Arn.ex Choisy],打碗花(Calystegia hederacea Wall.ex Roxb.)、鼓子花[C.sepium auct.non(L.)R.Br.]、肾叶打碗花[C.soldanella(Linn.)R.Br.]、田旋花(Convolvulus arvensis L.)、圆叶牵牛[Pharbitis purpurea(L.)Voigt]、牵牛花[P.nil(L.)Choisy]、甘薯(Ipomoea sp.)、鳞蕊藤[Lepistemon binectariferum(Wall.ex Roxb.)O.Kuntze]。肾叶打碗花锈病仅在山东烟台地区报道过[3],而在我国其他地区未见报道。此次为该病在青岛地区的首次报道。致谢:感谢青岛农业大学孙丽娟老师和植保专业2003级学生韩建强帮助采集肾叶打碗花病害标本。 -
报告Isolation and Identification of Endophytic Fungi from Hot Pepper
出版时间:2007内生真菌是指那些生活在植物组织内的真菌,用以区分生活在植物表面的真菌。对植物内生真菌的研究可追溯至19世纪末,在100多年的研究中取得了丰硕的成果[1~3,7~9]。内生真菌与植物之间存在密切的互利共生关系,对植物的生理代谢调控和生长发育有较大的影响,目前还未发现不存在内生真菌的植物种类。我国也从大量的植物中报道了内生真菌的存在,寄主种类涉及林木、蔬菜及花卉植物[10~16],但还有相当数量的植物内生菌没有被研究过,进一步深入开展植物内生菌的研究,对于丰富各类菌物的生物多样性知识和植物内生菌资源的应用开发具有十分重大意义。辣椒是国民经济中重要的蔬菜作物,但发生在辣椒上的病害较多,对辣椒的生产带来了不利的影响,在内生真菌表现巨大生防潜力的前提下,未见到辣椒内生真菌的报道,因而开展辣椒内生真菌的研究,以期从中筛选出有生防价值的内生真菌,必将会促进辣椒的生产并带来不可估量的经济和生态效益。山东省莱阳市莱阳农学院园艺系蔬菜大棚种植干制椒型辣椒。选择生长性良好、无病虫害症状的健康辣椒植株的叶片、茎秆及果实,分别于发芽期、幼苗期、开花坐果期和结果期采样。植株采下后装入无菌塑料袋中,带回实验室立即进行分离。1.2.1 内生真菌的组织分离法 所有的叶片和茎秆样品在蒸馏水冲洗2次,然后浸没在70%酒精1min,3%次氯酸钠4min,然后再在70%酒精中浸没30s,灭菌水中洗3次,每次洗1min。经过表面消毒的组织,切成5~7mm的组织块,无菌操作下转移至PDA培养基(pH值6.8,马铃薯200g;葡萄糖20g;琼脂15g;121℃灭菌15min)上,倒平板前加入100μg/ml的土霉素以抑制细菌的生长,取最后一次冲洗组织的灭菌水倒于平板上,以检查表面消毒是否彻底。1.2.2 内生真菌的稀释分离法 组织表面消毒的方法同1.2.1,将经过表面消毒的叶片和茎秆在灭菌的研钵中研碎,加入等体积的灭菌水稀释,然后用移液器吸取1ml组织悬浮液转于PDA培养基(加入100mg/ml的土霉素)上,然后用灭菌玻棒涂平。1.2.3 种子内部真菌的分离 将种子用70%酒精浸泡30s,很快放入无菌水中冲洗3次,然后置于铺有灭菌滤纸的培养皿内,并加入少量灭菌水,加入的量以润湿滤纸为佳,每皿中放入5粒种子。1.2.4 内生真菌的培养、纯化、保藏及计数 为了便于分离生长缓慢的真菌和产孢能力低的真菌的生长,将一半平板放入26℃培养箱中培养,另一半平板放入37℃中培养。每天进行检查,一直到30天后,将长出的真菌及时进行分离、纯化及保藏(4℃,PDA斜面)以便进一步进行鉴定,并记录不同部位分离出的菌株数。1.2.5 内生真菌的鉴定 从培养的菌落上挑取菌丝制成临时玻片进行观察,如果观察的菌丝及分生孢子梗大量聚集在一起,不易看清结构,则应先将菌丝置于滴有1滴70%酒精的载玻片上10s,然后将玻片倾斜倒去酒精,并用吸水纸将酒精彻底吸净后,再在菌丝及分生孢子梗上滴1滴水制成临时玻片放在光学显微镜下观察,拍照,测量孢子大小,并记录形态特征,所有鉴定的菌种均以在PDA培养基上生长的特性为标准,参考有关书籍进行鉴定[4~6]。采用不同的分离方法得到的菌株数不同,稀释分离法得到的菌株数较多,而经组织分离法得到的菌株数少(表1),但稀释分离法得到的菌株不易纯化,而组织分离法得到的菌株易纯化。从种子中分离得到的内生真菌数量较少,仅占到总分离菌株数的7.8%;叶片和茎秆上分离到的菌株数无多大差别。tissuedilutedisolationmethodtissueisolationmethodnumberofisolatesfrequenceofisolationnumberofisolatesfrequenceofisolationleaf4730.03219.1stem4023.83621.4seed——137.8Table 1 The comparison of endophytic fungi isolated by different methods经过对辣椒叶片、茎及种子823份材料中内生真菌的分离,共得到168株菌株,定殖率为20.4%,图1表明了暗色丝孢菌是最常见的分离菌。经鉴定属于14属20种真菌(表2)。其中,弯孢属Curvularia、链格孢属Alternaria、平脐蠕孢属Bipolaris、芽枝孢属Cladosporium、黑附球属Epicoccum、细基格孢属Ulocladium、皮司霉属Pithomyces、拟青霉属Paecilomyces、青霉属Penicillium、曲霉属Aspergillus、枝顶孢属Acremonium、镰刀菌属Fusarium是常见的内生真菌,而黑团孢属Periconia和矛束霉属Doratomyces是首次分离到的内生真菌,从种子中分离获得,对其形态学特征描述见2.3。大多数的菌株在28℃分离培养获得,而在37℃得到的是一些不孕性菌丝。2.3.1 小孢矛束霉(图1~图2)Doratomyces microsporus(Sacc.)F.J.Morton&G.Smith,Mycol.Pap.86:77,1963.KindsSpeciesKindsSpeciesNondemati-aceousgen-eraPaecilomycessinensisQ.D.ChenPenicilliumdigitatum(Pers.)Sacc.PenicilliumexpansumLinkAspergillusnigerTieghAspergillusochraceusG.WilhAspergillusversicolor(Vuill.)TirabAcremoniumroseogriseum(S.B.Saksena)W.GamsFusariumoxysporumvar.liniSnyder&H.N.HansenDematia-ceousgeneraCurvularialunatusR.R.Nelson&HaasisCurvulariaintermediaBoedijnUlocladiumconsortiale(Thüm.)E.G.SimmonsPithomycessacchari(Speg.)M.B.EllisAlternariaalternata(Fr.)KeisslAlternariabrassicicola(Schwein.)WiltshireAlternariatenuissima(Kunze)WiltshireBipolarisaustraliensis(Ellis)Tsuda&UeyamaCladosporiumherbarum(Pers.)LinkPericoniabyssoidesPers.SterilehyphaeEpicoccumnigrumLinkDoratomycesmicrosporus(Sacc.)F.J.MortonTable 2 Kinds of endophytic fungi from hot pepper菌落在CMA上平展,粉状,灰绿色或灰褐色,背面褐色,培养后期明显可见直立的孢梗束。菌丝体表生或大部分埋生,淡褐色或褐色,常形成菌丝束。孢梗束高100~800μm,柄部暗褐色,由紧密压在一起的分生孢子梗组成,头部圆柱形。产孢小梗多个簇生在分生孢子梗中上部。分生孢子卵形,端部多数尖,基部平钝,无色至淡棕色,聚集在一起呈暗褐色,光滑,3.5~5.5μm×2.5~4μm。2.3.2 黑团孢(图7~图8)Periconia byssoides Pers.ex Schweinitz,Persoon,syn.Meth.Fung.(G?ttingen):686,1801.Figure 1~2 Doratomyces microsporus 1.Conidiophore 2.Conidia; Figure 3 Conidia of Fusarium oxysporum var. lini; Figure 4~5 Cuvurlaria lunatus 4.Conidia; 5.Conidiophores and conidia;Figure 6 Conidiophore of Bipolaris australiensis; Figure 7~8 Periconia byssoides 7.Conidiophores; 8.Conidia; Figure 9~10 Epiccocum nigrum 9.Conidia; 10.Conidiomata菌落在CMA上絮状,稀薄,白色。菌丝体表生或埋生,无色。26℃培养1周左右,单根或2~5个簇生、直立、黑色的分生孢子梗从菌落中长出,基部暗橄榄褐色或褐色,光滑或粗糙,不分枝,梗长1.0~1.5mm,宽10~15μm,3~6隔膜,顶端为分生孢子和产孢细胞聚集形成的头部结构。产孢细胞近无色,椭圆形,产生单生或链生的分生孢子。分生孢子球形,初淡黄色,后暗褐色,粗糙,壁厚,直径15~17.5μm。本文首次研究了辣椒内生真菌的种类,共得到15属20种真菌,均属于无性态真菌。其中暗色丝孢菌数量及种类居多,与已报道的植物内生真菌种类及数量较一致[10,13~16],但又具有一定的差异性,首次报道了黑团孢(P.byssoides)和小孢矛束霉(D.microsporus)是内生真菌,均由种子内分离得到。总结有关内生真菌的文献,发现内生真菌多数为无性态真菌,其次为子囊菌,接合菌居第三,担子菌及鞭毛菌极少存在[10,13~16],而本次试验分离出的全部是无性态真菌,未见其他类群的真菌,这并不说明辣椒内生真菌中就不存在其他种类的真菌,下一步应改进分离培养方法并采集不同生长时期的组织和部位进行大量分离,以期全面准确地了解辣椒内生真菌的种类,并对内生真菌进行抗活性的筛选工作。组织分离是目前内生真菌分离的主要方法,简单易行,但由于有些真菌在人工基质上不能生长,因而不能得到全部的内生真菌,有很大的局限性。本文首次将组织研碎,采用稀释分离的方法分离内生真菌,获得的菌株种类上与组织分离法无多大差异,但较组织分离法获得的菌株数量多,在没有更好的内生真菌分离方法的情况下,应尝试采用多种分离方法和多种培养基进行分离,掌握合适的分离培养条件,尽可能多的得到内生真菌。 -
报告苹果对炭疽菌叶枯病抗性遗传的研究
出版时间:2019培育和种植抗病品种是防控植物病害的重要途径之一。研究苹果对炭疽菌叶枯病的抗性遗传规律,对筛选与炭疽菌叶枯病抗性基因连锁的分子标记,利用分子标记辅助育种有着极其重要的意义。作者采用两个高抗苹果炭疽菌叶枯病品种 (系) ‘富士’和‘QF-2’ (‘秦冠’ב富士’ 杂交后代中的高抗品系);两个高感病品种 ‘金冠’ 和 ‘嘎拉’ 为亲本配制了4个杂交群体,采用室内人工离体接种的方法对4个杂交组合的F1 单株进行了苹果炭疽菌叶枯病的抗性鉴定,以期揭示苹果炭疽菌叶枯病的抗性遗传规律,为发掘与抗性基因紧密连锁的分子标记,开展苹果抗炭疽菌叶枯病分子育种奠定基础。选择青岛农业大学苹果试验基地 (山东省胶州市) 2009—2014年种植的4个杂交组合的F1 群体及4个亲本作为室内人工接种鉴定的试验材料。4个群体分别是:‘金冠’ב富士’ F1 代 207 株、‘富士’ב金冠’ F1 代95 株、‘嘎拉’ב富士’ F1 代 262 株、‘富士’בQF-2’ F1 代198株。取样期间不喷施农药,其他管理正常。室内人工离体接种采用的病菌取自山东省莱西市南墅镇上庄村的‘嘎拉’ 苹果炭疽菌叶枯病病叶。经鉴定病原为围小丛壳 G. cingulata (Wang et al.,2012)。将收集到的 ‘嘎拉’ 苹果炭疽菌叶枯病病叶在25℃室内保湿培养3 d,从病叶上产生的分生孢子中,挑取单孢,在PDA培养基中培养,获得纯培养菌株,并在5℃冰箱中保存。接种前将保存的菌种转接到PDA培养基中,25℃活化,待菌落长满培养皿的2/3时,用接种环刮除气生菌丝,25℃继续培养2~3 d,直至培养基中长出橘黄色分生孢子角。用接种环挑取适量分生孢子角,放入盛有无菌蒸馏水的烧杯中摇匀,用血球计数板检测孢子悬浮液浓度,调至104 个/ml备用。孢子悬浮液现配现用,放置时间不超过1h。在洁净的单凹载玻片上滴一滴苹果炭疽病菌孢子悬浮液,然后盖上盖玻片,放入底面盛有少许水的培养皿中,盖上皿盖,放入 25℃培养箱中培养12 h。显微镜下观察孢子的萌发力。孢子平均萌发力在20%以上均为可用。从供试苹果树上剪取一年生健壮的新梢,每个材料取 4 个枝条(2个用于接种鉴定,2 个用作对照),剪除枝条两端,保留顶部4 个完全展开的叶片。用0.6%的次氯酸钠对叶片表面消毒,然后用无菌水冲洗,沥干,用小型喷雾器将摇匀后的分生孢子悬浮液均匀喷洒到叶片正反两面,至叶片刚刚开始流水为止。将接种及喷有无菌蒸馏水的枝条 (对照)均匀分插到两个孔穴盘上,置于装有适量蒸馏水的泡沫箱内,加盖密封保湿,置于25℃恒温培养箱内暗培养。4d 后进行抗性鉴定和数据记录,将叶片上无病斑的定为 “抗病”,记为 (R),把有病斑的定为“感病”,记为 (S)。卡方检验采用SPSS13.0软件进行分析。鉴于该病尚无有效防治措施,为防止病原传播,作者未进行田间接种鉴定。通过室内人工接种对4个杂交组合中的4 个亲本及1 个相关品种进行抗性鉴定 (表2-1)。‘富士’ 和 ‘QF-2’ 的叶片无病斑,表现为对炭疽菌叶枯病的高度抗性;‘金冠’ ‘嘎拉’ 和 ‘秦冠’ 的叶片均出现病斑,且病斑数均在20 个以上,表现出对炭疽菌叶枯病易感染性。亲本叶片平均病斑数抗病性富士0抗病(R)QF-20抗病(R)金冠21.1感病(S)秦冠22.8感病(S)嘎拉22.4感病(S)表2-1 不同苹果品种 (系) 对炭疽菌叶枯病抗性的室内接种鉴定离体接种鉴定结果 (附图 2-1) 表明,不同品种和 F1 杂交后代单株对炭疽菌叶枯病抗感表现差异明显。而且这一结果与田间抗性调查结果相符 (附图2-2)。在安徽砀山发病区,‘嘎拉’ (附图2-2 左图) 和 ‘秦冠’ (附图2-2右图) 苹果树干上嫁接 ‘富士’ 枝条,染病后,‘嘎拉’ 和 ‘秦冠’ 的叶片已经全部脱落,‘嘎拉’ 仅剩下光秃的枝干,‘秦冠’ 仅剩下果实,与 ‘富士’ 枝条上翠绿的叶片形成鲜明的对照。这充分显示不同品种 (系) 对苹果炭疽菌叶枯病的抗性差异明显,遗传性对苹果炭疽菌叶枯病的抗性起着主导作用,同时也证实了上述品种 (系) 可以作为苹果炭疽叶枯病遗传规律研究的典型材料。在 ‘金冠’ב富士’ 组合的F1 代群体中,共调查了207株,其中抗病株为 93 株,感病株为 114 株,经适合性检验, x20.05=1.07 ( P>0.05);在 ‘富士’ב金冠’ 组合的 F1 代群体共调查 95 株,其中抗病株为 40 株,感病株为 55 株, x20.05=1.20 ( P>0.05) (表2-2)。二者卡方值均小于 x20.05=3.84, P 值均大于0.05,说明样本的抗病与感病的表型比值符合1∶1的理论分离比,初步判断该试验组合中苹果对炭疽菌叶枯病的抗性由单基因控制。计算 ‘金冠’ב富士’ 组合正反交之间抗感差异得卡方值0.21 (小于 x20.05=3.84),二者没有显著性差异,说明苹果抗炭疽菌叶枯病为细胞核遗传,不受胞质遗传物质影响,即不存在母性遗传效应。杂交组合株数总株数抗病感病抗感比抗感比期望值x2P金冠×富士207931140.82∶11∶11.070.30富士×金冠9540550.73∶11∶11.200.27嘎拉×富士26242580.02∶10∶1—0.12富士×QF-2198195365∶11∶0—0.25表2-2 杂交F1 代植株对苹果炭疽菌叶枯病的抗性表现在 ‘嘎拉’ב富士’ 杂交后代群体中,共调查了262 株,出现了4株抗病单株,经适合性检验, P值为0.12,大于0.05,无显著性差异,符合0∶1 的理论比值,表明该杂交后代抗病对感病呈隐性单基因遗传;‘富士’בQF-2’ 杂交后代群体中共调查了198 株,出现3株感病植株, P值为0.25,符合1∶0的理论比值 (表 2-2),说明该杂交后代抗病性受单基因控制。综合上述研究结果,可以确定苹果对炭疽菌叶枯病的抗性由隐性单基因控制。综合不同杂交组合的亲本及后代对苹果炭疽菌叶枯病抗性的表型性状分析结果,可以假设本试验群体中,对苹果炭疽菌叶枯病表现为抗病的植株基因型为rr,感病植株为 RR或 Rr,并由此推测出供试亲本品种 (系) ‘富士’ ‘金冠’ ‘嘎拉’ ‘QF-2’ 的基因型分别为 rr、Rr、RR和rr,‘秦冠’ 为Rr (附图2-3)。病害的发生是寄主与病原菌在一定环境条件下相互作用的结果。所以接种条件和病原菌的致病性对寄主的抗性鉴定结果有着重要的影响。根据Wang等 (2015) 的试验结果,25℃是苹果炭疽菌叶枯侵染的最适温度,自由水或高湿条件是分生孢子萌发的必要条件,接种后第4d病斑数达到最大值,特征最明显。本试验所采用的接种方法和试验条件是根据Wang等 (2015) 所得出的试验结论进行的,采用适宜的孢子浓度、温度、湿度和最佳病斑计数时间,使寄主与病原菌的互作关系得到充分体现。所用的病原菌是从 ‘嘎拉’ 感病叶片上采集、分离、纯化的,对 ‘嘎拉’ ‘金冠’ ‘秦冠’ 等具有强致病性,保证了鉴定结果的可靠性。目前对于苹果炭疽菌叶枯病的一些报道还仅限于对引起病害的相关因素、病原菌的生理学、致病机制、寄主响应及防治措施等方面的研究 (González,2006;Wang et al.,2012;Velho et al.,2014;Araujol and Stadnik,2013;Wang et al.,2015;王薇等,2015),对于抗性遗传规律、分子标记定位等研究少有报道。作者利用4个杂交群体的后代个体对炭疽菌叶枯病抗性表现进行了综合分析,得出苹果杂交后代中抗炭疽菌叶枯病受隐性单基因控制的结论,这与Dantas等 (2009) 研究认为 ‘嘎拉’ ‘富士’ 等苹果品种对炭疽菌叶枯病的抗性是由一对隐性基因控制的结果相一致。作者认为抗病基因型为rr,感病基因型为 RR或 Rr,由此推测供试杂交群体的亲本品种 (系) ‘富士’ ‘金冠’ ‘嘎拉’ ‘QF-2’ 的基因型分别为rr、Rr、RR和rr,‘秦冠’ 的基因型为Rr。由于苹果在遗传构成上高度杂合,又是自交不亲和植物,杂种树童期较长,对苹果树抗病遗传规律的研究很难采用和借鉴其他作物的遗传群体创建方法,如通过自交,回交,侧交等手段获得 F2、BC 等分离群体。本试验采用 4个不同的杂交群体后代对炭疽菌叶枯病的抗性进行表型鉴定,这一方法可以为类似的果树抗病性遗传研究提供参考。