首页 <
知识图谱:全部
-
报告浅谈施工项目成本控制的措施
出版时间:2009建筑施工企业项目成本控制是指在项目成本的形成过程中,对生产经营所耗费的人力资源、物质资料和费用开支进行指导、监督、调节和限制,及时纠正将要发生和已经发生的偏差,把各项生产费用控制在计划成本的范围之间,以保证成本目标的实现。按照现代企业制度产权明晰、所有权与经营权分离、职责明确的要求,项目的成本控制责任主体应当以能否对成本费用进行控制分别采取措施。本文依据控制权限分别从公司和项目部角度进行论述,对项目部能够控制的费用,应当由项目部进行控制;而对项目部无法控制的成本,则应当由公司采取措施予以控制。招标价格低于成本,是指即使按照劳动定额、材料消耗定额、机械台班定额和建筑市场人工的平均工资水平、材料、设备的市场价格计算出来的总成本,且不计算间接费和计划利润,也比工程的招标价格高。企业承揽了这样的工程,定额消耗与实际消耗之间的差额数量没有了,管理费、劳动保险费和财务费用没有了,计划利润没有了,而这几项费用通常要占正常的建筑造价的25%左右,项目部要想在这样的中标价格基础上不亏损,无论怎么努力都难以达到。因此,企业除非有进入某个行业的意图,否则必须坚决避免承揽招标价格低于成本的工程。一旦承揽了这样的工程,企业应按照正常的成本控制方法,明确项目部允许开支的成本目标,而不能把总成本限制在中标价格以内。同时,企业在考核项目部的业绩时,必须以正常的总成本目标为依据。企业在工程项目开工后,必须对标书中的施工组织设计进行优化,或者重新编制实施性的施工组织设计,使施工组织设计更加科学、合理,完全符合工程项目的实际,尽量避免无效的工作量和重复劳动;注重帮助项目部采取先进的劳动组织形式,合理配置劳动力、材料、设备和资金等资源,最大限度地发挥各种资源的作用,提高劳动效率,降低劳动消耗;指导项目部采取先进的施工技术,并在不降低工程质量的前提下,改变一些传统落后的施工方法,使用节能降耗新型材料或可替代的工程材料和固定资产,以提高施工效益,加快工程进度。因非项目部主观原因而发生的成本或亏损,比如因设计变更(扣除增加的计价收入后的净成本)、施工组织设计的不合理、气候变化、项目部息工等因素而增加的成本,以及因中标价过低而企业又未予补充内部预算所形成的亏损,必须由企业负责。这样做的目的是为了分清责任,避免项目部因企业不承担非主观原因而发生的成本或亏损,放弃成本控制的责任,从而引发更加巨大的主观因素亏损。企业应对经营规模问题进行深入、细致的分析,在保证在册员工的工资水平在同行业平均水平之上的前提下,适当控制经营规模,向管理而不是单纯向规模要效益;在加强管理的前提下,对所属的项目部进行整合,使每一个项目部都具有较雄厚的管理基础,使所承担的工程项目都能够取得良好的经济效益。下面用一个例子说明上述问题。如果一个项目部一年完成3000万元产值可以实现利润总额(包括上交给企业的管理费)300万元,在完成价格水平相近的工程5000万元产值时仅可以实现利润总额330万元,那么就决不去完成5000万元产值。因为按照项目部的生产能力和管理水平,以及现行的工程价款结算方式,虽然多完成2000万元产值增加了30万元利润总额,但在多完成产值的同时,却使项目部的产值利润率降低(前者为10%,而后者仅为6.6%)和应收账款增加、完成的工程项目增加,从而使坏账的风险、工程项目不能按期完工的风险、发生工程质量和安全事故的风险增加,而这些风险在转化为损失时,则可能最终冲抵多增加的利润,甚至减少原有的利润。在自行施工项目部的成本中,固定资产(含施工机械、运输设备、生产设备和各种管理用固定资产,不包括房屋、建筑物)折旧费约占5%,而目前项目部和企业的各级管理机构所使用的固定资产,以招标形式实行购买的微乎其微。如果企业的设备全部实行招标采购,则其采购价格预计可降低10%左右,不但每年的固定资产的折旧费可因此降低10%,企业还可以用节余的资金办更多的事情。因此,企业在系统内也应全部实行招标采购固定资产。企业对每一中标的工程,在正式开工后半年内应当派出工作组,确定该工程项目的总成本目标和分项的成本目标,确定该工程项目和分项工程所需的人工工天、各种主要材料的数量、各种设备的台班数量,同时确定该工程项目和分项工程的人工费、材料费、机械使用费和间接费。在此基础上,确定该工程项目的总盈亏指标。确定成本目标时,各分项工程的人工工天,以省、部颁劳动定额或现场测定的定额数据进行确定,工天单价按照企业的平均工天单价或其他标准进行修正后确定;各分项工程的各种主要材料的数量,按照施工图纸和省、部颁材料消耗定额或现场测定的定额数据进行确定,材料单价按照中标时的价格或企业制定的计划价格进行确定。各分项工程的各种设备的台班数量,按照实施性施工组织设计和省、部颁机械台班定额,结合上场设备的状况进行确定,台班单价按照省、部颁机械台班定额和上述方法确定的材料单价进行确定;或者根据施工组织设计中安排的上场设备种类、数量、价值和国家、企业规定的固定资产折旧率,先计算出固定资产的折旧费和大修费,然后再根据按照省、部颁机械台班定额和上述方法确定的材料单价确定机械台班单价(可变费用部分)。各分项工程的间接费,可采取费率、费用定额等方式确定。工程项目的间接费总额可根据确定的该工程项目管理人员数量、管理人员的工资水平、管理所需的各种办公设备、用具数量以及日常的办公用品费用、应当提取或交纳的各项费用(如职工福利费、养老保险费、医疗保险费、失业保险金、住房公积金、工会经费等)进行确定。工程项目的税金可根据国家规定的税种、税率和合同价值进行确定。工程项目的财务费用可根据项目融资的数额和国家规定的利率、企业规定的资金占用费率进行确定。工程项目的盈亏指标按照中标价格减去总成本指标,在考虑一定比例或数额的变动因素后进行确定。项目部实现的盈亏数额由企业收缴或进行弥补。项目部按照总成本指标和实际发生的成本计算的盈亏,由项目部留用或自行承担。材料费和机械使用费中的燃料、配件等费用(以下简称为材料费),是工程成本中最主要的组成部分,其比例约占项目部总成本的70%以上;控制住了材料费,就能够控制住项目部总成本的绝大部分。材料费是由材料单价(含运杂费,下同)和消耗的材料数量两个因素决定的,其中材料单价的高低又直接决定了工程项目成本的高低,是成本控制的主要方面。材料单价是由市场的供需决定的,供给大于需求,材料单价就会下降,需求大于供给,材料单价就会上升;而目前企业所需要的各种材料,绝大部分是供给大于需求的产品,只是由于供应渠道不畅、市场信息不灵、材料采购人员业务不熟、采购数量偏小、选择的供应商偏散、付款时间拖后等原因,导致许多材料的价格偏高,因此,必须彻底改变以往的购货方式,在企业内的所有工程项目,其主要材料包括地材全部实行招标采购的方式,选择同样价格但质量好或同样质量而价格低的同品种、同规格的材料供应商,以降低材料的采购单价。同时,要充分考虑资金的时间价值,在不提高材料价格的前提下尽量晚付款,而在现金购买与赊购价格悬殊较大(相差5%以上)且付款时间不能延期半年以上时,即使是借款,也要优先选择现金购买。项目部对施工队和员工,要按照成本的可控原则,分清项目部、施工队和员工对各项成本的责任,按照市场情况、项目部实际和机械台班定额,制定出合理的责任单价,包括工天单价、材料单价、机械台班单价和间接费费率或定额;以劳动定额、材料消耗定额和机械台班定额为基础,确定单位工程量应当消耗的工天、材料和机械台班数量。在施工过程中,项目部要随时监控各种生产要素的使用和消耗情况,与所完成的施工任务进行对比分析,发现问题及时纠正处理。要严格执行内部验工计价制度,及时向施工队和员工兑现经济利益,不得以任何借口拒绝兑现。项目部要树立安全、质量就是效益的大效益观念,积极预防和避免可能发生的安全、质量事故,对安全、质量事故的多发区域时刻监控,减少或避免发生安全、质量事故。要严格执行对安全、质量事故责任人员的惩罚制度,使全体员工树立起清醒的安全、质量意识,从源头上消除安全、质量事故隐患。所有的项目部,特别是以分包工程为主的项目部,必须制定专人负责合同管理,对所有已经签订且正在履行的合同进行审查,不符合《合同法》规定的要与对方协商变更合同;不同意变更的要签订补充协议,或者对有关条款进行修订;对方要求变更合同时,必须坚持协商一致的原则。除能够及时结算或者处理的事项外,其他的与外单位或个人的买卖、供用水电气热、借贷款、租赁、融资租赁、承揽、建设工程、运输、技术、保管、仓储、委托等事项,都必须签订正式的合同,不得以口头形式约定。在合同履行过程中,要严格按照合同的有关条款进行处理,不得随意更改或变相更改。项目部要结合实际,制定与控制成本有关的规章制度,如材料采购、保管、验收、出库、消耗制度,劳动报酬管理制度,设备管理办法,财务管理办法,会计核算规定,安全、质量管理办法,验工计价办法等,并建立起项目部的成本控制和内部监督机制。要重视上述制度的落实工作,加强对业务部门执行制度的检查,对执行不好的部门和个人要进行批评教育,对不执行的部门和个人要进行处罚,必要时要坚决撤换有关人员。要努力提高业务人员的政治素质和专业水平,指导和督促他们做好各项业务工作,保证成本控制的质量。其具体操作过程是:第一,按照确定工程项目总成本的方法和分包单位承担的工程量,确定分包工程的项目直接费和现场经费,这样就扣除了预算定额与劳动定额、材料消耗定额、机械台班定额之间的差额(约为项目直接费和现场经费预算费用的5%);第二,按照分包单位的资质等级,将其应当计取的企业管理费、劳动保险费和财务费用的费率降低30%~50%,也可以考虑不对分包单位计取财务费用;第三,按照上述确定的项目直接费、现场经费、企业管理费、劳动保险费和财务费用总额,把该工程项目的计划利润率降低60%以上计取计划利润;第四,按照国家或改工程项目规定的税种、税率,以1~3项的费用总额为基数计取税金;第五,将上述费用相加,即为分包工程的总价款。按照此方法确定分包工程价款,其差额约为工程正常预算价值的18%~20%。如果所有以分包工程为主的项目部全部按照这个方法分包工程,就可以控制住分包工程的成本,杜绝效益的流失。项目部必须按照合同规定的工程价款结算方式,对分包单位完成的合格工程量按月进行验工计价,然后结算工程款,不得对分包单位预付备料款和工程款。在结算工程款时,必须及时扣除分包单位在项目部领取的材料费、项目部代付的各项费用。要建立结算工程款的联签制度,即在结算工程款时,除了验工计价报表外,还要有分包单位业务有关的各业务部门是否扣款的意见,如物资、设备、安全质量、综合办公室等部门的意见。要严格禁止分包单位以项目部或企业的名义到外部采购材料、设备,不得向分包单位出具没有填写任何用途的单位证明和盖有本单位印章的空白信笺,防止分包单位进行各项诈骗活动。项目部必须按照企业的要求,禁止外部单位以各种形式挂靠企业对外施工。无论是项目部与建设单位直接接触中标的工程项目,还是项目部通过其他单位与建设单位间接接触中标的工程项目,或者是其他单位与建设单位通过各种关系中标、但需要企业挂名的工程项目,凡是以企业名义中标的工程,必须由企业直接与建设单位签订合同,由项目部与建设单位验工计价和结算工程款。任何项目部都不得让外部单位以企业的名义承揽工程、验工计价和结算工程款,而项目部仅象征性地收取一定比例的管理费。随着市场经济的不断发展,以建设工程招投标为主要特征的建筑市场已经形成,企业间竞争将逐渐过渡到合理低价竞争。企业的对外经营和对内管理的理念发生了深刻的变化,加强施工项目成本控制管理,减支增效,将成为大多数企业的长期经营战略。施工企业要提高市场竞争力,最重要的是在项目施工中,以尽量少的物化消耗和劳动力消耗来降低企业成本,把影响企业成本的各项耗费控制在计划范围之内。所以施工企业只有加强成本控制管理,才能增强市场适应能力和竞争能力。 -
报告Evaluation of Pesticides for Control of Konjac Soft-Rotting Bacteria
出版时间:2007Konjac glucomannan(KGM),derived from the tuber of Amorphophallus konjac C.koch,has traditionally been consumed as rubbery jelly,noodles,and other food products in Asia for centuries.It is also used as food additives in Western countries.Clinical studies have indicated KGM supplement normalizes the mouth-to-cecum transit time and relieves constipation for children and adults[1].In order to meet the increasing demand for konjac,more area is employed to plant A.konjac C.koch.With the increase of plant area,some diseases have appeared,and soft rot is the severest one.Huang et al.[2] showed that konjac soft rot was caused by Erwinia carotovora subsp.carotovora.E.carotovora subsp.carotovora is a plant pathogen responsible for producing soft rots in many vegetable and floricultural crops,and responsible for significant economic losses to the konjac industry each year for the causal agent of tuber soft rot[3].Tuber contamination can occur in field and in storage.Infection may occur at any stage of post-harvest handling including washing,grading and packing.Symptoms may develop slowly during cold storage;as temperature increases and conditions become favorable for disease development,thepathogen proliferates,resulting in rapid tissue breakdown.Contaminated tubers that are used as seed,may cause disease problems in field[4].Bacterial soft rot caused by E.carotovora subsp.carotovora occurs worldwide and is one of the most destructive diseases of plant's tubers(e.g.,potato,konjac).Many researchers have demonstrated the potential of control of soft rot of potato etc.Several salt compounds were tested in vitro as inhibitors of E.carotovora subsp.Carotovora[4].Acidified Oxine was demonstrated to be potentially effective in preventing potato spoilage(caused by E.carotovora)without any significant risks of chemical residual or change of skin color[5].Harris[6] found a chemical compound of 5-nitro-8-hydroxyquinoline was the most effective in control of potato soft rot.Biological control is an alternative[7].Cladera-Olivera et al.[8] showed that the soft rot bacterium E.carotovora from potato was inhibited by a novel bacteriocin-like substance produced by Bacillus licheniformis P40.Biological control offers an environmentally friendly alternative to the use of pesticides for controlling plant diseases.Unfortunately,growers continue to use chemical control over biological agents,and lack of knowledge often contributes to the downfall of a biocontrol agent.Knowledge of the biological environment in which the agent will be used and of how to produce a stable formulation are both critical to successful biocontrol[9]. And also,biological products may not consistently provide a high level of disease control[10].Therefore agricultural disease is controlled mainly with pesticides.Numerous pesticides have been tested for efficacy against soft rot E.carotovora on potatoes[11,12],but little was done on the soft rot of konjac tubers.Current control strategies aim to reduce soft rot of konjac tubers in field and storage by employing pesticides.In China,a wide range of pesticides is registered for control of bacterial soft rot of crops.However,there is no special pesticide for konjac soft rot,and most pesticides didn't control konjac soft rot effectively.Therefore,growers were driven to use pesticides blindly.Unreasonable use of pesticides has not only given rise to serious environmental problems,but also caused great waste of resources.The aim of this research was to evaluate seven pesticides and their effect on inhibition of soft-rotting bacterium from Konjac.Strains of E.carotovora subsp.carotovora were provided by Hubei Key Laboratory of Natural Product Research and Development,China Three Gorges University,Hubei Province,China.Pesticides were bought from a pesticide market in Yichang city,Hubei Province,China.The active constituent of each pesticide was Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl,Oxadixyl+Mancozeb,Mancozeb or Phosethyl-Al+Mancozeb.Pesticides were prepared according to their instructions using sterile pure water to obtain the maximum concentrations.The in vitro screening trial of antimicrobial activity of seven pesticides was carried out by disk diffusion test[13] using 100μl of suspension containing 108 CFU/ml of bacterium spread on nutrient agar.Small filter disks were generated using a standard 6mm hole puncher andsterilized by autoclaving,and then dried at 80℃.Paper disks were dipped into each solution for 1min in order to assure that paper disks had been saturated with a pesticide solution,whereas those of the controls were dipped into sterile pure water.The inoculated plates with E.carotovora subsp.carotovora were incubated at 27℃ for 24h.The diameter of the clear zone around the disk was measured and expressed in millimeters as its antibacterial activity.The net zone of inhibition was displayed by subtracting the disk diameter(6mm)from the total zone of inhibition around the disk.Five disk per plate and three plates were used,and each test was run in triplicate[14].The MIC and MBC were determined by a modification of the broth microdilution method as previously described by Fazeli et al.[15].And there were five dose points(by two-fold serial dilutions from maximum concentrations according to the instructions)tested in this study.Pesticide was prepared in sterile Nutrient broth to reach a series of two-fold dilutions.Bacterial cultures were diluted in Nutrient broth from the stock of 108 CFU/ml before they were added to the pesticide preparations.Final concentration of bacteria in individual tubes was 1~5×105 CFU/ml.Control tubes contained no pesticide.After 24h incubation at 28℃ the test tubes were examined for possible growth and MIC of each pesticide were determined as the lowest concentration that ended with no growth.Tubes containing pesticide concentrations above the MIC were streaked onto nutrient agar plates to achieve MBC of pesticide against the tested strain.Each experiment was performed in triplicate.The data were statistically analysed by using the one-way ANOVA(SPSS 12.0 for Windows),and were expressed as mean±standard deviation(SD).The differences between treatments were also compared.A P value of less than 0.05 was considered statistically significant.According to the results(Table 1),both Oxadixyl-Mancozeb and Mancozeb showed antibacterial activities at the maximum concentrations within the applied concentration range according to the instructions.The growth of E.carotovora subsp.carotovora was inhibited by Oxadixyl+Mancozeb at concentration of 1μg/ml,and the inhibition zone reached(5.33±0.71)mm.At the concentration of 1μg/ml,Mancozeb inhibited the growth of tested bacteria,and the inhibition zone diameter was(4.22±0.83)mm.Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl and Phosethyl-Al+Mancozeb didn't expressed antibacterial activity against E.carotovora subsp.carotovora.MIC and MBC of Oxadixyl+Mancozeb and Mancozeb were determined.Oxadixyl+Mancozeb and Mancozeb were found to have the same MICs and the same MBCs.The MICs of both pesticides were 0.25μg/ml,and MBCs were 1μg/ml(Table 2).ActiveconstituentsoftestedpesticidesInhibitionzone(mm)Streptomycin(0.18μg/mla)0bCarbendazim(0.8μg/ml)0Kasugamycin(0.4μg/ml)0Thiophanate+methyl(0.5μg/ml)0Oxadixyl+Mancozeb(1μg/ml)5.33±0.71cMancozeb(1μg/ml)4.22±0.83Phosethyl-Al+Mancozeb(0.4μg/ml)0Table 1 Antibacterial activities of seven pesticides agaist E.carotovora subsp.carotovoraAccording to the results(Table 2),both Oxadixyl-Mancozeb and Mancozeb showed strong bactericidal activity with the MBC at 1μg/ml.E.carotovora subsp.carotovora was sensitive to both Oxadixyl+Mancozeb and Mancozeb.ActiveconstituentsofpesticideMIC(μg/ml)MBC(μg/ml)Oxadixyl+Mancozeb0.251Mancozeb0.251Table 2 MIC and MBC of Oxadixyl-Mancozeb and Mancozeb against tested bacteriumMany studies showed that Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl,Oxadixyl+Mancozeb,Mancozeb and Phosethyl-Al+Mancozeb could control konjac soft rot caused by E.carotovora subsp.Carotovora[16~19].But,the bacterial soft rot is still a major problem encountered in konjac during postharvest storage and in field.The soft rot bacterium Erwinia carotovora was not inhibited by some pesticides used by people.This problem could be attributed to unreasable use of pesticides,so it is necessary to assess effect of each pesticide before application.Seven pesticides were screened against the soft rot pathogens of konjac tubers.Oxadixyl+Mancozeb and Mancozeb were the only pesticides which completely prevented infection at concentration of 1μg/ml according to their instructions.Nevertheless,Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl and Phosethyl-Al+Mancozeb didn't exhibit antibacterial activities against soft-rot causing strain at their higher applied concentrations.Therefore when growers faced severe problems with soft rot,they employed a lot of pesticides to protect konjac tuber,but the disease couldn't be controlled effectively.Oxadixyl+Mancozeb and Mancozeb inhibited soft rot bacterium at 0.25μg/ml,but did not give complete protection against infection for longer time.In order to control konjac soft rot,these pesticides could not be used at a concentration lower than 1μg/ml.According to these observations,we can speculate that Oxadixyl+Mancozeb and Mancozeb could be used to control konjac soft rot in field and storage conditions.Even though Mancozeb had the same MIC and MBC as Oxadixyl+Mancozeb,its diameter of the net zone of inhibition was significant differences from that of Oxadixyl+Mancozeb at 1μg/ml(P<0.05).Oxadixyl+Mancozeb expressed strongerbactericidal activity against E.carotovora subsp.carotovora.Mixtures of certain pesticides may act synergistically to augment the inhibition of disease development[4].Study of the antibacterial activity of compounds in vitro may have application in protecting plant from developing disease[20~22].Pesticides that showed no inhibition of soft rot bacterium in the present study included Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl and Phosethyl-Al+Mancozeb.Therefore,although all of these pesticides were always employed to prevent and cure soft rot disease,the loss of soft rot is still severe.When used at the manufacturer's recommended concentration,Oxadixyl+Mancozeb and Mancozeb all displayed antibacterial activities against soft-rot causing bacterium.There is no special pesticide for konjac soft rot in China,and the database(a list of marketing companies is available on the database)does not give details of what problems each pesticide controls from the company that produces the pesticide,in vitro study maybe give the growers suggestions about choosing pesticides.Before growers buy or use any pesticide,ask themselves whether it is really necessary to control the disease that they want to get rid of.Therefore protection of konjac with suitable pesticides becomes a necessity.Chemical pesticides play a great role in eliminating agricultual pathogens,but because pesticides are used blindly and not scientifically,environment are polluted seriously.This paper approached ways of selecting pesticides to control konjac soft rot,using scientifically and effectively chemical pesticides,for the purpose of reducing environmental pollution,and protecting environment.Although the current study indicates that there is potential for the use of several pesticides as chemical agents to control disease caused by E.carotovora subsp.carotovora,further studies are needed to examine possible inhibitory effects in vivo.More research is also needed on the delivery methods for effective use strategies including spray application during post-harvest handling,application timing at growth stage or application as preservatives in storage facilities[4].In summary,our data demonstrate that pesticides of Oxadixyl+Mancozeb and Mancozeb inhibited the activity of konjac soft-rot causing bacterium.This disease could be controlled with chemicals such as Oxadixyl+Mancozeb and Mancozeb.Moreover,Oxadixyl+Mancozeb expressed stronger antibacterial activity than Mancozeb.Even though pesticides of various kinds(e.g.,Streptomycin,Carbendazim,Kasugamycin,Thiophanate+methyl,Phosethyl-Al+Mancozeb)have been used on a large scale in China to protect crops from damages inflicted by diseases,none of them were inhibitors of the soft rot pathogen at their recommended concentrations.This work was supported by the Scientific Research Foundation of China Three Gorges University(No.0620060113)and Hubei Provincial Department of Education(No.Q200713002). -
报告Review of the Mechanism of Action and Resistance of Systemic Fungicides used for Controlling Oomycete Disease
出版时间:2007Cavalier-Smith(1981;1988)提出将细胞生物分为八界,《真菌词典》第八版(1995)和第九版(2001)均接受了这一分类系统。在这一分界系统中,卵菌门(Oomycota)属于色菌界(Chromista),有1纲9目及其他地位待定的4目,其中引起植物病害的有水霉目(Saprolegniales)、腐霉目(Pythiales)、指梗霉目(Sclerosporales)和霜霉目(Peronosporales)[1]。卵菌门的共同特征是游动孢子具有一根茸鞭和一根尾鞭,鞭毛呈直管状,有性生殖为卵配生殖,线粒体呈脊管状。在许多方面卵菌与真菌有明显差异,而与藻类更为相似,因此又称卵菌为假真菌(pseudofungi)。卵菌中有许多是重要的植物病原菌,它们的世代短,产孢量大,潜育期短,再侵染次数多,对寄主植物的破坏性强,流行速度快,造成严重的经济损失[2]。在对卵菌的综合防治的措施中,化学防治仍然是控制卵菌病害的主要手段之一,但目前生产中普遍发生了卵菌对现有杀菌剂的抗药性问题,这对当前农业的发展构成了严重的威胁[3]。随着显微技术、化学分析技术和分子生物学的发展,已经能从病原真菌的形态、生理生化和分子等不同水平进行杀菌剂作用机理和抗药性机理的研究[4]。本文就目前常用的四类内吸性杀菌剂对卵菌的作用机理及抗性机理进行了概述,希望能对杀菌剂的合理使用和新型杀菌剂的开发提供一定的理论基础。病害名称病原物病害名称病原物十字花科白锈病白锈菌(Albugocandida)马铃薯晚疫病致病疫霉菌(Phytophthorainfes-tans)谷子白发病禾指梗霉菌(Sclerosporagra-minicola)瓜类疫病掘氏疫霉菌(P.drechsleri)烟草猝倒病瓜果腐霉菌(Pythiumaphanider-matum)辣椒疫病辣椒疫霉菌(P.capsici)黄瓜霜霉病古巴假霜霉菌(Pseudoperonospo-racubensis)柑橘褐腐柑橘褐腐疫霉菌(P.citrophthora)葡萄霜霉病葡萄生轴霜霉菌(Plasmoparaviticola)表1 我国卵菌引起的主要植物病害苯基酰胺类杀菌剂的特点是低毒,选择性强,可以被植物的根、叶和幼茎迅速吸收,并通过导管和细胞间隙等质外体系统向植株上部转移[5]。目前我国使用量较大的有甲霜灵(瑞毒霉)、恶霜灵和湖南省化工研究院开发的苯霜灵等。Dr.P.A.Urech在1977年研究开发了甲霜灵,它是苯基酰胺类杀菌剂中第一个商品化的品种,其特点是病菌在植物体内形成吸胞后抑菌作用才能发挥,对卵菌侵入寄主前的各阶段,如游动孢子的释放、萌发和侵入的抑制作用不明显,但对侵入寄主后的各阶段,如菌丝在植物体内的生长、吸器形成及孢子囊的产生等有显著的抑制作用[6]。最初对苯基酰胺类杀菌剂容易引起病原菌抗药性的问题并未引起注意,直到 1981年荷兰的Dekker发现甲霜灵单剂在葡萄上使用仅一个季度就发生田间抗药性之后才给以重视。Davides等[7]、Shattock等[8]先后证实,甲霜灵的杀菌机理是抑制卵菌的核糖体 RNA聚合酶的活性,从而抑制病菌 RNA 的合成,干扰病菌在寄主体内的发展。特别是 γ-RNA的合成,最敏感的是使尿苷掺入 RNA受阻,但不影响尿苷的吸收和尿苷转化为尿苷酸。用不同种的菌试验结果说明,RNA合成受阻的程度不同,通常达 40%~80%,这表明不是全部的 RNA合成受阻。现已知道有3种RNA的聚合物担负着细胞内核苷酸的聚合。这3种聚合酶称为聚合酶A、B、C,A主要是负责核糖体内γ-RNA的合成,B是用于m-RNA的合成,C则用于 t-RNA和5SRNA 的合成。这3种酶一般是用对α-鹅膏碱的敏感性来区分的。甲霜灵和其相似物对3种酶有选择性抑制作用,主要是对聚合酶A的毒力最大,也就是γ-RNA的合成受阻,核糖体就不正常。因此,对菌的生长有抑制作用,但是对菌的孢子囊的直接和间接萌发以及游动孢子的萌发都没有影响[9~11]。通过对抗药和敏感菌株杂交后代的分析,表明抗药性是由隐性的单基因或核内的单作用位点控制,发展速度快,抗性水平高,抗药菌株遗传稳定,适合度、致病力几乎与野生的敏感菌相同,故经过施药的选择敏感菌很快消亡,抗性菌在群体中得以繁殖发展,并很快成为优势种群,出现田间突然药剂失效[12]。研究表明敏感菌系细胞核中有编码敏感 RNA 聚合酶的基因,而抗性菌系则不含这个基因,因而对药物的反应不敏感而表现抗药性。同时苯基酰胺类杀菌剂之间具有正交互抗性,这给该药剂的进一步开发带来了很大的困难[13,14]。丙烯酰胺类杀菌剂中对卵菌病害有很好防治效果的药剂主要有烯酰吗啉和氟吗啉,其作用机理基本上都是抑制菌体内麦角甾醇的生物合成。麦角甾醇是菌体细胞膜的重要组成部分,它与膜脂中的碳氢键相互作用,有保持膜的流动性和稳定膜分子结构的重要作用。如果麦角甾醇生物合成受阻,膜的结构和选择性屏障作用就受到损害,造成细胞内物质的泄漏,最后导致菌体死亡。用丙烯酰胺类杀菌剂处理真菌后往往能使芽管短而膨胀、过度扭曲,菌丝分枝增加。烯酰吗啉在1988年由Shen Group公司研制开发。烯酰吗啉可强烈抑制游动孢子囊的形成、休眠孢子的萌发和菌丝生长,但不影响游动孢子的释放。与菌丝细胞壁合成相比,孢子囊壁的合成对烯酰吗啉更为敏感。Bartnicki[15]认为由于休止孢萌发和芽管伸长这些阶段菌体内有相对较少碳水化合物来调节渗透压和形成细胞壁,所以烯酰吗啉作用后细胞壁容易产生破裂。Kuhn等[16]和Albert等[17]研究表明烯酰吗啉能导致菌丝生长过程中细胞壁畸形和加厚,最终导致菌丝顶端破裂,认为烯酰吗啉明显干扰了病原菌的形态调节因子或抑制细胞壁结构的正确组合,影响细胞壁的合成。烯酰吗啉1992年获得注册登记并投放市场,尽管已经使用多年,但国内外的室内和田间实践均证明,烯酰吗啉在田间表现为低抗药性风险。Dereviagina等[18]对田间采集的110株马铃薯晚疫病菌的测定发现,存在0.3%~0.8%的抗烯酰吗啉突变体,但抗性菌株的适合度低,而且在连续转代培养过程中抗性丧失。Bagirova等[19]在室内通过化学诱变获得了马铃薯晚疫病菌对烯酰吗啉的抗药突变体,但突变频率低,而且突变株的适合度明显下降。王文桥等[20]获得了葡萄霜霉病菌抗烯酰吗啉的突变体,但未获得马铃薯晚疫病菌的抗药突变体。袁善奎等[21]对马铃薯晚疫病菌抗烯酰吗啉突变体的研究结果与以上学者的报道一致,没有获得高抗药性水平的突变体,但突变体的抗性比较稳定。甲氧基丙烯酸酯类杀菌剂是以天然抗生素Strobilurin A为先导化合物而开发的新型杀菌剂,自1969年Musikek及其合作者首先报道以来,对此类化合物的研究已成为杀菌剂开发的新热点。这类杀菌剂具有杀菌谱广和杀菌活性高的特性,具有保护、治疗、铲除、渗透作用,对环境和非靶标生物安全[22]。甲氧基丙烯酸酯类杀菌剂的作用位点独特,不同于以往任何抑制剂作用于呼吸链上的位置。Cyt bc1呼吸抑制剂有两类:一类是位于线粒体内膜内壁Qi位点(CoQ的还原位点)的cyt b高势能血红色素结合的抑制剂,这类抑制剂称为Qi位点抑制剂,简称QiIs,如抗霉素,cyanoimidazole等。另一类与位于线粒体内膜外壁的Qo位点(CoQ的氧化位点)的cyt b低势能血红色素结合的抑制剂,这类抑制剂称为Qo位点抑制剂,简称QoIs,如甲氧基丙烯酸酯类杀菌剂、咪唑菌酮、唑菌酮等[22,23]。甲氧基丙烯酸酯类杀菌剂为能量生成抑制剂,其作用机理是通过与真菌细胞色素b上的辅酶Q0氧化中心结合,阻止细胞ATP的合成,影响能量代谢,从而抑制线粒体的呼吸作用。这种作用阻止氢醌(QH2)向Fe-S中心传递电子,而不是直接阻止与氢醌的结合[24~26]。细胞色素b属于细胞色素bc1复合体的一部分,位于真核生物线粒体膜的内侧,一旦某个抑制剂与之键合,它将阻止细胞色素b和c1之间的电子传递,阻止ATP的产生而干扰真菌内的能量循环,从而杀灭病原菌。在甲氧基丙烯酸酯类杀菌剂开发和应用的早期,人们认为这类杀菌剂的抗性风险是中等水平,但是1998年德国使用苯氧菌酯防治小麦白粉病2年后发现防效明显下降,原因是小麦白粉病菌产生了抗药性,而且抗药性个体的适合度很高。目前认为这类杀菌剂的抗药性风险是高水平[26]。已经报道QoIs的两种类型的抗药性机理[27,28]。第一种是细胞色素b基因上的氨基酸序列发生改变,从而降低了与药剂的亲和力,主要是143位甘氨酸被丙氨酸取代(G143A)(如黄瓜霜霉病菌、小麦白粉病菌、葡萄霜霉病菌等)和129位苯丙氨酸被亮氨酸取代(F129L)(如稻瘟病菌)。由于cyt bc1基因是线粒体编码的,其抗性遗传方式表现为母性遗传。第二种抗性机理涉及电子传递链中旁路氧化酶(Alternative Oxidase,AOX)的活性,通过旁路途径减少甚至消除QoIs对病菌电子传递的抑制作用。(咪)唑类杀菌剂活性高、作用机理独特,与现有杀菌剂无交互抗性,能与多种杀菌剂混配,可有效缓解内吸性杀菌剂的抗性问题。唑菌酮由杜邦公司开发,对锈病、霜霉病、晚疫病等均具有良好保护、治疗、渗透、内吸等作用。它对病原菌在生长过程中所释放出的孢子影响最大,药剂一旦与孢子接触,孢子即停止活动,出现崩死。另外,对孢子的萌发和菌丝的伸长也有一定的抑制作用[30]。唑菌酮能抑制病原菌线粒体的电子传递,主要阻断细胞色素b和细胞色素c之间的电子传递通道中ADP-ATP的氧化磷酸化作用,使病原菌无法产生所必需的能量。417407唑菌酮也是QoIs,作用机理同于甲氧基丙烯酸酯类杀菌剂。由于分子结构的差异,它与cyt b的结合方式不同[31]。唑菌酮能抑制病原菌线粒体的电子传递,主要阻断细胞色素b和细胞色素c之间的电子传递通道中ADP-ATP的氧化磷酸化作用,使病原菌无法产生所必需的能量。417407唑菌酮也是QoIs,作用机理同于甲氧基丙烯酸酯类杀菌剂。由于分子结构的差异,它与cyt b的结合方式不同[31]。类型代表品种杀菌机理抗药性风险水平苯基酰胺类甲霜灵恶霜灵苯霜灵抑制卵菌的核糖体RNA聚合酶的活性,从而抑制病菌RNA的合成,干扰病菌在寄主体内的发展作用位点单一,容易产生高水平抗药性突变菌株丙烯酰胺类烯酰吗啉氟吗啉抑制菌体内麦角甾醇的生物合成,造成细胞内物质的泄漏,最后导致菌体死亡突变频率低,突变菌株适合度差,表现为低抗药性风险甲氧基丙烯酸酯类嘧菌酯苯氧菌酯烯肟菌酯通过与细胞色素b上的辅酶QO氧化中心结合,阻止细胞ATP的合成,从而抑制线粒体的呼吸作用单一位点的突变,表现为高水平的抗药性(咪)唑类唑菌酮咪唑菌酮阻断细胞色素b和细胞色素c之间的电子传递通道中ADP-ATP的氧化磷酸化作用,抑制病原菌线粒体的电子传递田间使用较少,抗药性风险水平暂时不明确表2 防治卵菌病害的内吸性杀菌剂的主要类型、代表品种、杀菌机理、抗药性风险水平杀菌剂对病菌的影响是多方面的,其作用位点也相对比较复杂,由于病原菌抗药性的不断出现和抗性程度的不断上升,对研制开发广谱、新型杀菌剂的要求越来越强烈。但化学杀菌剂开发的难度越来越大,开发费用越来越高,开发新型农药的速度远远落后于病原菌抗性发展的速度。因此,明确杀菌剂的作用机理和抗性机理,对创制作用机理独特、环境友好的杀菌剂尤为重要。卵菌的进化一般认为是从水生到陆生,由腐生到专性寄生。卵菌大部分生活在水中或潮湿的土壤中,部分比较高等接近陆生的卵菌主要寄生在高等植物体内。因此,卵菌具有一个共同的特点“亲水—疏油”。因此,在农药剂型的选择上,水剂、水乳剂、水分散粒剂、悬浮剂与卵菌有更好的亲合性,更适合卵菌病害的防治,能更好地发挥药效[32]。在新型农药品种开发的时候,要进行抗性风险评估,采取科学合理的防治措施和使用规范。在未产生抗药性之前推广使用混合制剂,这样能减少选择压力,延缓抗性的产生,延长已开发产品的使用寿命。因此,根据卵菌的生物学特性、卵菌病害循环的规律和药剂的作用机理,要将病害的预测预报、农药剂型、用药规范、作物种类、作物品种、当地的气候条件和当地作物的抗性水平等因素结合起来,综合考虑制定防治策略,才能保证农业的可持续发展和生态环境的和谐发展。 -
报告抗根癌菌剂2号工厂化生产关键技术研究?? 基金项目:北京市科技计划项目(D0705002040191)。
出版时间:2007根癌病是根癌土壤杆菌(Agrobactium spp.)引起的一种顽固性病害,此菌寄主范围广,可侵染93科331个属643个种的植物,包括果树、林木、花卉等多种双子叶植物和部分裸子植物,在生产上造成非常大的损失。调查表明在我国多数种植根癌病寄主植物的地区根癌病均有不同程度的发生。目前生产上明显出现为害的有樱桃、桃树、李子、杏树、葡萄、苹果、梨树、海棠、山楂、核桃、杨树、樱花、玫瑰、月季、啤酒花等果树、林木和花卉,不同地区发生情况不同。根癌病的症状表现是在植物的根部(有时在茎部,所以也称冠瘿病)形成大小不一的肿瘤,初期幼嫩,后期木质化,严重时整个主根变成一个大肿瘤。病树树势弱,生长迟缓,产量减少,寿命缩短,甚至死亡,影响苗圃苗木的质量和成树的生长。重茬苗圃发病率在20%~100%之间不等,发病重的甚至造成毁园。根癌病菌可较长时间的存活在土壤中,从植株的伤口侵入,随苗木的调运进行远距离传播,是土壤传播加苗木传播的细菌性病害。此病菌的致病方式是将其致病质粒上的一段DNA整合到植物的染色体DNA上,随着植物本身的生长代谢来刺激植物细胞增生形成肿瘤,而病原细菌的细胞并不进入植物的细胞。鉴于根癌菌来源于土壤,所以防治的时间应选择在种子或植株接触未消毒的土壤之前进行种子或苗木的处理,从根本上阻止根癌菌的侵入。伤口是根癌菌唯一的侵染途径,所以保护伤口是最好的防治切入点。根癌菌具有非常特殊的致病机制,一旦有根癌症状表现就证明T-DNA已经转移到植物的染色体上,再用杀细菌剂杀细菌细胞已无法抑制植物细胞的增生,更无法使肿瘤症状消失。目前,利用抗根癌菌剂对植物根癌病进行生物防治是非常实用可行的方法。中国农业大学植物病理学系细菌课题组利用引进的国外K84菌株研制成抗根癌菌剂1号,已经成功用于防治我国多种果树根癌病;并且,分离、筛选到一些具有自主知识产权的根癌病生防细菌,可以弥补国外K84菌株的抑菌谱缺陷。本项目以其中一株高效菌株AE进行研究,以形成可以防治多种植物根癌病的抗根癌菌剂2号,解决国外K84菌株只对核果类果树根癌病有效的问题和局限。以活菌量和抑菌活性为指标,通过单因子和正交试验,从18种液体培养基筛选得到1种相对最适的发酵培养基,明确了在小型发酵罐的发酵条件:温度26~29℃,接种量1.5%~2.5%,罐压0.03~0.05MPa,通气量0.6~0.8(V/V·min)。在发酵培养时,0~6h为迟滞期,6~13h为对数期,13~22h为稳定期,22h以后为衰退期。培养21h细胞数量最多,达到1.6×1012cfu/ml;24h时发酵物对根癌菌的抑制作用最强。通过筛选,确定草炭可作为吸附剂,甲基纤维素和黄原胶可作为防护剂和稳定剂,并将发酵终产物制成了10×108 cfu/g的菌剂。该菌剂在室温(20~25℃)保质期约为100天。在不同地区的田间应用示范证明该菌剂对根癌病的防治效果在70%以上,并且防治效果与菌剂的应用方法有密切关系。 -
报告拮抗放线菌B1的初步鉴定及对番茄灰霉病的防效
出版时间:2007番茄灰霉病是由灰葡萄孢(Botrytis cinerea)侵染引起的一种在我国乃至全球分布的重要病害。尤其是保护地番茄,其高湿条件为该病流行创造了有利的发病条件。目前番茄生产由于缺少抗病品种,防治番茄灰霉病仍主要依靠化学防治,多采用速克灵等化学药剂喷雾,但在连续使用的情况下,病菌逐渐产生了抗药性,防效逐年下降。此外,大量使用化学药剂也造成了严重的农药残留问题和环境污染问题。近年来人们通过大量筛选和利用抗灰霉病的有益微生物及其代谢产物,使生物防治日益成为番茄灰霉病控制中的一条重要而有效的途径。作者研究了本实验室筛选的拮抗放线菌B1菌株对番茄灰霉病的生防效应,并对其分类地位进行了初步鉴定,为该菌株的应用与开发提供基础。B1菌株是从北京番茄温室土壤中筛选得到的一株拮抗菌,平板抑菌试验结果表明,它对多种植物病原细菌和真菌有较强的抑制作用,其中对灰葡萄孢的抑制能力最强,抑制率达86.3%。B1代谢产物对番茄灰霉菌的菌丝有扭曲、膨大等致畸效应。室内离体检测表明B1菌株对番茄离体叶片和果实的灰霉病均有较好的防治效果。温室试验证实B1菌株对番茄苗期的灰霉病的防治效果在60%以上。根据B1菌株的形态特征、培养特征、生理生化特性及16S rDNA序列分析结果,将其鉴定为链霉菌属淡紫灰类群(Streptomyces lavendulae)。 -
报告Nano-particles’ Effect to the Survival of Bacillus cereus 905 on the Cucumber Phyllosphere
出版时间:2007在自然界,植物、微生物和环境之间的关系是极其复杂的。只有详细了解生防微生物在植物根际或叶围与病原物及其他生物、植物及其分泌物、土壤及各种环境因子之间的相互作用及其变化规律,才能有效地调控无机、有机环境,更好地发挥生防微生物的防病功能[1]。国内外在探索环境因素在植物与微生物互作过程中的影响方面,已经开展了较多工作,包括温度、湿度、降雨、光照等气候条件,土壤理化性质,作物栽培条件等。在纳米技术出现之前,人们很难认识到自然环境中的纳米颗粒物对微生物的影响。近年来,大气等环境中纳米颗粒(超细颗粒物)的生物效应已开始深入研究[2,3],如光催化纳米二氧化钛对很多微生物都具有杀菌作用[4,5]。这样对于暴露在自然条件下的细菌尤其是叶围微生物,适应这种较为苛刻的环境将是细菌生存的一个重要考验。蜡样芽孢杆菌Bacillus cereus 905菌株是本实验室从植物上分离获得的生防细菌,具有促进植物生长,增强农产品品质和防治多种植物病害的功效[6],并已开发应用于农业生产,取得了预期的经济、生态及社会效益。前期研究发现,离体条件下该菌株在纳米颗粒光催化作用的影响下存活率明显降低。二氧化钛表面产生的·OH和其他如H2O2、O·2等活性氧都参与了灭菌作用[7]。鉴于光催化纳米二氧化钛具有广谱的杀菌作用,我们必须考虑到它对于自然界中有益微生物的影响。本研究以已在生产中应用的有益芽孢杆菌(Bacillus cereus 905)为研究对象,分析纳米TiO2作用下,该细菌在黄瓜叶围存活能力的变化,有助于阐明纳米颗粒对植物叶围微生物的影响。分别称取适量的纳米TiO2(P25,Degussa Co.),高压灭菌,保存于暗处。使用前加入无菌磷酸缓冲液(0.1mol/L,pH 7.0),超声波水浴振荡30min使纳米TiO2均一地分散于溶液中。Bacillus cereus 905(GFP),由中国农业大学植病系生防室分离保存并用GFP标记[8]。将B.cereus 905(GFP)接种至含有相应抗生素的LB培养基,30℃160 r/min悬浮振荡培养过夜,1000×g离心收集菌体,用无菌磷酸缓冲液洗涤菌体两次,收获的菌体重新悬浮于磷酸缓冲液中,菌体浓度由平板活菌计数法来确定。所有试验选择在日光温室生长的,4片真叶龄的健康黄瓜植株(Cucumis sativus cv.CAU NO.32)上进行。用B.cereus 905(GFP)菌悬液(108CFU/mL)喷雾接种叶面,或直接将叶面浸润菌悬液3s钟接种。这样的接种程序可以达到107CFU/叶的接种量。接种1h后用美术喷笔(Airbrush,HD-470,台湾)将TiO2悬浮液(0.2mg/mL)均匀喷雾在接种过的叶面上。使用美术喷笔是为了使TiO2以极小的雾粒(平均体积750μm3)覆盖叶围,既不蘸湿叶面也避免了叶围微生物的空间移动[9]。处理后的植株继续在日光温室内培养一定时间后,取样进行原位观察或平板回收。每个处理,随机取5片叶子,每片叶子随机切割6个1cm×1 cm的组织用以原位观察,用激光共聚焦扫描显微镜(Confocal Laser Scanning Microscope,Nikon EZ-C1)迅速扫描叶的上表面,寻找发绿色荧光细菌,操作要求熟练,防止荧光淬灭。每个取样点,每个处理随机取5片叶子,每片叶子置于预装30mL无菌缓冲液(0.1mol/L磷酸缓冲液,0.1%Bacto-Peptone,pH 7.0)的离心管或灭菌袋中,超声波水浴振荡7min,充分洗脱叶围微生物[10]。叶围洗脱液梯度稀释后,涂布至含有相应抗生素的LB平板上,30℃培养1~2天,通过菌落计数估计B.cereus 905的群体数量。对于纳米二氧化钛光催化杀菌作用机制的研究表明,二氧化钛吸收波长≤387.5nm近紫外光的光能,产生·OH,以及H2O2、O2等活性氧,从而起到杀灭B.cereus 905的作用,纳米二氧化钛本身对于B.cereus 905没有暗毒性[7],则实验中同时设一个低水平的光照条件作为参比。由于是利用太阳光作为光源,能穿透玻璃到达植物叶面并被纳米二氧化钛所吸收利用的光波绝大多数为UVA(320~400nm),在日光温室的一角通过设遮阳网来创造低UVA剂量的光照条件。纳米二氧化钛处理后的植株继续在日光温室内培养8h,立即取样进行原位观察或平板回收。8h内低UVA剂量的光照条件和正常日照条件下的平均UVA辐射强度分别为0.2mw/cm2和1.3mw/cm2。图1 纳米二氧化钛对B.cereus 905(GFP)在黄瓜叶围存活能力的影响Figure 1 The impact of nano-TiO2 to the survival of B. cereus 905 on the cucumber phyllosphere如图1所示,两种不同UVA剂量光照8h后,在纳米二氧化钛的影响下,B.cereus 905的残余量分别降低为对照(纳米二氧化钛浓度为零)的52.4%(0.2mw/cm2)和11.6%(1.3mw/cm2)。对照处理B.cereus 905的存活能力保持在106CFU/叶的水平,甚至在低UVA剂量的光照条件下,纳米二氧化钛处理的B.cereus 905的存活能力也能维持与对照同一数量级的水平;而在高UVA剂量的光照条件下,B.cereus 905的存活能力明显下降,甚至发生数量级的变化,群体数量比对照下降了88.4%。原位观察结果也与平板回收的结果保持一致(见图2)。对每个叶片随机切取组织块扫描观察发现,在所有的处理中不论是单个细菌还是细菌聚集体,它们在叶围的存在位置与叶表面的结构特征有关。叶表面对于细菌来说是一个非常不平坦的生活环境。它实际上是掩藏有许多不同结构的区域的集合体,包括腺毛、钩毛、气孔、表皮细胞和纹理等。大多数观察到的细菌位于叶的纹理或腺毛处,也有一部分位于表皮细胞上或气孔附近。在纳米二氧化钛处理的叶面,观察到的细菌数量较少,并且很难观察到单个细菌,大多数细菌以聚集体的形式存在。Monier J-M和 Lindow SE也发现菜豆叶面菌Pseudomonas syringae以单个细胞的存在形式比以聚集体的形式对于环境的干燥胁迫更为敏感[11]。图2 Bacillus cereus 905(GFP)在黄瓜叶围存活情况(原位观察)Figure 2 The survival of Bacillus cereus 905 on the cucumber phyllosphere(Microscopy of Bacteria in Situ)本研究表明,在正常日照情况下,B.cereus 905的存活能力明显下降,群体数量比对照下降了88.4%。无论是原位观察还是传统的平板回收结果说明,受二氧化钛光催化杀菌作用的影响,有益微生物B.cereus 905在黄瓜叶围的存活能力明显降低,这与在离体条件下得到的结论[7]相一致。鉴于光催化纳米二氧化钛广谱的杀菌作用,我们必须考虑到它对于自然界中有益微生物的影响。对纳米颗粒物生物效应的研究,是一个急需研究的领域。空气及植物表面等许多地方都存在许多纳米级颗粒,对于暴露在自然条件下的细菌,适应这种较为苛刻的环境将是细菌生存的一个重要考验。尤其是随着纳米包膜肥料、纳米土壤改良剂、二氧化钛光合作用促进剂等的产业化,以及农业生产中的投入使用,会使越来越多的人们注意到这一问题。目前对于纳米颗粒作为环境因素对植物、微生物影响的研究并不多见,本文探讨了有益微生物在植物表面受纳米颗粒影响而产生的存活能力问题,但如何创造生防微生物的适宜环境,或改进其对环境的适应能力以提高生防制剂效果的稳定性,还需要进一步深入的研究。 -
报告Primary Study of Two Oligosaccharides Inducing Resistance to Tobacco Mosaic Virus
出版时间:2007植物的诱导抗病性,又称系统获得性抗性,是植物在一定的诱抗剂刺激下,对随后的病原菌侵染具有抵抗性的特征。植物诱抗剂又名激发子,一般将能够诱导寄主防卫反应的生物来源和非生物来源的物质统称为激发子。这些物质在很低浓度下即可被植物识别为信号物质,诱发植物自身的免疫系统,最终使植物获得抵御病害的能力。寡糖类激发子是人类研究的最早、最为充分的一类激发子,并且由于其具有良好的环境相容性,因此是很有发展潜力的生物农药。壳寡糖已经应用于生产,防治作物病害,但对其进行结构修饰的寡糖,其诱抗活性还不清楚。新的寡糖—褐藻酸钠寡糖诱抗活性也未见报道。本文研究了稀土络合的壳寡糖(壳寡糖-铈配合物)以及褐藻酸钠寡糖诱导烟草抗烟草花叶病毒,为其作为生物农药提供依据。1.1.1 供试药剂 壳寡糖-铈配合物、壳寡糖,由中国科学院大连化学物理研究所研制。褐藻酸钠寡糖,由中国农业科学院饲料所研制。1.1.2 供试植物 枯斑三生烟(Nicotiana tobacum L.SamSun NN)。1.1.3 供试毒源 烟草花叶病毒(TMV),本实验室保存于普通烟上。接种病毒汁液为每克含TMV的烟草病叶,加入5倍体积0.05mol/L的磷酸缓冲液(pH7.0),在研钵中研磨后纱布过滤。1.2.1 试验处理 供试药剂:对照药剂壳寡糖50μg/ml,喷雾。供试药剂壳寡糖-铈配合物浓度分别为1μg/ml,10μg/ml,25μg/ml,50μg/ml,100μg/ml,喷雾;供试药剂褐藻酸钠寡糖浓度为25μg/ml,50μg/ml,100μg/ml,喷雾。1.2.2 试验方法 选取大小一致6~8叶期的烟草植株,叶面喷雾施药。24h后汁液摩擦接种TMV病毒。在病毒汁液中加入少量石英砂,用毛笔蘸取汁液摩接种。枯斑三生烟苗采用半叶法接种,每株接4片叶。接种后每天观察发病情况。待全面发病后,调查病斑数。重复3次。抑制率(%)=[(对照叶片病斑数-处理叶片病斑数)/对照叶片病斑数]×100%最初的试验结果表明(表1),壳寡糖-铈配合物对抑制烟草花叶病毒引起的枯斑有抑制作用。在1~100μg/ml的浓度范围里,25μg/ml的诱抗效果最好,抑制率为55%,但是略低于阳性对照壳寡糖50μg/ml,抑制率63.9%。处理斑点数抑制率(%)壳寡糖-铈配合物1μg/ml43±18c37.025μg/ml31±13b55.050μg/ml38±18cd44.0100μg/ml42±19c37.7壳寡糖50μg/ml24±14b63.9CK68±26a—表1 壳寡糖-铈配合物不同浓度喷施对烟草花叶病毒病的防效 (P由于1μg/ml的壳寡糖-铈配合物依然有诱抗活性,并且25μg/ml的诱抗活性较好,因此将取浓度10μg/ml的壳寡糖-铈配合物,进行诱抗活性的检测试验。结果表明(表2),浓度为10μg/ml的壳寡糖-铈配合物比25μg/ml具有更好的诱抗活性,抑制病毒产生枯斑的抑制率为67.4%。但是与25μg/ml没有显著性差异。因此,10~25μg/ml的壳寡糖-铈配合物具有良好的诱抗活性,说明壳寡糖与稀土的络合物可以在低于壳寡糖的使用浓度时,依然具有较高的诱抗活性。处理斑点数抑制率(%)壳寡糖-铈配合物10μg/ml43±17c67.425μg/ml57±13cd56.750μg/ml73±22d45.0100μg/ml107±27a18.9壳寡糖50μg/ml28±13b78.7CK132±46a—表2 壳寡糖-铈配合物不同浓度喷施对烟草花叶病毒病的防效 (P在褐藻酸钠诱导抗性的试验中,试验结果表明,在25~100μg/ml的浓度范围内,褐藻酸钠具有诱抗活性,可以显著抑制病毒引起的枯斑的产生。其中浓度为50μg/ml诱导抗性效果最好,抑制率为71.8%,25μg/ml的褐藻酸钠也有较高的诱抗活性,抑制率为67.4%,均略高于壳寡糖50μg/ml(抑制率64.1%)。处理斑点数抑制率(%)褐藻酸钠25μg/ml59±27bc67.450μg/ml51±21c71.8100μg/ml74±32b59.1壳寡糖50μg/ml65±26b64.1CK181±32a—表3 褐藻酸钠不同浓度喷施对烟草花叶病毒病的防效(P多糖类化合物在自然界中分布广泛,是生命物质的重要组成成分。它不仅能够控制细胞的分化、分裂,调节细胞的生长和衰老以及维持生命有机体的正常代谢,还能够调节动植物细胞免疫以及其间信息的传递。目前,多糖作为生物激发子用于抗植物病害研究比较多,其中已报道氨基寡糖素、毛头鬼伞多糖、硫酸化的葡聚糖以及脱氧半乳聚糖[1~4]等具有诱导烟草抗烟草花叶病毒的生物活性。褐藻胶是一种来源于褐藻细胞壁的水溶性酸性多糖,主要从海带、巨藻、马尾藻等褐藻中提取得到,具有独特的结构和生物活性。褐藻胶由α-L-古罗糖醛酸和β-D-甘露糖醛酸通过1,4糖苷键连接而成的直链多糖[5]。褐藻胶还有很强的抗病毒活性,如抑制TMV,抑制程度随着褐藻胶浓度的增加而增强,且随着褐藻胶中古罗糖醛酸含量的增加而增强。电镜分析表明,TMV在培养基中呈单一分散悬浮,加入褐藻胶后则形成团聚物。团聚物的形成阻止了TMV在被感染细胞表面的脱衣壳过程,而阻止了TMV的RNA穿过细胞膜,从而防止感染[6]。但由于其凝胶性强,不容易被吸收,在应用方面收到很大的限制,将其水解为寡糖后,水溶性好,利于吸收。因此本文研究褐藻酸钠水解为褐藻酸钠寡糖后的生物活性,以期在生产实践中具有更加广泛的应用。结果发现褐藻酸钠寡糖具有良好的诱抗活性,并且好于阳性对照壳寡糖,但是其具体机理还有待于进一步的研究。近几年研究发现,稀土离子,尤其是Ce,有较广泛的抑菌作用,而且有降解有机磷的能力。壳聚糖-铈配合物对黄瓜中的硫磷农药残留有一定的降解作用,其降解产物是氨基对硫磷,基本解除了毒性[7]。研究已经发现壳寡糖能够诱导烟草抗烟草花叶病毒,本文研究了壳寡糖-铈配合物是否依然保持具有诱导抗性的活性。结果表明,壳寡糖-铈配合物尽管诱抗效果不如壳寡糖明显,但仍然具有较高的诱抗活性,至于是否有降解有机硫磷的作用,需要进一步的研究。经过化学修饰的壳寡糖-铈配合物可以改变壳寡糖的理化特征,产生新的活性,这对于加强寡糖应用的广泛性和多功能性具有重要的价值。 -
报告“中二软占”空间诱变品系的抗稻瘟病研究
出版时间:2007中二软占是广东省农业科学院水稻所以粳籼21为母本,长丝占为父本杂交育成的早、晚兼用常规优质稻品种,于2001年通过广东省农作物品种审定。中二软占的丰产性和适应性好,米质良好,但中感稻瘟病。作者等将中二软占品种的种子经密封后送到酒泉卫星发射基地(部分中二软占种子留在地面作为非诱变原种对照),于2003年11月3日随“中国返回式科学试验卫星”升空,经过18天的太空旅行,于11月21日返回地面。2004年早造将中二软占诱变和非诱变原种对照单株种植,采用稻瘟病菌株GD0193接种到3到3片半叶的种苗上,发病7天后调查,792株经过空间诱变的种苗,病级为0~3级的抗病植株有208株,占总数的26.3%;病级为4~5级的植株有368株,占46.5%;病级在6级以上的有216株,占27.3%;80株原种对照种苗的病级均在6级以上。试验结果表明,中二软占的种子经过返回式卫星搭载后,对稻瘟病产生抗性变异,其中抗性明显提高的占26.3%;抗性比原种提高(病级0~5级)的植株数占72.7%。对中二软占空间诱变SP2代材料的抗性分离规律进行研究。从空间诱变中二软占SP1中选取33株抗病和2株感病植株的种子作为SP2的接种材料,原种中二软占作对照,接种稻瘟病菌株采用GD0193菌株。空间诱变中二软占SP1的2个感病植株在SP2抗性没有产生分离,33个抗病植株在SP2抗性产生分离,而且各株系抗感分离的比例也不一样。对33个抗病SP2株系抗感分离的比例进行X2分析,结果表明有21个株系抗感分离比例符合理论比值3:1,说明这21个株系可能受一个位点的抗性基因控制;有8个株系抗感分离比例符合理论比值15:1,说明这8个株系可能受两个位点的抗性基因控制。另外,有4个株系抗感分离比例既不符合3:1也不符合15:1。表明这4个株系的遗传基础比较复杂。由于目前对水稻空间诱变的染色体变异的遗传机理还不是很清楚,诱变除了导致基因的位点突变以外,也可能导致染色体的缺失、重复、倒位、易位等畸变。这些畸变将影响水稻的性状,而且使其在SP2的基因的分离规律变得更复杂。从33个空间诱变中二软占抗病植株的SP3-SP4代株系中连续两造各筛选出5株农艺经济性状较好的单株,考种及抗病性鉴定结果表明,与原种中二软占比较,抗病性有不同程度的提高,而且穗长、总粒数、结实率、粒长、谷粒长宽比、千粒重等性状与原种中二软占的相比,也有不同程度的提高。将33个空间诱变中二软占抗病植株和1个感病植株的SP4代株系进行抗谱测定,采用38个不同致病型代表菌株接种结果,原种中二软占和空间诱变感病株系的抗谱分别为29.0%和34.2%,33个空间诱变抗病株系中,抗谱达到80%以上的诱变株系有32个,其中抗谱在90%以上的诱变株系有24个,抗谱在80%~90%间的诱变株系有8个。中二软占是优质但中感稻瘟病的品种,从其空间诱变后代中有望筛选出对稻瘟病抗性及农艺经济性状比原种好的株系,可为抗稻瘟病育种提供新材料及优良抗源。目前作者等正重点开展有关优质、抗病的中二软占诱变品系的抗性遗传基础分析、抗病基因标记定位、空间诱变抗性变异机理研究等。
