首页 <
知识图谱:全部
-
报告枣生产技术
出版时间:2019枣树实生根系有明显的主根,水平根和垂直根均很发达,一年生实生苗主根向下深达1~1.8m,水平根长达0.5~1.5m。一般在15~40cm土层内分布最多,约占总根量的75%。树冠下为根系的集中分布区,约占总根量的70%。枣芽分主芽和副芽,主芽又称正芽或冬芽,外被鳞片裹住,一般当年不萌发。主芽着生在一次枝与枣股的顶端和二次枝基部,主芽萌发可形成枣头。枣股每年生长量仅1~2cm。副芽又称夏芽或裸芽。副芽为早熟性芽,当年萌发,形成脱落性和永久性二次枝及枣吊,枣吊叶腋间副芽形成花。当年萌发发红的枝条,又叫发育枝或营养枝,由主芽萌发而成。枣头由一次枝和二次枝构成。枣头一次枝具有很强的加粗生长能力,因此能构成树冠的中央干、主枝和侧枝等骨架。二次枝既枣头中上部长成的永久性枝条。枝型曲折,呈“之”字形向前延伸,是着生枣股的主要枝条,故又称“结果枝组”。由主芽萌发形成的短缩性结果母枝,主要着生在二次枝上。枣股是枣树上最基本的结果部位,是枣树上特有的一种短缩型结果母枝。保持一定数量壮龄枣股和尽量延长壮龄枣股的结果年限,是保证枣树连年丰产稳产的关键。又称脱落性枝,枝形纤细柔软,浅绿色,每个叶腋能形成一个花序结果。秋季落叶后,这些枝条逐渐脱落,枣吊上着生叶片,每个叶片都是一个绿色小工厂,其中的叶绿素,利用根系吸收的水,矿质营养和叶片从空气中吸收的二氧化碳,在阳光的照射下,通过光合作用合成糖,所以,叶面积的大小,叶片的薄厚、颜色的深浅等,都直接影响着枣树的生长和结果。一般每个枣吊着花30~50朵,花期很长,多在30d以上。枣树与其他果树一样,要求适宜的立地条件。土壤、地势、气温、雨量及光照等,是影响枣对生长发育和结果状况的主要因素。温度是影响枣树生长发育的主要因素之一,直接影响枣树的分布,花期日均温度稳定为22℃以上、花后到秋季的日均温下降到16°C以前果实生长发育期大于100~120d的地区,枣树均可正常生长。枣树为喜温树种,其生长发育需要较高的温度,表现为萌芽晚,落叶早,温度偏低坐果少,果实生长缓慢,干物质少,品质差。因此,花期与果实生长期的气温是枣树栽种区域的重要限制因素。枣树对低温、高温的耐受力很强,在-30℃时能安全越冬,在绝对最高气温45℃时也能开花结果。枣树的根系活动比地上部早,生长期长。在土壤温度7.2℃时开始活动,10~20℃时缓慢生长,22~25℃进入旺长期,土温降至21℃以下生长缓慢直至停长。枣树对湿度的适应范围较广,在年降水量100~1200mm的区域均有分布,以降水量400~700mm较为适宜。枣树抗旱耐涝,在沧州年降水量100多mm的年份也能正常结果,枣园积水1个多月也没有因涝致死。枣树不同物候期对湿度的要求不同。花期要求较高的湿度,授粉受精的适宜湿度是相对湿度70%~85%,若此期过于干燥,影响花粉发芽和花粉管的伸长,导致授粉受精不良,落花落果严重,产量下降。相反,雨量过多,尤其是花期连续阴雨,气温降低,花粉不能正常发芽,坐果率也会降低。果实生长后期要求少雨多晴天,利于糖分的积累及着色。雨量过多、过频,会影响果实的正常发育,加重裂果、浆烂等果实病害。“旱枣涝梨”指的就是果实生长后期雨少易获丰产。土壤湿度可直接影响树体内水分平衡及器官的生长发育。当30cm土层的含水量为5%时,枣苗出现暂时的萎蔫,3%时永久萎蔫;水分过多,土壤透气不良,会造成烂根,甚至死亡。枣树的喜光性很强,光照强度和日照长短直接影响其光合作用,从而影响生长和结果。光照对生长结果的影响在生产中较常见。密闭枣园的枣树,树势弱,枣头、二次枝、枣吊生长不良,无效枝多,内膛枯死枝多,产量低,品质差;边行、边株结果多,品质好。就一株树而言,树冠外围、上部结果多,品质好,内膛及下部结果少,品质差。因此,在生产中,除进行合理密植外,还应通过合理的冬、夏修剪,塑造良好的树体结构,改善各部分的光照条件,达到丰产优质。土壤是枣树生长发育中所需水分、矿质元素的供应地,土壤的质地、土层厚度、透气性、pH值、水、有机质等对枣树的生长发育有直接影响。枣树对土壤要求不严,抗盐碱,耐瘠薄。在土壤pH值5.5~8.2范围内,均能正常生长,土壤含盐量0.4%时也能忍耐,但尤以生长在土层深厚的沙质壤土中的枣树树冠高大,根系深广,生长健壮,丰产性强,产量高而稳定;生长在肥力较低的沙质土或砾质土中,保水保肥性差,树势较弱,产量低;生长在黏重土壤中的枣树,因土壤透气不良,根幅、冠幅小,丰产性差。这主要是因为土壤为枣树提供的营养物质和生长环境不同所致。因此,建园尽量选在土层深厚的壤土上,对生长在土质较差条件下的枣树,要加强管理,改土培肥,改善土壤供肥、供水能力和透气性,满足枣树对肥水的需求,达到优质稳产的目的。微风与和风对枣树有利,可以促进气体交换,改变温度、湿度,促进蒸腾作用,有利于生长、开花、授粉与结实。大风与干热风对枣树生长发育不利。枣树在休眠期抗风能力很强,萌芽期遭遇大风可改变嫩枝的生长状态,抑制正常生长,甚至折断树枝等;花期遇大风,尤其是西南方向的干热风降低空气湿度,增强蒸腾作用,致使花、蕾焦枯,落花落蕾,降低坐果率;果实生长后期或熟前遇大风,由于枝条摇摆,果实相互碰撞,导致落果,称为“落风枣”,效益降低。枣树常用树形主要有主干疏层形、自由纺锤形、自然半圆头形和开心形。我国北方地区,冬春少雨干旱多风,容易造成剪口干旱失水,从而影响剪口芽萌发,故每年春季3—4月进行休眠期的修剪。盛果期枣树修剪以培养或更新结果枝组为重点,延长盛果期的年限,长期维持较高的产量,可采用疏枝、短截、衰老骨干枝回缩相结合的方法。春季土壤解冻后、枣树萌芽前进行追肥,目的是促进早萌芽,保证萌芽所需营养,提高花芽分化质量。此次追肥以氮肥为主,每株追施纯氮肥0.4kg,锌铁肥0.25~0.75kg,施肥后及时灌透水。灌水后根据土壤墒情及时翻耕,保持土壤疏松,促进根系生长,提高根系吸收肥水能力。萌芽后,当芽长到5cm时,及时抹去无用芽、方向不合适的芽,目的是防止嫩芽萌发形成大量的枣头,节省养分,促进枣树健壮生长和结果。摘心是摘除枣头新梢上幼嫩的梢尖。枣头一次枝摘心为摘顶心,二次枝摘心为摘边心。新梢生长期摘心可削弱顶端优势,促进二次枝生长,形成健壮结果枝组。4月下旬至5月上旬密植枣园可全园覆草,枣粮间作园可在树行内进行覆草,普通枣园可在树盘覆草。枣园覆草可减少地面60%的蒸发量,提高土壤含水量10%左右,同时长期覆草,由于覆草后经过雨季一般会烂掉,因而可有效地增加土壤有机质的含量。主要以麦秸、杂草和树叶为主,每667m2用量1500~2000kg。覆草厚度一般在15~20cm为宜,覆盖后在草上面盖一层薄土,防止火灾。 -
报告猕猴桃加工技术
出版时间:2018猕猴桃果脯 (图8-1) 在制作过程中,技术要求比较高,要根据当地的具体情况采取具体措施,本书介绍的方法可为生产者提供参考。图8-1 猕猴桃果脯原料分选→清洗→去皮→切片→烫漂→糖渍→糖煮→干燥→整形→包装(1) 原料分选。选用八成半成熟的果实,果实要有一定的硬度,无病虫害、霉烂变质。(2) 清洗。用流动自来水将猕猴桃表面的泥沙及污物洗涤干净。(3) 去皮。用80~90℃的浓碱液浸泡30~60秒去皮,然后迅速用自来水冲洗掉果实上的残留皮屑和碱液,并用1%的盐酸溶液浸泡以中和残留的碱液。(4) 切片。将猕猴桃果实横切成厚度为5~6毫米的薄片,并浸入1%~2%的盐水中,以抑制氧化酶的活性。(5) 烫漂。将猕猴桃片在沸水中烫漂2分钟左右,以杀灭氧化酶活性,并迅速用自来水冷却。(6) 糖渍。沥干水分的猕猴桃片,用白砂糖糖渍20~24小时,砂糖用量为称猴桃片重的40%,砂糖在上、中、下层的分布比例为5 ∶ 3 ∶ 2。(7) 糖煮。取出糖渍好的猕猴桃片,沥干糖液,在糖液内加入砂糖,使含糖量达到65%左右,煮沸后加入糖渍过的猕猴桃片,再次煮沸25~30分钟。当糖液含糖量达到70%~75%时,取出果片沥干糖液。(8) 干燥。将糖煮过的果片,放在竹筛网 (或不锈钢丝网) 上,在55℃左右的烘房内干燥24小时左右。(9) 整形包装。干燥后的果脯片需压平,然后用玻璃纸或聚乙烯薄膜包装。用猕猴桃果实制果酱的利用率高达90%以上,果酱营养丰富,甜酸适度,有良好的开胃生津效果,极受消费者欢迎。(1) 感官指标。色泽呈黄绿色或黄褐色,有光泽,均匀一致。口感具有猕猴桃酱所特有的风味,无焦煳味,无异味。形态为蒸制酱体呈胶黏状,带种子,保持部分果块,置于水面上允许徐徐流散,不得分泌汁液,无糖结晶。不允许有杂质存在。(2) 物理生化指标。每罐净重允许公差±3%,但每批平均不低于标明的净重。总糖量不低于57%(按转化糖计),可溶性固形物不低于65%(按折光计)。(3) 微生物指标。无致病病菌及因微生物作用而引起的腐败征象。(4) 罐型。旋口玻璃瓶或铁罐。选果→清洗、消毒→去皮→破碎→软化→加糖浓缩→装罐、封罐→杀菌→冷却→擦罐入库→包装→贮运(1) 原料选择。加工果酱的猕猴桃果实要求果心较小,种子较少,含有丰富的果胶物质和有机酸,果肉甜酸适度,芳香味浓,颜色一致,成熟良好。果肉颜色不同的果实,应分别进行加工。要剔除腐烂变质果、硬果及成熟过度果。(2) 原料清洗。先用1%的漂白粉溶液或0.1%的高锰酸钾溶液进行消毒处理,再用清水彻底清洗。(3) 去皮。可用人工法将果实切开,用勺子将果肉挖出;也可用化学去皮法,将10%~25%的氢氧化钠溶液煮沸,放入洗净的果实,浸泡1~2分钟,冲洗去皮以后再放入1%的盐酸溶液中,常温下处理30秒,立即用流水冲洗10分钟。(4) 打浆软化或破碎软化。①打浆软化是将果实去皮后,倒入打浆机中进行打浆。打浆机的筛板应根据留籽或去籽的加工要求进行选择。将果浆倒入夹层锅中,再加入75%的糖浆进行软化 (10~15分钟),这样可制成全泥状果酱。②破碎软化是将洗净去皮的果实,用破碎机破碎成小碎块,然后倒入夹层锅中加入糖液软化,这样可制成块状果酱。(5) 浓缩。浓缩包括常压浓缩和真空浓缩两种方法。常压浓缩是把果酱倒入夹层锅后,再加适量75%的糖液 (须先经过滤),然后加热,并不断搅拌,以便加速蒸发和避免发生焦糊。浓缩时蒸汽压力为245~294千帕,浓缩时间为30分钟左右。浓缩时间过长,易使果酱颜色变褐,凝胶能力降低,贮藏期蔗糖返沙。在有条件的厂中,可将原料用泵打入真空浓缩锅内,在减压低温条件下进行蒸发浓缩,能有效地避免养分的损失。为了提高果酱的质量,可添加适量的果胶,使色泽和风味有所提高。真空浓缩的配料为:果酱100千克、白糖100千克或75%的糖水135千克、真空浓缩锅的真空度约80千帕 (600毫米汞柱),浓缩到65%~66%(用折光计测) 出锅,再加热到100℃左右,以后保温在90℃以上。(6) 装罐。用经消毒的四旋瓶装酱,酱温不能低于86.5℃,趁热封罐,注意勿外溅污染瓶口。(7) 杀菌及冷却。玻璃瓶封口后应在100℃条件下立即杀菌20分钟,分段冷却,以防玻璃瓶炸裂。(8) 擦罐、入库。将杀菌后的玻璃瓶擦净入库。猕猴桃果汁是极受市场欢迎的保健饮料,用猕猴桃果汁还可以加工浓缩果汁、果酒、汽水、果冻、果晶等多种产品。(1) 感官指标。色泽呈黄绿色或浅黄色。口感具有猕猴桃汁特有的风味,酸甜适度,无异味。形态为汁液均匀混浊,静置后允许有沉淀,但摇动后仍呈均匀状态。不允许有杂质存在。(2) 物理生化指标。每罐净重为200克或250克,允许公差±3%,但每批平均不低于净重。可溶性固形物为11%~15%,总酸0.3%~1%(以柠檬酸计),原果汁含量不低于40%。(3) 微生物指标。无致病病菌及因微生物作用而引起的腐败征象。(4) 罐型。采用QB 221—1976马口铁罐型规格系列标准。选果→清洗、消毒→去皮→破碎、打浆→榨汁→过滤→调配→加热→装罐→封罐→杀菌→冷却→擦罐入库包装→贮运(1) 原料选择。要求果实成熟度达八九成,新鲜完好,色泽正常,无病虫果和烂果。(2) 原料清洗。先用1%漂白粉溶液或0.1%的高锰酸钾溶液进行消毒,清除虫卵及微生物,再用清水清洗几次。(3) 去皮。可用人工法将果实切开,用勺子将果肉挖出;也可用化学去皮法,将10%~25%的氢氧化钠溶液煮沸,放入洗净的果实,浸泡1~2分钟,冲洗去皮以后再放入1%的盐酸溶液中,常温下处理30秒,立即用流水冲洗10分钟。(4) 破碎、打浆。将去皮的果实在破碎机中破碎或在打浆机中打浆。(5) 榨汁。把破碎成浆的果实加热到60~65℃,放入榨汁机中榨汁 (立式压汁机),榨汁时如果在果浆中加入适量的果胶分解酶可使出汁率由55%提高到60%。(6) 过滤。在过滤机中过滤或用平板布过滤,把果汁中的残籽或果肉滤出。这时果汁混浊,若在低温下冷冻,吸取上清液便得到澄清果汁。若需制混浊果汁,则把滤出的混浊果汁在真空脱气罐中进行脱气,使果汁色泽不变,然后用高压均质机进行均质,使果汁中的细小颗粒进一步细碎,促使果汁溶出,使果胶与果汁亲和,保持果汁的混浊度。(7) 调配。按原果汁含量的40%加白砂糖配成可溶性固形物为35%以上的果汁。(8) 加热。将调配好的果汁通过灭菌器加热。(9) 装罐。当果汁温度在70~80℃时,应当迅速装入罐或瓶 (罐、瓶必须提前清洗干净和消毒)。(10) 封罐。趁热将罐封口,真空度要求46.7 千帕 (350毫米汞柱) 以上,要封口良好。(11) 杀菌及冷却。装罐密封后立即杀菌 8~15 分钟(100℃),杀菌后冷却到40℃时取出。(12) 擦罐、入库。冷却后将罐擦干净入库。原料选择→清洗→去皮→修整→预煮→装罐→排气→密封→杀菌→冷却→检验→贴标→成品(1) 原料选择与清洗处理。选用七八成熟、果实个体大小较均匀的中等果实为原料,剔除烂果、过大过小果、病虫果、机械伤及畸形果。品种以老皮绿肉为好,用清水清洗干净,晾干备用。(2) 去皮、修整。将清洗干净的果实投入煮沸的烧碱溶液(10%~15%) 中浸泡2~3分钟,待果皮由黄褐变黑并产生裂缝时,用笊篱捞出。戴上橡皮手套,用双手轻轻搓去果皮,然后置于清水中不断清洗,除去碱味。用不锈钢刀挖去花萼、果蒂,去除残余果皮及斑疤,并按色泽和大小分级。(3) 预煮。将去皮修整后的果肉放在沸水中预煮3~4 分钟,捞出后迅速冷却。(4) 糖水配制。65升清水加35千克白糖,加热煮沸后用绒布或4层纱布过滤。用柠檬酸调 pH 值为4,糖水温度保持在80℃以上。糖水随用随配,不得积压。(5) 装罐。选色泽一致、大小均匀的果块装罐,然后加入糖水,罐内留2~3毫米的顶隙,罐盖与胶圈须用100℃热水烫煮消毒 5 分钟。装罐后,放入排气箱内进行排气,蒸汽温度98~100℃,排气10~12分钟,至罐中心温度达到80℃以上时封盖。如无排气箱,也可用蒸锅代替。排气温度和排气时间要妥善掌握。封盖后立即杀菌,即5分钟内使杀菌锅内的温度上升到100℃,并在此条件下保持18分钟。猕猴桃果酒,是一种低度酒,一般酒精度为12°左右,较甜,具有猕猴桃特有的果香和醇香,是老少皆宜的产品。选果→清洗、消毒→破碎→主发酵→压榨分离→后发酵→陈酿→调配→过滤→装瓶→成品(1) 原料选择。原料需要充分成熟发软且有猕猴桃浓香味的果实,剔除腐烂变质、病虫果及未熟果。(2) 清洗。用清水洗去果实上的泥沙、虫卵及其他杂质。(3) 破碎。将洗净的果实在破碎机内破碎成浆状或糊状。(4) 主发酵。把已破碎的果浆,倒入或泵入经过消毒的发酵池或缸内,加入5%的酒母糖液,搅拌均匀,发酵温度维持在25~28℃,每天搅拌2次 (上、下午各1次),使发酵均匀。当残糖下降到1%时,即可进行压榨分离。(5) 压榨。主发酵结束后进行压榨,使皮渣与酒液分离。压榨后的皮渣,还可进行2次发酵,蒸馏白酒或称 “白兰地”。(6) 后发酵。酒液转入后发酵,当酒度达到12°时,再加入适量砂糖,在20~25℃条件下,进行30天左右的后发酵,之后可转入陈酿。(7) 陈酿。后发酵结束后酒液不清,不容易沉淀,此时可将酒液倒入池或缸中,调整酒度到16°左右,置于15~18℃的室温下进行陈酿,翌年2月进行倒池或倒缸,年底即可调配成成品酒。(8) 调配过滤。调配酒度可按12°~16°调配,经过滤后,要求酒液透明。(9) 装瓶。将酒装入已经消毒好的瓶中,装后立即压盖密封。(10) 包装成品。通过检查质量合格的猕猴桃酒,贴上商标,作为成品销售。 -
报告十一、桃树病虫害
出版时间:2015(1)症状:主要为害果实和枝梢,也能为害叶部。被害果实,果面初呈水渍状绿褐病斑,后变暗褐色,渐干缩。枝梢受害,初呈水渍状褐色病斑,后变褐色,为长椭圆形,边缘稍带红色,稍凹陷,表面着生粉红色小粒点。桃炭疽病为害叶片桃炭疽病为害果实(2)防治方法:清洁田园,清除僵果,减少病原,注意桃园排水;早春萌芽前喷5波美度石硫合剂,落花后每隔10天喷一次保护性杀菌剂(如80%代森锰锌可湿性粉剂、75%百菌清可湿性粉剂等),共喷3~4次,防治效果良好。(1)症状:主要为害树干,也可侵染果实。病菌侵入桃树当年新梢,出现以皮孔为中心的瘤状突起病斑,直径1~4毫米,当年不流胶,次年5月逐渐形成,变成茶褐色硬块。病部凹陷成圆形或不规则形斑块,病部渗出褐色胶液,引起干溃甚至枯死;桃果褐腐,潮湿时流出白色块状物。桃干腐病(2)农业防治:增施农家肥等有机肥料,科学使用氮、磷、钾肥;合理疏花、疏果,促使树势强壮,提高抗病能力;冬前及时将树干涂白,防止发生冻害;及时防治蛀干害虫,减少枝干受伤;冬季做好清园工作,清除病、死枝干,减少园内病原菌越冬场所。(3)化学防治:发芽前全园喷施1次2~3波美度石硫合剂,清除前期病害,落花5~7天后,喷施2~3次杀菌剂,如50%多菌灵可湿性粉剂800~1000倍液,75%百菌清可湿性粉剂600~800倍液。(1)症状:此类病主要发生在根颈及支、侧根上,有时枝条上也会发生。病体为癌瘤状,一般为球形或扁球形。细菌在瘤皮层组织内越冬,在土壤中可存活一年以上。细菌性根癌病(2)防治方法:不用老桃园、老苗圃及有根瘤发生的土地育苗;加强检验检疫,销毁病苗;苗木消毒,用K84浸根5分钟;加强地下害虫防治,减少根部伤口。(1)症状:主要发生在叶片上,也可能为害新梢和果实。发病初期叶片呈半透明水渍状小斑点,扩大后为圆形或不整圆形,直径为1~5毫米的褐色或紫褐色病斑,边缘有黄绿色晕环,病斑逐渐干枯,周围形成裂缝,脱落后形成穿孔。(2)防治方法:冬季剪出病枝集中烧毁,消灭越冬菌源。萌芽前喷5波美度的石硫合剂,5ü 6月,喷500倍代森锌液1~2次,发病初期用72%农用链霉素3000倍液喷施。细菌性穿孔病为害叶片细菌性穿孔病为害果实(1)症状:干、枝上均可发生。多年生枝干上染病后1~2厘米的水泡状隆起,一年生新梢常以皮孔为中心,呈突起状。染病部位渗出透明柔软的胶液,与空气接触后变成褐色的胶块,导致枝干溃疡,树体衰弱,严重时枝干枯死;病原菌侵染造成流胶外,虫害入口也容易导致流胶,如椿象、象甲等;其他如机械损伤、冻害、日烧等,也会导致流胶。桃树流胶病(2)防治方法:春季发芽前用5波美度石硫合剂涂抹病干枝,在病高发季喷布抗菌类药物,防治蛀枝干害虫减少伤口;冬季用石灰乳对主干进行涂白保护。(1)为害特征:主要有桃蚜、桃粉蚜、桃瘤蚜3种。桃蚜与桃粉蚜以成虫与若虫群集在叶背吸食汁液,也有群集于新梢先端为害;粉蚜为害时叶背满布白粉能诱发霉病。桃蚜为害的嫩叶皱缩扭曲,为害树当年枝梢生长和果实发育均受影响;为害严重时,影响次年开花结果。桃瘤蚜对嫩叶、老叶均可为害,受害叶的叶缘向背面纵卷,卷曲处组织增厚,凹凸不平,初为淡绿色,渐变紫红色,严重时全叶卷曲。桃蚜虫(2)物理防治:清园除尽杂草及剪下枝条;消灭越冬虫、卵;使用高效信息素诱虫板监测和防治蚜虫发生。监测每亩悬挂3~5片,防治每亩20~30片。(3)生物防治:利用天敌瓢虫防治蚜虫;可选用植物源农药0.5%藜芦碱可溶性液剂在初期稀释600~700倍喷雾,盛发期稀释500~600倍喷雾防治;0.3%苦参碱水剂轻发期稀释1000倍喷雾,高发期稀释800倍喷雾防治。(4)化学防治:展叶前后用吡虫啉、菊酯类农药防治,22%噻虫·高氯氟微囊悬浮剂、50%吡蚜酮可湿性粉剂等有较好的防治效果,喷药次数根据虫情而定,喷药及时细致,1~2次即可控制。应用黄色诱虫板防治蚜虫(1)为害特征:为害桃的多数为山楂红蜘蛛,体型为椭圆形,背部隆起,越冬雌虫鲜红色,有光泽,夏季雌虫深红色,背面两侧有黑色斑纹。山楂红蜘蛛个体极小,肉眼不易发现,防治不及时导致叶片脱落,果实品质降低,甚至落果。叶螨常聚于叶背面拉丝结网,于网下用口器刺入叶肉组织内吸汁为害,叶正面呈现块状失绿斑点,叶背呈褐色,容易脱落。麦收前后是防治红蜘蛛的最佳时期。红蜘蛛(2)农业防治:秋季越冬前清洁果园,将枯枝落叶及杂草集中烧毁,减少山楂红蜘蛛的越冬技术。春季越冬雌成虫出蛰前刮树皮,喷施石硫合剂,消灭越冬虫群。(3)物理防治:可使用粘虫胶或者粘虫胶带防止其上下树,减少螨类为害。应用粘虫胶粘虫胶带使用效果(4)生物防治:利用捕食螨防治害螨;可选用植物源农药0.5%藜芦碱可溶性液剂在初期稀释600~700倍喷雾,盛发期稀释500~600倍喷雾防治;0.3%苦参碱水剂轻发期稀释1000倍喷雾,高发期稀释800倍喷雾防治。(5)化学防治:喷施阿维菌素、苦参碱、哒螨灵等杀虫剂。冬季修剪后和春季萌动前使用30%石硫·矿物油微乳剂喷雾防治。(1)为害特征:主要为害桃树新梢和果实。对桃树新梢为害时,从新梢未木质化的顶部蛀入,向下部蛀食,枝梢外部由胶汁及粪排除,嫩梢顶部枯萎下垂,当蛀到新梢木质化部分时,即从梢中爬出,转移至另一嫩梢为害,严重时造成大量新梢折心,萌生二次枝。此类虫在华北每年发生3~4次,以老熟幼虫在树皮缝隙内结茧越冬。(2)农业防治:消灭越冬幼虫。早春发芽前,进行刮树皮,集中烧毁;4ü 6月集中剪除被害虫梢;8月前后摘除被害果实,集中清理。(3)生物防治:利用迷向技术。成虫扬飞前悬挂梨小食心虫迷向散发器于果树中上部,每棵树之间交叉悬挂。一年悬挂两次,每次每亩用量60~80根,在坡度较高和主风方向边缘处加倍悬挂。同时每公顷悬挂1套梨小食心虫性信息素诱芯,配套三角型诱捕器监测和诱捕雄成虫。梨小食心虫桃园应用迷向技术防治梨小食心虫桃园梨小食心虫诱捕器诱捕效果(4)化学防治:关键时期喷施2.5%高效氯氟氰菊酯或30%阿维·灭幼脲,花前、花后、蛀果前、各代成虫高峰期过后,未蛀入之前喷药效果最佳。(1)为害特征:此虫生长习性一年一代,以老熟幼虫在果园越冬,次年6月中旬咬破茧壳陆续出土,出土后在地面爬行,需找树干和杂草做夏茧并化蛹。越冬成虫羽化,产卵于果实绒毛较多的萼洼处。初孵幼虫在果实上爬行数十分钟到数小时之久,选择适当部位,咬破果皮,蛀入果实之中,破坏果实。(2)农业防治:减少越冬虫源基数,在幼虫出土或脱果前,清除树盘杂草及其他覆盖物。(3)生物防治:①在越代成虫发生盛期,释放桃小寄生蜂。②在幼虫初卵期,喷施细菌性农药(BT乳剂);也可在越冬代成虫发生期使用桃小性诱剂进行诱杀。③性诱捕技术:成虫扬飞前悬挂桃小食心虫性信息素诱芯,配套小船诱捕器进行监测,悬挂高度为树干中下部阴面通风处。若诱捕到害虫,增加诱捕器数量进行防治,监测每公顷用1套,防治每亩用3~5套,1个月左右更换一次诱芯。(4)化学防治:用15%毒死蜱颗粒剂2千克或50%辛硫磷乳油500克与细土15~25千克充分混合撒在树干下面;喷施48%毒死蜱乳油1000~1500倍液,对卵和初孵幼虫有强烈的触杀作用;也可喷施2.5%高效氯氟氰菊酯乳油2000~3000倍液,或2.5%溴氰菊酯乳油2000~3000倍液。1星期后再喷一次,效果良好。桃小食心虫桃小食心虫诱捕器诱捕效果(1)为害特征:幼虫潜入叶肉为害,叶肉被食成隧道,叶表皮不破裂,形成白色弯曲的食痕;为害严重时,叶片枯黄,造成早起落叶。4月下旬羽化,展叶前后产卵于叶背面,孵化后即潜入叶肉为害,9月开始化蛹越冬。桃潜叶蛾(2)农业防治:冬季结合清园,扫除落叶并烧毁。(3)化学防治:成虫发生时喷药,常用2.5%高效氯氟氰菊酯乳油3000倍液或1.8%阿维菌素乳油2000倍液。(1)为害特征:雌虫和若虫群集固着在2年生以上的枝条上,2~3年生枝条上数量最多,吸食枝上养分,严重时整个枝条被成虫覆盖,甚至重叠成层。此虫北方发生2代,以受精的雌虫在枝干上越冬。(2)农业防治:个别枝条发现初期,立即剪去枝条烧毁,或者用10%的碱水刷为害枝干。(3)生物防治:利用红点唇瓢虫、日本方头甲、寄生蜂等天敌进行生物防治。(4)化学防治:在虫孵化期、爬行期扩散阶段喷药防治,可喷4500倍22%氟啶虫胺腈悬浮剂,也可喷4000倍22.4%螺虫乙酯悬浮剂等新型农药。桑白介壳虫物候期时间防治对象防治方法备注休眠期11月至翌年3月初越冬虫卵、越冬病菌清除枯枝落叶、病果病枝和刮除流胶瘤集中烧毁,发芽前喷波美5度石硫合剂萌芽期3月中下旬枝干病害、介壳虫、螨类45%代森铵300倍液树干缠粘虫胶防在壤越冬害虫花期4月介壳虫、蚜虫、流胶病、缩叶病22.4%螺虫乙酯4000倍液+50%多菌灵600倍液+1%硫酸铜溶液+含芸苔素内酯调节剂施药时可加硼肥喷施幼果期5月上中旬细菌性穿孔病、卷叶病、缩叶病、红蜘蛛、蚜虫10%苯醚甲环唑3000倍液+72%农用链霉素3000倍液+1.8%阿维菌素2000倍液可挂黄板防治蚜虫;防治红蜘蛛可用捕食螨,用时慎用杀虫杀螨剂5月下旬卷叶蛾、潜叶蛾、蚜虫、红蜘蛛、褐斑病2.2%甲氨基阿维菌素苯甲酸盐2000倍液+25%灭幼脲1500倍液+80%代森锰锌800倍液果实发育早熟采收期6月上旬蛾类、叶螨、椿象、褐腐病、细菌性穿孔病2.5%高效氯氟氰菊酯2000倍液+10%吡虫啉1500倍液+72%农用链霉素3000倍液注意农药安全间隔期,一般在采收前15~20天不喷施农药6月中下旬蚜虫、介壳虫、桃蛀螟、细菌性穿孔病22%氟啶虫胺腈4500倍液+5%杀铃脲5000倍液+50%多菌灵600倍液成熟期7月至8月桃蛀螟、梨小食心虫、介壳虫、褐斑病、褐腐病25%灭幼脲1500倍液+4.5%高效氯氰菊酯1500倍液+10%苯醚甲环唑1500倍液养树势9月梨小食心虫、褐腐病、红点病2.5%高效氯氟氰菊酯2000倍液+80%代森锰锌800倍液加提高抗性的调节剂更有益落叶期10月放越冬病虫破坏越冬病虫害的越冬环境桃树主要病虫害防治历 -
报告果树病虫害绿色防控技术
出版时间:20181.症状识别发病初期,幼苗茎基部产生椭圆形,暗褐色病斑,病株停止生长,叶片失水,萎蔫下垂。以后病斑绕茎一周扩展,缢缩、干枯,根部变黑直立枯死。潮湿条件下,病部有褐色菌丝体和土粒状菌核。2.病原幼苗立枯病立枯丝核菌Rhizoctonia solani Kühn,属半知菌亚门、丝核菌属真菌。3.发病特点以菌核在土壤中和病残体上越冬。病菌在土壤中能够长期存活,在适宜的环境条件下,从伤口或表皮直接侵入为害。病菌可借雨水、农具等传播。苗床高湿,播种过密,光照不足,通风条件差,均有利于发病。4.防控技术(1) 选择土质疏松、排水良好的地段种植。(2) 实行轮作,合理密植。(3) 盆栽植株,雨后要排出盆中积水。(4) 定植后每隔10d喷施1次50%甲基硫菌灵可湿性粉剂800倍液,或用50%福美双可湿性粉剂500倍液,或用70%代森锰锌可湿性粉剂600~800倍液防控。1.症状识别幼苗猝倒病发病初期幼苗茎基部呈水渍状斑,后逐渐变为淡褐色,并凹陷缢缩。病斑迅速绕茎基部一周,幼苗倒伏,幼叶依然保持绿色。最后病苗腐烂或干枯。当土壤湿度较高时,病苗及附近土表常有白色絮状物出现,即菌丝体。2.病原由多种真菌引起,其中最主要的是瓜果腐霉菌Pythium aphanidermatum (Eds.) Fitzp.,属鞭毛菌亚门、腐霉属。病菌腐生性较强,能在土壤中长期存活。3.发病特点病菌以卵孢子在土壤或病残体上越冬。在适宜的环境条件下,卵孢子萌发,产生孢子囊或游动孢子,借气流、灌溉水和雨水传播,也可由带菌的播种土和种子传播,引起幼苗发病和蔓延。育苗土湿度大、播种过密,有利于猝倒病的发生。连作或重复使用病土,发病严重。4.防控技术(1) 选择排水较好、通风透光的地段育苗。(2) 苗期要控制浇水量,土壤不宜过湿,播种不宜过密。(3) 病害严重的地区,避免连作,或播种前对土壤进行消毒,使用50%多菌灵可湿性粉剂,或用50%福美双可湿性粉剂600~1000倍喷施,用塑料布覆盖7d左右,1周后方可播种。(4) 发病初期,使用25%甲霜灵可湿性粉剂800倍液,或用40%乙磷可湿性粉剂200~400倍液,或用75%百菌清可湿性粉剂600倍液喷雾。1.症状识别主要发生于植株主干基部,有时也发生于根颈或侧根上。发病初期病部产生乳白色或肉色肿瘤,逐渐变成褐色或深褐色,圆球形,表面粗糙,凹凸不平,有龟裂。根系发育不良,细根极少,地上部生长缓慢,树势衰弱,严重时叶片黄化、早落,甚至全株枯死。根癌病2.病原根癌土壤杆菌 Agrobacterium tumefacins(Smith et Towns) Conn.,属细菌界,薄壁菌门、土壤杆菌属细菌。3.发病特点病菌在寄主癌瘤组织皮层内和土壤中越冬。病菌可随癌瘤组织在土壤中存活几个月到1年左右。病菌通过伤口侵入寄主,侵入后刺激细胞加速分裂,产生大量分生组织,从而形成癌瘤。苗木带菌是病害远距离传播的重要途径。呈碱性而潮湿的土壤,伤口多的寄主,发病严重。4.防控技术(1) 严格检疫,有肿瘤的苗木必须集中销毁。(2) 苗木栽种前用1%硫酸铜液浸5min,用水洗净后栽植。(3) 挖除病根后,周围的土壤用硫磺粉50~100g/m2消毒。(4) 苗圃应设在无根癌病的地区,如病区可实行2年以上轮作。果树根结线虫病种类很多,常危害果树根部及球茎等,导致地上部生长发育不良,叶片发黄,严重时可造成全株萎蔫枯死。1.症状识别根结线虫病线虫为害根部,在幼根上产生许多小根结,长大后似绿豆大小,近圆形,上生有细根毛。地上部长势衰弱,新生叶片尖、缘皱缩,呈黄白色,后渐变枯黄,提早落叶,严重者全株死亡。2.病原有北方根结线虫Meloidogyne hapla Chitwood、南方根结线虫Meloidogyne incognita (Kofoid et White) Chitwood等。属动物界,线虫门,根结线虫属。可为害多种蔬菜、果树及观赏果树。3.发病特点以卵和幼虫在根结和土壤中越冬。翌年春天,土壤中幼虫开始侵染新的须根,并借土壤、灌溉水等不断传播、繁殖、危害。4.防控技术(1) 加强检疫,勿栽植带线虫的苗木。(2) 发现病根及时处理,在病株周围穴施或沟施98%棉隆微粒剂30~40g/m2 ,或施用10%福气多颗粒剂2kg/667m2 ,或用1.8%阿维菌素乳油2500倍液灌根,用药后盖土。(3) 实行轮作,及时清除紫花地丁等野生寄主,减少病源。(三) 白纹羽病1.症状识别主要为害果树根部和根颈部。发病初期,病部皮层组织松软,出现近圆形褐色病斑。以后病部呈水渍状腐烂,深达木质部,并有黄褐色汁液渗出。后期病部组织干缩纵裂,木质部枯朽,表面有白色柔嫩的根状菌索缠绕,后转变为灰褐色或棕褐色。树势衰弱,叶片自上而下变黄凋萎,枝条干枯,最后全株枯死。2.病原树木白纹羽病褐座坚壳菌 Rosellinia necatrix (Hart.) Berl.,属子囊菌亚门、褐座坚壳属。可为害多种果树及观赏果树。3.发病特点病菌以菌核和菌索在土壤或病残体上越冬。当菌丝体接触到寄主果树时,菌丝体即从根部表面皮孔侵入。根部死亡后,菌丝穿出皮层,在表面缠结成白色或灰褐色菌索。菌索可以蔓延到根际土壤中,或铺展在树干基部土表。一般从3月中、下旬开始发生,6—8月为发病盛期,10月以后停止发生。4.防控技术(1) 严格实行苗木检疫制度,对可疑苗木用1∶1∶100倍波尔多液浸根1 h,或用1%硫酸铜液浸根3 h,或用2%石灰水浸根0.5 h,浸后用清水洗净栽植。(2) 选用无菌土壤和肥料栽培。(3) 重病区应实行轮作。(4) 加强栽培管理,促使植株根系发达,生长旺盛,提高植株抗病力。(5) 轻病株应刮去病部腐烂变色的组织或切除腐朽的根并销毁,对伤面可用70%酒精消毒,然后再涂以5%硫酸铜。亦可在病穴内灌70%甲基硫菌灵可湿性粉剂1000倍液或用50%代森铵水剂400倍液防控。对重病株应及时挖除,集中销毁,并用20%石灰水进行土壤消毒处理。果树根部害虫又称地下害虫,是指生活于土壤中,主要以成、幼 (若) 虫为害果树的地下部分 (如种子、地下茎、根等) 和近地面部分的一类害虫,造成死株缺苗,是果树害虫中的一个特殊生态类群。我国已知地下害虫320多种,主要包括地老虎类、蝼蛄类、蛴螬类、金针虫类、蟋蟀类、地蛆类。地老虎属鱗翅目,夜蛾科,是重要的地下害虫。地老虎的种类很多,为害果树严重的有小地老虎 Agrotis ypsilonRottemberg、大地老虎A. tokionis和黄地老虎A. segetum等。其中小地老虎分布于全国各地,为害茄科、豆科、十字花科、葫芦科、百合科蔬菜、果树、花卉、苗木等100 多种果树。地老虎低龄幼虫昼夜活动,取食子叶、嫩叶和嫩茎,3龄后昼伏夜出,可咬断近地面的嫩茎,造成缺苗断垄甚至毁种。1.形态识别小地老虎大地老虎成虫黄地老虎成虫2.防控技术(1) 设置灭虫灯,或糖酒醋毒液诱杀成虫。(2) 清除苗圃杂草,减少着卵量及恶化低龄幼虫食料条件。(3) 泡桐树叶诱集,或清晨于断苗周围人工捕杀幼虫。(4) 在低龄幼虫期,叶面喷施50%辛硫磷乳油1000倍液,或用2.5%溴氰菊酯乳油3000倍液。防控3龄后的幼虫用青草拌90%晶体敌百虫毒饵诱杀,或用50%辛硫磷乳油1000倍液灌根。蝼蛄,俗称土狗、地狗、拉拉蛄等,属直翅目,蝼蛄科。常见的有东方蝼蛄 Gryllotalpa orientalis Burmeister、华北蝼蛄G. unispina Saussure两种。东方嵝蛄几乎遍及全国,但以南方为多。华北蝼蛄主要分布于北方。蝼蛄食性很杂,为害菊花、一串红、翠菊等多种花卉和草坪草。以成虫、若虫在土中为害多种果树种子、幼根、幼苗、茎、块根,块茎,被害处呈乱麻状。此外,蝼蛄在表土层活动时,造成纵横隧道,拱倒幼苗,使幼苗根部与土壤分离,因失水而枯萎,造成缺苗断垄。1.形态识别东方蝼蛄成虫华北蝼蛄成虫2.防控技术(1) 施用厩肥、堆肥等有机肥料要充分腐熟,减少蝼蛄产卵机会。(2) 灯光诱杀成虫。在闷热天气或雨前的夜晚在19:00—22:00时开灯诱杀。(3) 鲜草或鲜马粪诱杀。在苗床的步道上每隔20 m左右挖一小土坑,将鲜草、马粪放入坑内,次日清晨捕杀,或施药毒杀。(4) 毒饵诱杀。用炒香的麦麸、豆饼等加90%晶体敌百虫30倍液拌匀,于傍晚撒施,诱杀成虫及若虫。(5) 在蝼蛄产卵盛期,挖产卵洞 (洞口下5~10 cm) 捕杀卵及成虫。(6) 灌药毒杀。在受害植株根际或苗床浇灌50%辛硫磷乳油1000倍液毒杀成虫和若虫。金龟甲类害虫的幼虫统称蛴螬,属鞘翅目,鳃金龟科。为害果树严重的有铜绿丽金龟Anomala corpulenta Motschulsky、黑绒鳃金龟Serica orientalis Motschulsky等。金龟甲类害虫广泛分布于全国各地。成虫咬食樱花、梅花、桃花、海棠、月季、木槿、金橘、榆、刺槐、唐菖蒲、大丽花、杨、柳、柿、葡萄、桑等果树叶片,造成不规则缺刻,严重时,食尽叶片,仅剩叶柄。或将花瓣、雄蕊、雌蕊吃光。幼虫咬食果树根部,影响果树正常生长,甚至枯萎。1.形态识别铜绿丽金龟黑绒鳃金龟2.防控技术(1) 人工捕杀,或设置灭虫灯诱杀成虫。(2) 深耕土壤,促进幼虫、蛹、成虫死亡。(3) 成虫为害期喷施90%晶体敌百虫800倍液,或用40%乐斯本乳油1000倍液杀成虫。在幼苗生长期用90%晶体敌百虫30倍液拌于豆饼、油饼上,撒施于土穴 (沟) 中,诱杀幼虫。是用3%辛硫磷颗粒剂施于土中,也可用50%辛硫磷乳油1000倍液灌根杀幼虫。叩头甲类害虫的幼虫统称金针虫,俗名铁丝虫。在我国为害果树的主要有沟金针虫和细胸金针虫两种。细胸金针虫分布广泛,主要是幼虫咬食果树的种子和幼芽,也能咬食幼茎,受害部分不完全被咬断,切口不整齐。幼苗长大后,便蛀入根茎内取食,也能蛀入大粒种子及薯块内为害,被害严重时,果树逐渐枯黄而死。1.形态识别沟叩头甲细胸叩头甲2.防控技术(1) 成虫盛发期,在田埂上堆青草,诱集成虫,清晨捕杀。(2) 冬季翻地灭幼虫。(3) 用3%辛硫磷颗粒剂施于土中,或用40%辛硫磷乳油对水灌根杀灭幼虫。(4) 毒饵诱杀。用90%晶体敌百虫1 份,拌和豆饼碎渣、麦麸等16份,制成毒饵,用量为15~25 kg/hm2。蟋蟀类属直翅目,蟋蟀科。以大蟋蟀分布较广,为害严重。成虫和若虫均可为害多种果树幼苗,是重要的苗圃害虫。1.形态识别成虫体长40~50mm,黄褐色或暗褐色,头较前胸宽。前胸背板中央有1纵线,其两侧各有1个颜色较浅的楔形斑块。后足胫节具2列4~5个刺状突起。若虫外形与成虫相似。大蟋蟀2.发生特点1年1代,以3~5龄若虫在洞内越冬。翌年3—4月开始活动,6—7月成虫盛发,9月开始出现若虫,12月初若虫开始越冬。大蟋蟀为穴居昆虫,昼伏夜出,常在洞口附近觅食,除就地取食外,常将嫩茎切断拖回洞中。通常5~7d才出穴1次,但在交尾盛期外出较频繁,晴天闷热无风或久雨初晴的夜晚,出穴最多。此虫多发生于沙壤土,沙土,植被稀疏或裸露、阳光充足的休闲地,荒芜地或全垦林地等,潮湿壤土或黏土很少发生。3.防控技术(1) 毒饵诱杀。用敌百虫、辛硫磷等拌炒过的米糠、麦麸或炒后捣碎的花生壳,或切碎的蔬菜叶,施于其洞口附近,或直接放在苗圃的株行间,诱杀成虫或若虫。用毒饵诱杀,在播种前或者苗木出土前进行,效果较好。(2) 白天寻找大蟋蟀洞穴,拨开洞口封土,用80%敌敌畏乳油1000倍液或1%灭虫灵乳油2000~3000倍液灌入洞内,使其爬出或死于洞中。地蛆又名根蛆,是对为害果树地下部分蝇类幼虫的统称。国内分布广泛,为害严重的有种蝇和韭蛆等。种蝇属双翅目,花蝇科,分布于全国各地,为害白菜、甘蓝、萝卜、瓜类、豆类、葱蒜类等多种果树。1.形态识别种蝇2.防控技术(1) 合理施用充分腐熟的有机肥。(2) 冬灌或春灌可消灭部分幼虫,减轻为害。(3) 成虫发生期,用糖醋毒液诱杀。(4) 及时清除受害植株,集中处理。(5) 成虫羽化盛期,用 10%菊马乳油 3000 倍液,或用2.5%溴氰菊酯、20%氰戊菊酯乳油3000倍液,或用50%辛硫磷乳油1000倍液等喷雾防成虫;在幼虫危害盛期,用50%辛硫磷乳油1000倍液,或用2.5%功夫乳油1500~2000倍液灌根。 -
报告苹果抗炭疽菌叶枯病基因的SSR标记筛选及遗传定位
出版时间:2019培育抗病品种是一种经济有效的手段,成为解决苹果炭疽菌叶枯病的首选。传统的抗病育种主要依赖于植株的表现型选择 (P he-notypical selection),但是由于环境条件、基因间互作、基因型与环境互作等多种因素大大影响表型选择效率。如抗病性的鉴定就受发病的条件、植株生理状况、评价标准等条件的影响。一个优良抗病品种的培育往往需要花费7~8年甚至十几年时间。随着分子生物技术的快速发展,以DNA多态性为基础的分子标记技术以其表现稳定、数量多、多态性高等优点已被广泛的运用于植物遗传图谱的构建、控制重要农艺性状基因的标记遗传定位、种质资源的遗传多样性分析以及品种指纹图谱的绘制等方面,尤其是分子标记辅助选择 (molecular marker-assisted selection,MAS) 育种,相较传统育种能极大地提高育种的选择效率与育种预见性,受到人们的高度重视。简单重复序列 (simple sequence repeats,简称 SSR) 又称微卫星(microsatellite) 广泛地分布于果树基因组的不同位置。SSR位点多态性的形成是基于基本单元重复次数的不同。由于每个SSR位点两侧一般都具有相对保守的单拷贝序列,所以可以根据此特点在SSR两侧序列设计一对特异引物来扩增 SSR 序列。通过对 PCR 产物进行聚丙烯酰胺凝胶电泳或琼脂糖凝胶电泳来显示不同 SSR 标记的分子多态性。由于SSR标记具有大量的等位差异、多态性好、操作简便、稳定等特点,已被广泛应用于作物的遗传图谱构建、指纹图谱绘制、目标性状基因的标记定位、物种起源进化及品种纯度鉴定等 (Hemmat,1994)。本试验利用SSR标记与集团分离分析法BSA (bulk segregant anal-ysis) 相结合,快速有效地寻找与质量性状遗传的目标基因紧密连锁的SSR标记,用于分子标记辅助育种及抗病性的早期鉴定。本试验选择青岛农业大学苹果试验基地 (山东省胶州市) 2009年种植的,经过室内离体接种鉴定的 ‘金冠’ב富士’ 的207 株F1杂交群体实生树为材料,于2015 年4 月底,每株采摘幼叶 5~6 片,用液氮处理后,置于-70℃冰箱保存。参考Doyle和Doyle (1987) 及 Cullings (1992) 提取基因组DNA的CTAB法,并加以改进 (附录一)。(1) 利用1%琼脂糖凝胶电泳检测。取 4μl DNA 样品与 2μl 6×Lodding buffer 混匀,在 1%浓度的琼脂糖凝胶中电泳 (120V,30min),最后在紫外凝胶成像系统中成像并记录保存。若成像为一条整齐、单一、清晰的 DNA 条带,且点样孔没有亮光,则表明所提样品较纯;若条带不清晰、拖尾或出现涂抹带,则表明 DNA 发生了降解,降解严重会看不到条带;若在胶片下部有弥散的荧光区出现,则表明样品中存有 RNA 杂质;若点样孔处有明显的亮光,则说明样品中含蛋白质和大分子杂质。琼脂糖凝胶电泳检测方法见附录二。(2) 分光光度计检测。运用分光光度计NanoDrop 2000 进行 DNA纯度及浓度的量化测定。若 OD260/OD280 值在 1.8~2.0,并且 OD260/OD230 值大于2.0,则表示此样品DNA纯度适宜。将提取、纯化的基因组 DNA,稀释到浓度为10ng/μl。根据该组合群体的离体接种鉴定结果,将杂交后代单株分为抗病和感病两大类型。按照BSA分析方法的要求,选取 10 份高抗单株 (无任何病斑)的DNA,等量混合构建DNA抗池;选取10份高感单株 (病斑个数大于20) 的DNA等量混合构建DNA感池。两个基因池用于筛选与目标基因连锁的分子标记。从网站 https://www.rosaceae.org/gb/gbrowse/malus_x_domestica/下载目标区域的 contig 序列,然后通过网站 http://archive.gramene.org/db/markers/ssrtool搜索该区域碱基序列中所有的 SSR 位点。搜索参数设置为:碱基重复单位为 2、3、4、5、6 个碱基,相应的重复次数依次为 8 次、6 次、4 次、3 次、3 次。利用 Primer 3.0 P lus软件设计SSR引物,引物设计时应注意:引物与SSR位点间的距离一般大于50 bp 个碱基序列。引物 GC 含量为40%~70%,最适值为50%;引物长度在18~24 bp;退火温度50~65℃,左右引物退火温差小于 5℃;扩增产物片段大小在 150~350 bp。引物的评估利用Oligo软件进行,避免引物二聚体、发夹结构和错配等情况的发生。引物序列 (附表1)。所有引物由生工生物工程 (上海) 股份有限公司合成。SSR反应体系为15 μl,内含10 ng/μl基因组DNA 2 μl,1×Master Mix 7.5 μl,0.2 μmol/L左右引物各0.8 μl。进行初步筛选时的 PCR扩增程序为:94℃预变性 5min,然后按 94℃变性 30 s,55℃退火40 s,72℃延伸30 s的程序进行 10 个循环,每个循环的退火温度降低0.5℃,然后按94℃变性30 s,50℃退火40 s,72℃延伸30s的程度进行25个循环,最后72℃延伸8 min,筛选能扩增出有差异条带的SSR引物。最终筛选的 PCR 扩增程序为:94℃预变性 5min,然后按94℃变性30 s,相应的退火温度40 s,72℃延伸30 s的程序进行35个循环,最后72℃延伸8 min,4℃保存。PCR产物使用3.5%的琼脂糖凝胶电泳,或者聚丙烯酰胺凝胶电泳。聚丙烯酰胺凝胶电泳的方法见附录三。从 HiDRAS 网站 (http://www.hidras.unimi.it/) 和 GenBank (http://www.ncbi.nlm.nih.gov/genbank) 网站下载了 300 对均匀分布于苹果17条染色体上的已发表的 SSR 引物,在亲本及抗感池中进行初步筛选,选出在抗亲、抗池与感亲、感池中有多态性条带的引物,然后在207个做图群体上进行筛选。最终选出与抗性基因位点连锁的标记,根据所筛选出的SSR标记的已知信息,确定其所在的染色体,然后将 SSR 标记序列与苹果基因组数据库 (http://www.rosaceae.org) 进行BLAST比对,将其定位在染色体的具体位置上。初步定位后,从网站 https://www.rosaceae.org/gb/gbrowse/malus x domestica/下载与目标基因位点连锁的 SSR 标记间的 contigs序列,根据SSR标记设计的方法,设计了 276 对新引物。这些引物首先在抗亲、抗池与感亲、感池中进行筛选,将产生多态性条带的引物再进行群体验证。对检测群体中各单株的 SSR 标记基因型分别赋值并记录,与抗池带型相同的记为 “A”,与感池带型相同的记为 “B”。将这些SSR标记在群体上的基因型数据进行孟德尔1R∶1S遗传符合度的卡方检验。并将表型抗性鉴定结果与标记基因型数据相结合,采用 JoinMap 4.0软件,对标记及抗性基因 R gls位点的连锁关系进行分析。利用软件中的Kosambi函数功能将重组率转化为遗传距离,其他参数设置为默认值。将筛选获得的与抗性基因 R gls位点最近的两个 SSR 标记,在两个亲本上进行PCR扩增。将差异片段进行胶回收。回收产物连接到载体pMD-19T simple,然后转化到大肠杆菌进行扩繁。将菌液PCR检测为阳性的克隆送生工生物工程 (上海) 股份有限公司测序。每个样挑取3个单菌落作为测序重复。测序结果用 DNAMAN 软件进行比对分析。具体操作方法见附录四。用CTAB法提取的苹果叶片基因组 DNA经1%的琼脂糖凝胶电泳检测,结果表明,DNA条带清晰,完整无降解 (附图3-1)。可以用于后续的研究。从 HiDRAS 网站 (http://www.hidras.unimi.it/) 下载的 300 对均匀分布于苹果17条染色体上的已发表的 SSR 引物在亲本及抗感池中进行初步筛选,选出54 对在抗亲、抗池与感亲、感池中有多态性条带的引物。再将这54 对引物用于作图群体的207 个单株以筛选与抗性基因位点连锁的 DNA 标记。最终筛选出2 个可以清晰区分抗感双亲、抗感池和杂交群体抗感单株的 DNA 标记,CH01d08 和CH05g05。引物序列如表3-1中所示,因为这两个标记已被报道位于苹果15号连锁群上 (Liebhard et al.,2002),所以将苹果炭疽菌叶枯病抗性基因 (命名为Rgls) 位点定位于15号连锁群上。连锁分析表明这两个标记分别位于Rgls基因位点两侧,通过 BLAST算法与苹果基因组数据库 (http://www.rosaceae.org) 进行比对,SSR 标记 CH01d08位于15 号染色体的 Contig MDC021953.346 上,标记 CH05g05 位于MDC016699.237 上,物理位置分别位于染色体的 2343 kb 和13699 kb处,两个标记覆盖了染色体上11.3Mb区域 (表3-1)。根据苹果基因组 CH01d08 和 CH05g05 标记之间的核苷酸序列,自行设计了276对SSR引物。按照上述方法进行筛选,最终筛选出9对引物能够扩增出清晰稳定的多态性条带的引物 (附图3-2、附图3-3),分别为 S0607039、S0607001、S0506206、S0506001、S0506078、S0405195、S0405127、S0304673、S0304011 (表3-1)。连锁分析表明,标记S0405127和S0304673与Rgls基因位点的距离最近,位于该基因两侧,分别存在2个、4个重组个体。通过对这11个SSR标记在做图群体上的基因分型比例分析,符合 1R∶1S 的理论比值, P 值大于0.05 (表3-2)。SSR编号引物序列重复基序产物长度/bp退火温度/℃位点CH01d08aF:5′-CTCCGCCGCTATAACACTTC-3′R:5′-TACTCTGGAGGGTATGTCAAAG-3′ag29056MDC021953.346chr15∶13688903..13699651CH05g05aF:5′-ATGGGTATTTGCCATTCTTGC-3′R:5′-CCTGAAGCAAGGGAAGTCATAC-3′ag14356.5MDC016699.237chr15∶2343805..2349433S0607039F:5′-AACGCACCGACCCATTTC-3′R:5′-CCAGCTCGCATAACCACC-3′ct18654MDC011529.272chr15∶6103161..6122652S0607001F:5′-ATGAAAGCGAGTCGGAGTG-3′R:5′-GGGGAGGGTTGGTGGTTA-3′caggtcaggt26956MDC004171.329chr15∶5986277..6005012S0506206F:5’-GCTGAGATTTCCCCCATT-3′R:5′-GCTGCGGACACTGCTTAG-3′ttggatgtg24354MDC007696.347chr15∶5714203..5748693S0506078F:5’-AGAAAGGCCCTCAAACAG-3′R:5′-CTGCAGAAGGTGGGTATG-3′aaaagc30455MDC002692.183chr15∶5005415..5011924S0506001F:5′-CATGAAAAGGTAGGCAGTGG-3′R:5′-GAGGTTCTTGGGCAAGTGTT-3′acaaccaa30454MDC013564.245chr15∶5006247..5017709S0405195F:5′-AGACGGGCAAATTAGTTGAGAT-3′R:5′-TCCCTTCTATGATGAATGACACC-3′tg25853MDC016041.193chr15∶4672532..4691912S0405127F:5′-GGCACAATGTAGGAGGGATA-3′R:5′-GCTATGAGGAAATTGGCTCT-3′at33055MDC043871.6chr15∶4622388..4626535S0304673F:5′-GTTTGCACATTGTAATGCTG-3′R:5′-CAGTTTTCTAGTGATGTCGTTG-3′tg(ga)33353MDC013859.580chr15∶4121053..4135560表3-1 定位在15号连锁群上与Rgls基因连锁的SSR标记序列及引物SSR编号引物序列重复基序产物长度/bp退火温度/℃位点S0304011F:5′-GCCGAATCTGCGGAATTG-3′R:5′-TCCCACTTCCTCACCGTCTC-3′ag21056MDC015994.315chr15∶3183972..3196801表3-1 定位在15号连锁群上与Rgls基因连锁的SSR标记序列及引物(续)-1SSRmarkerObservedratio(R∶S)Expectedratio(R∶S)x2PS030401184∶123103.5∶103.53.670.06Ch05g0590∶117103.5∶103.51.760.18S030467393∶114103.5∶103.51.070.30S040512791∶116103.5∶103.51.510.22S040519588∶119103.5∶103.52.320.13S050607894∶113103.5∶103.50.870.35S050600192∶115103.5∶103.51.280.26S060700188∶119103.5∶103.52.320.13S060703998∶109103.5∶103.50.290.59S050620695∶112103.5∶103.50.70.40Ch01d08104∶103103.5∶103.500.96表3-2 SSR标记在207株 ‘金冠’ב富士’ F1 群体中的分离将Rgls位点附近的11个SSR标记在 ‘金冠’ב富士’ 杂交组合F1 群体的207个单株上进行连锁分析。将表型抗性鉴定结果与标记基因型数据相结合采用 JoinMap ver.4.0软件计算出重组率和遗传距离如附图3-4 所示。连锁图谱上标记的顺序依次为 S0304011、CH05g05、S0405195、S0304673、S0405127、S0506078、S0506001、S0506206、S0607001、S0607039、CH01d08,重组率分别为:13.0%、8.7%、5.3%、1.9%、1.0%、6.8%、6.8%、7.2%、7.7%、8.7%、24.6%。遗传距离分别为15.4 cM、7.2 cM、3.1 cM、0.9 cM、0.5 cM、3.0 cM、4.8 cM、6.4 cM、8.2 cM、10.7 cM和33.8 cM。 Rgls基因被定位于 S0304673 和S0405127之间。距离目标基因最近的标记为 S0405127,在抗性基因Rgls位点与S0405127标记之间仅发现两个重组个体,遗传距离为0.5 cM。S0304673 的遗传距离为 0.9 cM。在 ‘Fiesta’בTotem’-15 (F×T) (Fernández-Fernández et al.,2008) 的遗传图谱中,SSR标记CH05g05与Ch01d08的遗传距离为33.7 cM,而在本研究中二者之间的遗传距离为41.0 cM (附图3-4)。为了确定抗性基因Rgls位点的物理位置,将11 个标记序列与金冠苹果染色体基因组序列 (http://www.rosaceae.org) 进行 BLAST 比对,确定这些标记位于15号染色体上的2.3~13.6 Mb。 Rgls被定位于标记S0405127和S0304673之间,跨度为4.1~4.6 Mb,两标记间的物理距离为500 kb (附图3-5)。对S0304673 和 S0405127 进行测序分析。S0304673 标记能够在双亲中扩增出差异条带,而 S0405127 标记只在 ‘金冠’ 上扩增出一条带,所以对S0304673 标记在双亲中的扩增产物进行了测序,而只对S0405127标记在 “金冠” 上的扩增产物进行了测序 (附图 3-6、附图3-7)。测序结果表明,SSR标记 S0304673 和 S0405127 的扩增片段大小分别为333 bp和330 bp。标记S0304673在 ‘富士’ 中的扩增片段比在 ‘金冠’ 中的扩增片段存在三处8~10 bp的碱基缺失,分别是 CT-CAGTGTGT、AGAGAAAG、CTTCTTACTT,另外还存在着一处两个碱基差异和六处单碱基差异。在 ‘金冠’ 中的扩增片段与参考基因组序列比对发现,有两处单碱基的差异,分别为 A/T和 G/A的碱基变化。标记S0405127在 ‘金冠’ 中的扩增片段与参考基因组序列比对发现,除在参考基因组中有两未知碱基以外,其余完全一致。本次测序确定了参考基因组序列的两处未知碱基分别为G和A。集团分离分析法 (BSA法) 是分子标记研究中的最经典的研究方法之一。其最大的贡献在于能够快速、有效地检测到与目的基因相连锁的分子标记,能够在连锁图谱中标记稀疏区或末端寻找到新的标记,并以此作为侧翼标记 (flanking marker),为继续寻找更紧密的连锁标记、构建高分辨率的连锁群、物理图谱和进行基因的图位克隆奠定基础 (廖毅,2009)。其原理简单、操作方便,而且克服了许多物种没有或者难以创建近等基因系的限制,被广泛地应用于作物育种中。同时必须注意到,物种基因组大小对标记与目标基因连锁距离是有影响的,一般来说基因组大,多态性少的物种,获得与目标基因紧密连锁标记的可能性也比较小。BSA法所能检测到的分子标记与目标基因的可信遗传距离一般在 15~25 cM,所以此法并不是在每一物种上都能获得所需要的目的标记 (Mackay and Caligari,2000)。DNA池的质量对BSA法的检测效率也有很大的影响。所以在实验过程中一定要注意,一是保证DNA 的纯度和浓度。杂质会影响紫外光的吸收率,高浓度的 DNA 溶解不均匀。因此混池时,尽可能使用高纯度 DNA,并适当稀释,否则会影响分池的精确性。二是避免 DNA 池污染。DNA 污染的原因有多方面,包括基因重组率、本身的表型效应、性状鉴定误差、DNA 混合误差、PCR 效率不均等。我们可以通过减少PCR 循环次数、减少混池单株数、构建多池、重复实验等方法来降低实验误差,否则这些误差将会导致多态性被覆盖而找不到目标标记。随着分子生物学技术的快速发展,许多分子标记被成功的应用于控制农艺性状的重要基因的遗传定位及遗传图谱的构建。如 RAP D标记、RFLP 标记、SCAR 标记、CAPs 标记、SSR 标记、SNP 标记等。在这些标记中,SSR标记具有重复性好、可靠性高、共显性和适合自动化操作等优点,成为基因定位和遗传图谱构建的首选。而且,SSR标记广泛从布于整个基因组。据统计,大约有163426个 SSR 位点公布在苹果17条染色体上 (关玲等,2011)。苹果基因组序列的公布,使SSR标记的批量开发及相应引物的设计变的更加便捷 (Guan et al.,2011)。人们可以利用已有的 SSR标记对整个基因组进行筛查,快速的将目标基因所在区域进行锁定。然后在该区域查找SSR并设计合成新的引物,进一步缩小基因所在范围。在本研究中,576 个 SSR 标记,包括300对以前发表的标记和276 对新开发的标记被首次应用于抗炭疽菌叶枯病基因位点的定位。从300对已发表并定位的SSR标记中成功的获得了2 个与抗性基因 Rgls位点连锁的 SSR 标记,CH01d08和CH05g05。这两个标记被定位于 ‘Fiesta’בTotem’ 遗传图谱的第15条染色体上的基因组序列 MDC021953.346 和 MDC016699.237上,位于抗性基因 R gls位点的两侧。这一初步定位的结果为后续标记的开发提供了非常重要的信息,明确了 R gls基因所在的染色体及区域范围。随后9个位于CH01d08和CH05g05之间与Rgls位点连锁的新标记被开发出来。最近的标记与抗性基因 R gls位点间的遗传距离为0.5 cM。在前人的研究中,SSR标记 CH01d08 和 CH05g05 被定位在 ‘Fi-esta’בTotem’ 的遗传图谱中,遗传距离为 33.7 cM.而在本研究中,它们间的遗传距离为41.0 cM。这种类似的现象Paolo等 (2013)也报道过。他们在利用四个分离群体构建与柱型基因 Co位点紧密连锁的遗传图谱时发现,特定标记间的遗传距离会因不同群体,甚至同一群体不同群体大小而不同。这有可能是由于采样不同或遗传因素控制的局部的和全基因组的重组频率不同造成的 (Doligez et al.,2006;Vezzulli et al.,2008;Moriya et al.,2009)。理论上,标记在基因组上的遗传位置与物理位置应该是对应的。但是在本研究中发现,部分标记的遗传位置与物理位置并不是一一对应的。从附图3-4和附图3-5中可以看出,共有8个SSR标记的连锁图谱上的位置与在 ‘金冠’ 基因组序列中的物理位置是一致,另外3个标记,S0506078、S0405195 和 S0304011在遗传图谱上的位置与物理图谱上的位置不一致。这有可能是由于当前的苹果基因组重叠群序列产生装配错误,也有可能是苹果基因组中染色体结构的变异造成的。对引物S0405127 和 S0304673在亲本金冠的扩增片段进行测序发现,所测序列中有四处碱基与参考基因组存在差异。这四个差异碱基及上述的三个与理论顺序不符的标记有可能会纠正基因序列组装错误。在本研究中位于抗性基因 Rgls位点两侧的标记 S0405127 和S0304673间遗传距离与物理距离的对应关系显示,1.4 cM 对应着500 kb个碱基 (物理距离/遗传距离=357 kb/cM)。在对苹果抗黑星病基因Vf位点的分子标记遗传定位的研究结果中显示,每cM 的遗传距离对应423~857 kb的物理距离 (Patocchi et al.,1999)。而在对控制苹果柱型基因 Co位点的遗传定位研究中,每 cM 的遗传距离对应702 kb的物理距离 (Paolo B et al.,2013)。这与本研究中所得出的结论不相符。这有可能与研究材料的群体大小、DNA提取的纯度及表型鉴定的准确性有关。本研究中所利用的SSR标记,特别是新设计的276 对引物,有很大比例在亲本间能扩增出多态性条带,而在抗感池间无差异。虽然这部分标记与抗性基因 R gls不存在连锁关系,但仍可用于群体遗传图谱的构建,以及其他性状标记的筛选。在对PCR产物的检测中,使用了3.5%的琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳两种方式。采用3.5%的琼脂糖凝胶电泳条带清晰,分辨率高,可以清楚的显示差异条带,而且操作简单,电泳速度快,但是存在显示的条带少的缺点。而聚丙烯酰胺凝胶电泳产生的条带很多,分辨率极高,甚至能分离1 bp的碱基差别,但是制备和操作复杂。本试验主要采用3.5%的琼脂糖凝胶电泳,所以可能会导致一些引物因产生的多态性条带间差异小,没有显示出来而被淘汰。本研究首次开展了与抗炭疽病叶枯病基因 R gls位点紧密连锁的分子标记的筛选,并构建了第一张与抗性基因 R gls位点紧密连锁的分子标记遗传图谱。通过对207株 ‘金冠’ב富士’ 杂交组合F1 群体的验证,11个与Rgls位点连锁的标记将该基因定位在苹果基因组第15条染色体上,覆盖了49.2 cM的遗传距离,标记S0405127 和 S0304673分别位于抗性基因位点的两侧,遗传距离分别为 0.5 cM 和 0.9 cM,对应于 ‘金冠’ 苹果基因组的物理距离为500 kb。这两个标记可以应用于抗炭疽菌叶枯病分子标记辅助育种,在定植前对幼苗进行抗性筛选。这将会显著的降低苹果抗炭疽菌叶枯病育种的成本,缩短育种时间。本研究结果对深入开展抗炭疽菌叶枯病的遗传机理和分子机制研究有重要的意义,并为进一步的抗性基因的图位克隆和基因功能验证奠定基础。 -
报告二、玉米病虫草害
出版时间:2015(1)症状:主要为害玉米叶片。下部叶片先出现水渍状青灰色斑点,然后沿叶脉向两端扩展,病斑呈长梭型、中央淡褐色,外缘暗褐色,当田间湿度大时,病斑表面产生灰黑色霉状物。严重时病斑融合,造成整个叶片枯死。玉米大斑病(2)药剂防治:可选用50%多菌灵可湿性粉剂600倍液、25%三唑酮可湿性粉剂800倍液、30%己唑醇悬浮剂4000倍液喷雾。(1)症状:主要为害玉米叶片,病斑有3种。其一,受叶脉限制的椭圆或近长方形病斑,黄褐色,边缘深褐色;其二,不受叶脉限制的灰褐色椭圆形病斑;其三,为黄褐色坏死小斑点。多数病斑连在一起,造成叶片枯死。玉米小斑病(2)药剂防治:同玉米大斑病防治方法。(1)症状:可为害玉米叶片、叶鞘和茎秆。先在顶部叶片的尖端发生,以叶和叶鞘交接处病斑最多,常密集成行,最初为黄褐色或红褐色小斑点,病斑为圆形或椭圆形到线形隆起,附近的叶组织常呈红色,小病斑常汇集在一起,严重时叶片上出现几段甚至全部布满病斑。在叶鞘上和叶脉上出现较大的褐色斑点,发病后期病斑表皮破裂,叶细胞组织呈坏死状,散出褐色粉末(病原菌的孢子囊),病叶局部散裂,叶脉和维管束残存如丝状。玉米褐斑病(2)药剂防治:同玉米大斑病防治方法。(1)症状:主要为害叶鞘,也可为害茎秆和苞叶,严重时果穗受害。发病初期在基部1~2节叶鞘上产生暗绿色水浸状病斑,后扩展融合成不规则云纹状病斑。中部灰褐色,边缘深褐色。多雨、高湿气候持续时间长时,病部可见褐色菌核。(2)药剂防治:可选用50%甲基硫菌灵可湿性粉剂500倍液、50%多菌灵可湿性粉剂600倍液、50%腐霉利可湿性粉剂1000~2000倍液喷雾,喷药重点为玉米基部。(1)症状:是两种常见的玉米病毒病(玉米矮花叶病毒病和玉米粗缩病,两种病毒病均主要是由昆虫传毒引发的)之一。玉米感病后节间缩短,严重矮化,高度仅为健株高的1/3~1/2。叶色浓绿,宽且质硬,成对生状。叶背侧脉上有长短不等的蜡白色突起物,也可在后期的叶鞘、雄穗苞叶上见到。苗期感病后幼叶两侧细脉间可见透明呈虚线状的条点,这是初期症状的主要识别标志。感病植株不能正常抽穗或花丝不发达,结实少。玉米粗缩病病株玉米粗缩病叶片典型症状(2)药剂防治:主要是防治传毒媒介灰飞虱、蚜虫等,可在其迁入始期和盛期选用4.5%高效氯氰菊酯乳油1500倍液、10%吡虫啉可湿性粉剂1500倍液+80%敌敌畏乳油1000倍液、22%噻虫·高氯氟微囊悬浮剂3000倍液喷雾预防。(1)症状:幼苗感病后,心叶基部细脉间出现椭圆形褪绿小点,断续排列成条点花叶状,以后发展为黄绿相间的条纹,不受叶脉的限制,与健部相间形成花叶病状。后期感病病叶叶尖的边缘变紫、干枯。玉米矮花叶病毒病病株玉米矮花叶病毒病典型症状(2)药剂防治:同玉米粗缩病防治方法。(1)为害特点:玉米螟以幼虫为害玉米叶片、茎秆、雄穗和雌穗。苗期初龄幼虫蛀食嫩叶形成排孔花叶,3龄后幼虫钻蛀玉米茎秆,为害花苞、雄穗和雌穗。造成玉米茎秆易折,雌穗发育不良等。玉米螟幼虫为害茎秆玉米螟幼虫为害雌穗(2)生物防治:①性诱捕技术,成虫扬飞前在田间悬挂亚洲玉米螟诱芯,配套小船诱捕器,根据作物的生长调节诱捕器的高度,监测每公顷用1套,防治每亩用3~5套,1个月左右更换一次诱芯;②可用白僵菌封垛消灭越冬幼虫;③利用天敌防治技术,在玉米螟产卵初期开始放蜂,每亩一次放蜂1万~2万头,每亩放1~2点,每点放一块蜂卡,用牙签、大头针或针线将蜂卡别在玉米中上部叶片的背面,卵面朝外,别牢即可。释放赤眼蜂防治玉米螟(3)化学防治方法:在其防治关键时期——玉米心叶期,选用18%杀虫双水剂250毫升/亩,50%辛硫磷乳油200~250毫升与5~10千克细沙土混合均匀,或直接使用4.5%辛硫磷颗粒剂2.5~3千克,与5~10千克沙土混合,均匀撒入玉米心叶。(1)为害特点:黏虫以幼虫咬食玉米叶片或咬断刚出苗的茎秆进行为害。1~2龄幼虫仅食叶肉形成小孔,3龄后形成缺刻,5~6龄进入暴食期,虫量大时,可将叶片全部吃光成光杆。当一块田被吃光时,可成群迁移到另一块田为害。黏虫幼虫黏虫为害夏玉米(2)药剂防治:可选用25%灭幼脲悬浮剂50~70毫升/亩、4.5%高效氯氰菊酯乳油50~70毫升/亩对水喷雾。(1)为害特点:玉米幼苗期,蚜虫集中于心叶为害,造成植株生长不良,甚至死亡。穗期密布于叶背、叶鞘、苞叶和花丝处,直接刺吸为害,同时其排泄的“蜜露”黏附在叶片上,形成一层黑色的露状物,引起煤污病,从而影响光合作用,引起减产。此外,还传播玉米矮花叶病毒病,为害更大。玉米蚜虫聚集在叶片为害玉米蚜虫为害后形成煤污病(2)药剂防治:同小麦蚜虫防治方法。(1)为害特点:蓟马个体小,会飞善跳,较喜干燥条件,在低洼、干旱、通风不良的玉米地发生多。蓟马为害造成不连续的银白色食纹并伴有虫粪污点,叶正面相对应的部分呈现黄色条斑。成虫在取食处的叶肉中产卵,对光透视可见针尖大小的白点。为害多集中在自下而上第二至第四叶或第二至第六叶上,即使新叶长出后也很少转向新叶中为害。(2)药剂防治:可选用25克/升多杀霉素悬浮剂1000倍液、4.5%高效氯氰菊酯乳油1500倍液、30%乙酰甲胺磷乳油1000倍液对水喷雾防治。玉米蓟马(1)为害特点:主要以成虫取食叶肉,被害部呈不规则白色网状斑和孔洞;为害心叶可使心叶卷缩在一起呈牛尾状,不易展开。从玉米苗期至成株期均可受害,但以玉米抽雄前受害最重。一般每年6月下旬到8月上旬为成虫为害玉米盛期,尤其是夏玉米苗期受害严重,对玉米造成较大损失。幼虫生活于土中,害食植株根部,并于土中化蛹羽化后,为害植物地上部分。(2)形态特征:玉米褐足角胸叶甲属鞘翅目叶甲科,成虫卵形或近方形,前胸背板呈六角形,两侧中间突出为尖角,体长3~5.5毫米,体色变异大,一般为铜绿、蓝绿和棕黄3种类型。褐足角胸叶甲褐足角胸叶甲为害玉米状(3)药剂防治:可选用4.5%高效氯氰菊酯乳油1500倍液、30%乙酰甲胺磷乳油1000倍液、48%毒死蜱乳油1500倍液对水喷雾。(1)杂草种类:玉米田杂草主要以一年生杂草为主,部分地区同时还有越年生杂草。主要杂草种类有:马唐、牛筋草、稗草、狗尾草、反枝苋、马齿苋、龙葵、铁苋菜、打碗花、苍耳、葎草等。春玉米生长期长,前期以稗草、狗尾草、藜、苍耳等为主;中后期以刺菜、打碗花、蒿等为主。夏玉米生长期较短,播种时正值高温多雨季节,主要以牛筋草、马唐、反枝苋、马齿苋等为主。苍耳龙葵打碗花马唐马齿苋狗尾草(2)药剂防治:在玉米播后苗前,可亩用40%莠去津100~150毫升+50%乙草胺100毫升/亩或40%乙·莠悬浮剂300~400克对水40~50千克进行地面喷雾。如果免耕覆盖田秸秆量大,可适当加大药液量,使药剂下淋扩散,提高防治效果。未进行土壤封闭处理或者封闭效果不好的地块,玉米苗后4~7叶期,杂草2~4叶期,可亩用40%烟嘧磺隆70~100毫升,对水20~30千克或55%硝磺·莠去津悬浮剂(春玉米100~150毫升、夏玉米80~120毫升)对水15~30千克均匀喷雾。注:烟嘧磺隆不适用于甜玉米、糯玉米及京科系列敏感品种,应引起注意,避免产生药害。 -
报告现代企业审计管理信息化分析
出版时间:2009近年来发生的巴林银行倒闭案、安然事件、世通公司等财务欺诈案以及我国一些企业控制失灵事件,使重视企业内部控制与风险管理成为全球化趋势。内部审计,作为公司治理结构中形成权力制衡机制并促使其有效运行的重要手段,随着现代企业审计制度的建立和完善,其职能早已超越了传统的财务收支审计,而涉及对各项工作的经济性、效率性和效果性的核查。这使得内部审计部门不仅仅是现实资产的守护者、财务报表的复核者、会计核算的勾稽者,更成为了强化管理的促进者、提高效能的推动者和价值增值的促导者。内部审计在企业中的作用与地位日益提高,这也需要审计工作的方式方法与时俱进。在近年来全球信息化浪潮的影响下,信息技术的应用已渗透到国民经济和社会经济发展的各个领域和各个层面。随着中国国内会计电算化的迅速普及,以及内部审计在企业管理层面承担的新任务,现代审计理论和审计实务面临着许多前所未有的问题和挑战。对审计环境的影响:现在,已有80%以上的基层单位基本实现了会计电算化(财政部1994年5月4日《关于大力发展我国会计电算化事业的意见》目标要求),许多大型企业还实施了ERP系统,信息化使企业的经济环境、组织结构、经营方式、业务重心和管理模式等都发生了重大变化。业务执行的各种细节在信息系统中转化为海量数据,这要求审计部门必须有能力在信息化的业务流程和海量数据的背景下开展有效的审计工作。而无形的电子数据及处理数据的信息系统,用户权限和系统安全都更加严格,这也使得审计环境变得更加复杂。对审计线索的影响:在传统的手工会计系统中,审计线索非常清楚,从原始凭证到记账凭证,由过账到财务报表的编制,整个财务处理过程由不同职责分工的人员来共同完成,每一步都有文字记录和经手人签字,这些书面资料为审计提供了清晰的线索,审计人员在对会计报表进行审计时就可以根据需要对这些审计线索进行顺查或逆查、详查或抽查。而在会计电算化系统中,传统的账簿没有了,取而代之的是磁介质,这些磁介质上所存储的会计资料不能为肉眼所直接识别,修改不留痕迹。同时,由于数据处理过程的自动化,业务数据进入计算机系统之后,即所有会计处理均由计算机按程序指令自动生成,传统的审计线索在这里中断了、消失了。传统的查账方法,对电算化的会计个体已不完全适用。对审计内容的影响:在手工条件下,审计内容主要是对人的审查,采用的方法主要是对纸面信息进行核对和检查。责任容易确定,结果也较直观。在计算机审计的条件下,审计人员应该在查核财务会计报表及账簿记录的真实性和正确性的基础上,把重点放到被审计单位所用信息系统是否合法、合规和第一次输出的信息是否真实、正确,以及当运行环境发生变化,或经过系统维护后,输出信息的真实性、正确性上。对审计技术的影响:在手工会计处理的条件下,审计可根据具体情况进行顺查、逆查或抽查。审查一般采用审阅、核对、分析、比较、调查和证实等方法。所有审查工作都是由人工完成的。在会计电算化条件下,会计的特点决定了审计技术的改变。对电算化会计信息系统的审计,如果仍然采用常规的手工系统的那一套审计技术,就不可能达到审计的目的。对审计风险的影响:在信息化环境下,由于企业运行环境的改变,审计线索和审计证据的可靠性主要取决于信息系统的相关控制是否健全、有效。而企业信息系统的开放性和共享性、外部环境的不安全性,都会使计算机病毒和黑客对信息的真实性和可靠性产生威胁,并且其破坏性巨大,这些都加大了信息化环境下企业风险管理审计的风险。对审计人员素质的影响:开展信息化环境下的审计管理,要求审计人员必须具备计算机软硬件知识,对计算机网络和信息系统的安全性具有特殊的敏感意识,对财务会计和企业内部控制具有深刻的理解,既是审计专家,又是信息系统专家,并以对计算机信息系统软硬件的技术性审计来保证计算机审计质量的可靠性。自20世纪90年代,随着信息技术的发展和会计电算化的普及,使审计工作由手工审计转向计算机审计,由此而诞生了计算机审计软件,此阶段属于审计软件的初级阶段——“财务收支审计作业软件包时代”。随着经济的发展和社会的进步,审计的职能早已超越了查账的范畴,涉及对各项工作的经济性、效率性和效果性的查核。这就需要与之相配套的审计信息化产品不再局限于财务收支审计,而应拓展到对各类业务数据的审核。审计信息化产品的应用也将从“财务收支作业软件包时代”进入了一个全新的时代——ARP(Audit Resource Planning,审计资源计划)时代。ARP是指在先进的管理思想的基础上,应用信息通信技术,以加强企业/政府内部控制、提高风险防范能力为目标的审计信息系统,全面解决新形势下内部控制、风险管理与审计监督的难题。这就需要审计信息化产品能够科学的处理和利用审计信息,帮助政府与企业实现对各类业务的全面监测与自动预警,反应出企业财务经营状况,查找经营管理中存在的问题和疑点,评价经营管理和风险程度,注重把查处问题与促进改革、完善制度结合起来,从标本兼治的角度有针对性地提出审计建议,进一步提升审计的质量和水平,为领导科学决策提供依据。第一,实现审计管理信息化是适应现代企业制度要求、改变传统审计模式、紧跟现代审计发展步伐的必然要求。企业内部审计应突破传统的审计思路,逐步向管理审计转移,强化企业内部约束机制,促使企业建立严密的、完善的控制系统,严格的、科学的管理制度,有效的、畅通的运行机制。重点通过内部控制审计、经济效益审计和管理过程审计,优化人力、物力、财力资源配置,改善经营管理,挖掘生产与工作中的潜力,全面分析、评价企业综合效益,增强企业的市场竞争力,以管理创新为基础,促进企业提高经济效益。现代企业制度下,内部审计作为企业管理的一个职能部门,不仅具有监督职能,而且具有服务的职能,可以说是一种寓服务于监督之中的职能。其监督的目的是维护企业整体的合法经济利益不受侵害,实现企业活动最优化,经济效益最大化。因此,要适应现代企业制度,由监督导向型向服务导向型转变,实现财务收支审计向管理审计延伸是必由之路。随着内部审计由财务领域向经营管理领域的扩展,原来旧的审计方法显然不适应现状,审计人员应力求在审计方法上有所创新。交易电子化、自动化是当今经济业务运转的发展趋势和潮流,内部审计要继续发挥监督、评价和服务的职能,就必须紧随审计环境的变化,建立适应信息化的审计管理信息系统,利用信息技术真正改变和提升审计工作的业务方式、业务能力。第二,实现审计管理信息化是科学管理审计工作,规范审计流程,提高审计工作效率的必然要求。在审计监督面临的业务量上看,不断发展的经济规模要求审计监督的规模相应增长。被审计单位财政财务管理、业务运营的技术手段已经逐步从传统的人工处理方式,转向全面依赖信息系统支持的阶段。一方面业务执行的各种细节在信息系统中转化为海量数据,另一方面业务执行在信息化的支持下发生了流程重组。发生变革的被审计业务执行过程,需要审计监督的技术手段做出信息化调整。审计部门必须有能力在信息化的业务流程和海量数据的背景下开展有效的审计工作。从审计工作质量的要求上看,企业、上级主管部门、社会各界等外部主体对审计监督的质量要求连年提升。预算执行审计、固定资产投资审计、经济责任审计等专业审计工作在行政职能中发挥的作用和意义越来越大。按照现代企业内部审计的要求,结合计算机技术特点,兼顾审计业务发展需要,从实际出发,实现审计管理信息化需要开发能满足实际审计工作的应用软件,该软件应以审计质量为核心,审计多样性为根本,审计独立性为先导,审计问题为出发点,审计程序为主线,审计工具为标准,审计文档管理为依托,具备以下功能特点:一是能够分析海量业务数据,准确发现疑点。系统应能够智能的采集财务软件、大型ERP中的各类财务、业务数据,采集方式多样,如:直连采集、备份采集,U盘采集,定量采集、定时采集等。系统应具有强大、灵活的分析工具,能够对财务、业务数据进行各种综合分析,也可以预置各种方法、模型,在项目中调用,便于经验共享和规范工作。系统应具有动态的、实时的数据分析、预警平台,可以对海量的数据进行实时的分析、预警,为制定审计计划提供依据,为审计项目提供疑点。二是审计质量的有效控制。系统应具备完善的审计项目管理功能,辅助审计项目质量控制,完成审计准备、审计实施、审计报告、后续审计四个阶段全过程管理,并具有项目台账、项目成本、成员管理、预备归档等管理功能,并提供与审计现场作业软件接口,方便及时地记录现场审计环节的重要信息,为领导决策支持、全面掌控审计项目的进度提供保障。三是全面的审计工作客观评价体系。构建考核主体、考核周期、考核流程、考核对象、考核指标、基准分数、评价等级等考核体系,对审计项目、审计部门、审计人员进行量化评价。通过对业务流程的各个环节投入、产出进行审核评价,从而获得员工的绩效考核分析,为工作安排、奖金计算、人员调整等提供决策依据。四是完善的决策支持,实现审计成果的高级综合应用。可以对各级审计部门的人员、计划、项目、档案、台账、绩效考核、审计预算等进行多条件、精确到模糊、简单到复杂的高级综合查询。按照管理要求快速生成审计报表和统计报表,能够以多种格式输出。同时可以构建指标分析体系,辅以图表的生动展现,为领导决策提供有力支持。五是集团化多组织的计划管控。系统应能够支持多级(集团公司和下属公司)、多组织独立的计划管理。能够对审计计划的填报、审核、审批、分配、调整、结转,到计划执行进度进行全过程的管理和监控。随着审计管理信息系统的建立,审计工作将逐步实施“实时跟踪+联网核查”审计模式,逐步实现审计监督的三个“转变”:从单一的事后审计转变为事后审计与事中审计相结合;从单一的静态审计转变为静态审计与动态审计相结合;从单一的现场审计转变为现场审计与远程审计相结合,使内部审计的监督职能的实现得到革命性的提升。ARP时代的审计管理信息系统,依托先进的审计理念和强大的信息科学技术,能帮助企业对业务流程的执行效率,资源利用效率进行实时监控,适时提供改进建议,防范风险于未然,促进企业又好又快发展,为有中国特色的社会主义建设保驾护航。 -
报告信息管理在地铁运营中的应用
出版时间:2009我国城市交通技术政策规定:以公共交通为主,在大城市建立轨道交通为骨干的综合运输体系。城市轨道交通管理系统是一个包括多学科、跨专业的系统工程。在管理方面表现为自动化、信息化,并体现出“与时俱进、以人为本”的理念。信息技术在地铁运营中的应用,突破了人们习以为常的时空障碍,在更大范围内将企业与企业、企业与销售商、企业与政府管理机构以及消费者等都连结起来,构成了一个巨大的虚拟信息空间。信息技术的使用使得企业的基本思考方式和运营方式正在发生变化,这就要求企业管理者必须懂得信息技术如何与企业管理相结合,以及在信息社会中企业的基本特征。信息基础设施是企业信息化的基础。信息基础设施需要大量投资,也需要不断地更新和发展。信息基础设施包括6层技术平台:硬件层、网络层、系统软件层、数据管理层、平台开发层及应用系统层。计算机是信息系统重要的组成部分。微型计算机是最为普及、同时性能价格比提高最快的计算机。网络计算机的功能更为简化,成本低廉,这种机型主要用在局域网上,终端机的功能相对较弱,运行的是网络服务器上的软件,大多数信息处理及存储功能等也是在服务器中进行,从而降低了整体计算机系统的成本,也使得维护成本大大降低。在地铁运营业务中,根据不同业务用途,这两种计算机均适用。服务器泛指在客户机/服务器结构中提供资源的计算机,其作用是存放大量共享数据或公用程序,是构筑管理信息系统最重要的核心计算机设备。工作站型计算机的处理能力通常高于微机,具有多任务、多用户的功能,易于与外界的各种计算机网络互联,容易得到外部的数据,在存取远程计算机站点上的信息、图像等方面,表现出很好的性能,在网络中需要各个结点具有较强的处理功能时,使用工作站比较适合,工作站也可以作为服务器使用。在进行计算机选型时,需要从整体的角度来考虑系统的效益。一个企业的信息系统一般由若干台服务器作主机,用大量微机作为用户终端,所以应在企业整体的IT发展规划下考虑和选择具有合理性能/价格比的机型(表1)部件应考虑的主要事项处理器和主板处理器型号和主频率,是否具备并行处理功能,最大处理器数量内部存储器内存容量,可扩充的最大容量硬磁盘硬盘容量,硬盘数,数据接口类型显示器屏幕尺寸,分辨率,精细度,扫描方式扩张插槽数目,网络接口卡速率多媒体光驱速度,读写格式,声卡,图像解压方式移动计算是否具备移动计算功能安全功能防病毒设备,电源锁、指纹识别或其他安全防范措施售后服务免费维修的时间、部件、技术支持方面的承诺表1 微机选型的考察事项信息系统规划是信息系统实践中的主要问题,它之所以重要,首先在于现在信息系统的应用已越来越为企业战略服务,其次在于现在企业用于信息系统的投资越来越大。信息系统规划的范围,一要分析地铁公司业务发展及其对信息化的需求,分析公司的战略目标、经营方针、发展策略、及主要业务活动、模式、流程,分析地铁公司的组织架构、部门的目标、功能,借鉴以往经验及参照行业最佳方法,并结合本地需求,初步定义每个环节对信息化的需求及其用途、重要性、优先次序、对业务的价值等,形成对信息化需求的整体、高层的需求大纲。二要制定应用系统构架,根据地铁公司的整体业务需求,制定用以描述企业整体的应用系统如何配合业务的信息化需求,并用于对信息化建设的决定作为指导。三要制定技术架构,为配合整体信息技术策略和信息化建设方向,有需要制定技术架构从而订立一套选购及建立信息基础设施的守则及标准,以满足企业的业务需求及支持信息化建设。四要对目标应用系统架构中系统的主要模块、主要模块功能描述、主要的集成要求、主要的技术要求、主要的业务流程及其信息化需求、主要的信息数据需求进行逐一的简述。经过以上四个步骤后,确立信息化建设的短期、中期及长远目标,短期目标为完善信息化建设的整体规划,完成建设阶段所有需要的重点信息技术设备及系统,建立本地化的团队及信息技术部门组织架构,完成重要信息系统建设。中期目标为完成运营初期急切需要的信息技术设备及系统,包括完善办公自动化设备与功能、实施财务管理系统、实施维修管理系统、实施采购管理及库存管理系统、建设信息技术数据中心、信息技术服务台等,以有效支持地铁公司各项主要业务和管理工作。长期目标为继续优化已建立的信息技术系统及服务,探讨其他信息化建设(图1)。企业的信息系统开发涉及许多方面:企业通常决定如何与开发商合作,由谁来主导开发;开发过程可能涉及企业的组织结构和业务流程的变更,也涉及对企业员工的培训。在许多情况下,信息化还涉及企业的战略问题,必须由企业的高层领导作出相应的决策。企业建设信息系统时,应首先建立信息化组织结构(图2)。图1 信息系统规划战略图2 系统开发信息指导委员会的职责是推进企业的战略,审议企业信息化的发展战略,听取项目小组对信息化工作的报告,同时对信息化中的重大问题进行决策。工程项目组可以由开发商为主构成,或者由企业内技术人员与开发人员混合构成,负责整个系统的开发。系统管理组负责信息系统的运行和维护,信息资源的管理,对用户的使用提供技术支持。在这些小组中,如果牵涉到各个部门的业务活动,最好由各部门的代表参与。在委托外部开发商进行开发的情况下,企业项目组可能是以开发商为主构成的。从技术角度来说,项目开发应当是从提高开发商人员的工作效率以及合理调配资源为出发点,这时企业人员应当积极地参与到项目小组中,配合开发商的要求,提供有关的业务流程资料和信息需求,同时还必须注意工期进度和对质量等方面的要求。开发工程项目小组由项目经理、系统分析师、系统设计师、程序员等角色组成。项目经理是开发队伍中该项目的领导者,一般具有丰富的开发经验,同时又具有与用户决策人物对话的资格,在重要问题上能协调与用户的关系。项目经理负责信息化项目的计划和推进,协调开发中的各种工作的顺利进行。信息管理系统包括编制作业计划、供应链管理、库存管理、设备维护和可靠性、运营数据管理、人力资源管理、运营信息的发布、危害登记、办公自动化等,该系统的建成与投入使用,减少了人力、物力的投入数量,并保证信息及时传递、记录、保存。在编制作业计划时,登录预先建设好的运营维护系统,将作业类别、工时、人数、使用的工具等信息数据输入计算机,维护系统会根据预先设定好的路经,与供应链、库存、维护数据、成本控制中心接口通讯,制定出合乎成本效益的工作时间表,并以电邮方式向维护人员发出工作单,维护人员接到工单后,按其所发布的内容准备工作,库存部门准备物料,为维修部门提供备品备件的供应商及时向库存部门提供不足的货品。运营员工可在任意一台公用计算机上凭本人ID号码登录人力资源管理系统,查看本人各种信息,包括物品领用记录、培训时间及成绩、工作地点等,节省了时间和信息不畅的问题。安全质量专业人员可登录危害登记系统,输入、消除、查看设备的隐患情况,并及时地制定相应的措施。各部门通过办公自动化系统及时传送、接收各种表报,发布运营信息等。所有的应用信息系统模块以模块群的方式组成(图3),各部门根据需求,经授权后登录网络系统,存取所需信息,编辑制定自己的工作内容,及时了解与本部门相关的信息。图3 信息管理系统构成所有子系统搭载在地铁通信网络系统骨干网上,连接地铁所有车站,实现远程信息交换,运营效率大大提高。决策支持系统是为决策者提供数据、信息和分析工具的信息系统。根据决策者在组织中的地位和决策的性质,可以将各种决策活动分为战略性决策、管理性决策及作业性决策三种。战略性决策是指将对组织的整体活动产生较大影响的决策,例如企业购并。作业性决策是指对组织常规业务问题的决策,例如日常的会计业务处理、订单处理、维修车间中的派工等这类决策活动。管理性决策是处于二者之间,其中一部分属于作业性层面上,而大多数活动属于战略性决策层面上,例如企业中管理会计的预算问题。我们把管理决策系统定义为交互式的计算机系统,可以帮助决策者使用数据及模型来解决不太确定的问题。作为一种软件系统,其核心在于各个主要成分以及它们相互之间的关系(图4)。图4 决策系统的核心成分数据管理子系统的主要组成包括数据库、数据字典和数据库管理系统。数据库基于某种统一的数据模型式组织和存在问题的领域中的数据,数据字典对于数据的数据内容、记录形式、格式和约束条件等进行记录。数据库管理系统则提供各种数据管理功能。数据库中的数据通常可分为:事物数据,内部数据,外部数据和个人数据。事物数据记录企业日常发生的活动,内部数据大部分都是事物数据,而外部数据来源于企业外部的经营环境,对于企业的各层次的经营决策具有参考价值。个人数据是为特定的决策者收集和设用的数据,例如仅提供给财务总监的企业财务报表。模型管理子系统包括模型库、模型库管理系统与其他子系统的接口等。模型库中一般应包含在特定的领域中解决问题所需要的常用数学模型,这些数学模型决定了系统可提供的分析能力。模型库管理系统是该子系统的核心部分,所有的模型库中的模型都受模型库管理系统的控制。模型库管理系统也提供与用户会话的渠道,用户通过模型库管理系统可以方便地操作模型。高层主管经过过滤、处理、组织起来的信息,使他们能更为迅速、更为有效地得到一些“关键的”信息,诸如表明企业运作状态的关键绩效指标,与公司的关键成功因素相关的情报,有关重要的竞争对手的活动情况等。这些信息有助于高层主管及时发现企业当前问题所在,找到新的发展机会以及预测未来的发展趋势。
