首页 <
知识图谱:全部
-
报告Functional Analysis of Plant Viral Genes Via Reverse Genetics
出版时间:2007正向(经典)遗传学是通过生物的表型来推测其遗传物质的组成、分布和传递规律等,而反向遗传学是在已知基因序列的基础上,利用现代生物理论和技术,通过核苷酸序列的定点突变、缺失和插入等创造突变体并研究突变所造成的表型效应。随着基因组测序技术、侵染性克隆的构建技术、定点突变技术和报告基因的使用等,反向遗传学技术在研究植物病毒基因功能、侵染过程和致病机理等方面的应用越来越广泛。本文报道了该技术在研究马铃薯Y病毒(PVY)HC-Pro和甘薯褪绿矮化病毒(SPCSV)P22功能方面的部分结果。PVY HC-Pro基因由本实验室提供,SPCSV的有关基因由芬兰赫尔辛基大学Valkonen教授提供,PVX201质粒由Baulcombe教授提供。突变试剂盒(Quick Change XL Site-Directed Mutagenesis Kit)购自STRATAGENE公司,大肠杆菌菌株DH5α由本实验室保存,PCR突变引物由赛百盛公司合成。Figure 1 Symptoms of Nicotiana benthamiana plants inoculated with different constructs based on PVX 201将SPCSV P22、P28和RNaseIII等基因克隆到PVX201载体上,根据接种后出现的症状判断哪个基因能增强PVX对本氏烟的致病力。将PVY HC-Pro克隆到PVX201载体上,针对HC-Pro的KITC和IGN等位点设计合适的突变引物,参考突变试剂盒(Quick Change XL Site-Directed Mutagenesis Kit)说明进行突变。通过测序证实所得突变体的准确性。大量提取法提取质粒PVX201、PVXHC或相应的突变体,摩擦法接种本氏烟(Nicotiana benthamiana),观察所致症状的差别。PVX201载体在本氏烟上引起轻微的斑驳和褪绿花叶症状,但不引起植株的死亡。SPCSV P28和RNase III等基因连接到PVX201后对症状无影响,但P22能提高PVX对本氏烟的致病力,导致了接种植株的死亡,说明P22是致病性的增强子。携带P22的PVX(PVX-p22)首先在接种叶上引起坏死斑点。坏死斑点扩展后,沿着叶脉到达茎部,引起上部组织坏死,最终导致本氏烟整株枯死。RNA沉默抑制因子HC-Pro也能提高PVX对本氏烟的致病力。表达HC-Pro的PVX(PVX-HC)在接种后7天出现严重明脉和卷曲,10~14天时首先心叶出现坏死,随后整株萎蔫死亡。但在接种叶上没有坏死斑,看不到明显的扩展迹象。KITC是HC-Pro的一个重要基序,参与病毒的蚜虫传毒、协生和抑制RNA沉默等过程。我们在测定烟草脉带花叶病毒(TVBMV)全基因组序列时发现,TVBMV(YND分离物)HC-Pro KITC基序中的K变成了R,而且也有蚜虫传毒活性。我们把PVY HC-Pro的KITC突变成RITC后,再接种本氏烟,发现该突变仍能引起本氏烟植株的死亡。把K突变为A(突变体1,K52A)后,突变体也能引起本氏烟死亡,说明HC-Pro KITC基序中的K可能不参与和PVX的协生。但把KITC基序中的C缺失后(突变体2,C55Del)就不能引起植株死亡,说明KITC基序中的C对于协生作用是不可缺少的。对于HC-Pro其他突变体的功能分析正在进行中。 -
报告灰飞虱体内沃尔巴克氏体的检测? 河北省财政专项。
出版时间:2007沃尔巴克氏体(Wolbachia)是自然界中分布非常广泛的胞内共生菌之一,近10余年的研究表明,这类共生菌广泛存在于各类昆虫体内,甚至估计16%的昆虫均含有该菌[1]。对来自33个不同寄主的38个不同Wolbachia株系的ftsZ基因(细胞周期基因)研究表明,Wolbachia 株系间存在着很大的差异,Wolbachia 株系分为A组群和B组群[2]。Zhou等在wsp(编码Wolbachia表面蛋白)基因序列分析的基础上,将沃尔巴克氏体细分为12个亚群(Subgroup),并设计了12个亚群wsp基因诊断的PCR扩增特异引物[2]。昆虫体内是否含有Wolbachia,早期多通过DAPI染色法(用非特异性的DNA-blinding荧光染料DAPI染色,然后在荧光显微镜下观察)[4]和电镜观察[5]来判断,但20世纪90年代以来则主要依赖于对其16S rDNA、23S rDNA、ftsZ 和wsp等基因进行PCR检测与序列分析,其中wsp基因是目前报道的Wolbachia基因中进化最快的基因而被广泛用于Wolbachia的PCR检测与分子鉴别[1,3,6,7]。沃尔巴克氏体通过卵的细胞质传播并参与多种调控其寄主生殖活动的机制,包括诱导孤雌生殖(Parthenogenesis inducing,PI)[8]、雌性化Feminzation)[9]和生殖不亲和[10],因而它很有希望被用于许多虫媒传播的重大人类疾病的基因工程防治和生物防治。灰飞虱(Laodelphax striatellus Falln)广泛分布于东亚、东南亚、欧洲和北非等地,我国以长江中下游和华北地区发生较多。灰飞虱能取食或为害水稻、小麦、大麦、玉米、高粱、甘蔗、稗草、李氏禾等多种禾本科植物,并且能传播多种病毒病,造成病害的普遍流行。因此,进行灰飞虱种群暴发成灾规律及其有效防治技术的研究,显得尤其重要和紧迫。本文采用PCR方法研究了灰飞虱体内Wolbachia的感染,以期为开辟控制灰飞虱暴发和阻断病毒病传播新途径提供依据。从河北省曲阳和容城小麦田采集灰飞虱成虫,保存在小麦苗上。每只灰飞虱为1个样本,放入离心管中冷冻,而后置于载玻片上,呈直线逐步滴1滴Ringer's solution(昆虫生理盐水),去头,放入装有预冷100μl STE 的管中,匀浆,10%SDS 5μl及蛋白酶K 2.5μl,55℃水浴1h,加酚50μl及50μl氯仿:异戊醇(24:1),剧烈震荡,12000r/min 离心5min。取上清,加入2倍体积无水乙醇及0.1体积3mol/L NaAc,-20℃沉淀过夜,离心,12000r/min。弃上清,加75%乙醇200μl洗涤2遍。55℃烘干,加入30μl无菌水溶解,-20℃冻存,待检。扩增wsp基因片段使用的引物[3]:wsp 81F(5'TGG TCC AAT AAG TGA TGA AGA AAC3')wsp 691R(5'AAA AAT TAA ACG CTA CTC CA 3').在20μl反应体积中进行PCR反应,反应体系为13.5μl ddH2O,2μl 10×Buffer,2μl 25 mmol/L MgCl2,0.5μl dNTPs(每种10mmol/L),0.5μl 20μmol/L的正向和反向引物及一个单位的Taq高温多聚酶。Taq plus及dNTP购自上海生工生物工程公司。PCR反应条件是:首先在94℃下变性3min,然后94℃下1min,55℃下1min,72℃下1min完成1个循环,共进行35次循环。72℃末轮聚合10min。反应结束后取PCR特异性扩增产物5μl,在0.8%的琼脂糖胶上进行电泳(电压40V,50min,电泳缓冲液为0.5×TBE),用BioRad凝胶成像系统检测并拍照。选择有扩增产物的样品进行大量PCR扩增,采用PCR产物回收试剂盒(上海生工生物公司产品)回收PCR扩增产物交上海生工生物工程公司进行测序,利用BLAST工具(NCBI网站)进行DNA序列检索和同源性比较。采用wsp基因通用引物81F和691R对灰飞虱DNA样品进行PCR扩增,电泳检测结果表明从灰飞虱DNA样品中可扩增出600bp大小的wsp目的基因片段,证实河北曲阳和容城田间采集的灰飞虱种群有Wolbachia 的感染(图1)。河北曲阳和容城灰飞虱种群的沃尔巴克氏体感染率分别为85.6%和88.4%,而且雌雄个体感染率无差别。将扩增的wsp基因片段进行基因序列测定,结果表明,从所检测的样品中扩增出的Wolbachia的wsp基因片段长度为601~603bp。用NCBI网站提供的BLAST分析工具进行基因序列同源性分析,表明灰飞虱体内感染的Wolbachia wsp基因与Wolbachia pipientis 的wFur、wStri 2个品系的wsp基因的同源性为100%,与Wolbachia sp.的wJapo、wFur、wStri 3个品系的wsp基因的同源性也达到100%(表1)。图1 灰飞虱体内沃尔巴克氏体wsp基因片段的扩增Wolbachia品系同源性注册号宿主来源WolbachiapipientisisolatewFur100%AF481185.1白背飞虱Kittayapong等,2003WolbachiapipientisisolatewStri100%AF481175.1灰飞虱Kittayapong等,2003Wolbachiasp.Wstri100%AF020080.1灰飞虱Zhou等,1998Wolbachiasp.wJapo100%AB039283.1ElenchusjaponicusNoda等,2001Wolbachiasp.wFur100%AB039043.1白背飞虱Noda等,2001Wolbachiasp.Wstri100%AB039042.1灰飞虱Noda等,2001表1 灰飞虱感染Wolbachia的wsp基因序列的同源性Wolbachia是自然界分布较广的共生菌,在双翅目、膜翅目和鳞翅目等许多昆虫体内均有感染。甘波谊等以PCR方法检测了来自不同地域稻田的3种稻飞虱,发现灰飞虱、褐飞虱(Nilaparvata lugens)、白背飞虱(Sogatella furciera)均被Wolbachia所感染,对wsp的RFLP分析证实了这些飞虱为单一沃尔巴克氏体感染[11]。但不同地区灰飞虱体内沃尔巴克氏体的感染率不同,在我国形成了周边地区感染率高(如辽宁、北京、上海和云南),而内陆地区感染率低(如四川),或是未被感染(如宁夏)的格局[11]。在日本采集的9个灰飞虱种群被Wolbachia感染的比率随纬度降低而增加[12]。这些不同可能与不同地区的地形、气候、寄主条件及Wolbachia的传播效率等因素有关,其原因有待研究证实。本文研究结果表明,河北曲阳和容城灰飞虱种群沃尔巴克氏体感染率较高,与前人的报道一致。通过对基因序列的同源性分析表明,河北的2个灰飞虱种群感染的Wolbachia与来自白背飞虱的wFur品系、灰飞虱的wStri品系亲缘关系较近,同属于Wolbachia B大组Con组。这些表明灰飞虱可能会被同一组的Wolbachia感染。灰飞虱是多种病毒的传播介体,灰飞虱的暴发流行常造成玉米粗缩病、水稻条纹叶枯病等病毒病的严重流行。沃尔巴克氏体是灰飞虱的胞内共生菌,能够通过多种机制调控其寄主的生殖活动[13],但是,近年灰飞虱种群暴发成灾与Wolbachia 感染的关系有待进一步研究证实。同时,沃尔巴克氏体影响灰飞虱传毒能力的作用及利用媒介昆虫—共生菌技术阻断病毒的传播将是今后研究的重点,对于开辟病毒病防治新途径具有重要的意义。 -
报告植物细菌性病害研究初探
出版时间:2007川成都植物病害是由植物—病原—环境三者在一定适宜条件下,引起植物体发病,构成对植物正常生长发育和新陈代谢的干扰与破坏,最终造成植物的生物产量和经济产量减产,品质降低,给人类的农业、林业生产造成重大损失。植物病害的病原物是指能寄生于植物体并导致侵染性病害发生的生物。植物病害分成菌物(真菌)性病害、细菌性病害、病毒类病害、线虫类病害以及其他因素引起的植物病害。植物细菌性病害是植物病害中发生为害较重、发病规律比较难以掌握、防治技术要求高、防治效果很难凑效的一类病害。植物病原细菌是属于原核生物中的一个生物类群,它与真核生物在细胞结构及组成成分方面存在着较大的差异,正是这种细胞结构和组分上的差异,导致了细菌性病害比真菌性病害更难以防治。植物细菌性病害中比较著名的病害有:水稻细菌性条斑病、水稻白叶枯病、白菜软腐病、番茄青枯病、玉米细菌性枯萎病、柑橘溃疡病、梨火疫病、马铃薯环腐病。还有近年来被国际柑橘病毒学家确认的柑橘黄龙病等,这些植物细菌性病害给我国农业、林业生产带来了巨大的影响和危害。本文将对植物细菌性病害做了以下6个方面的初步探讨。早在2000多年前我国《诗经》中已经将生物划分成了植物、动物和蕈类三大类。1593年李时珍在《本草纲目》中将生物分成了植物、动物和人类三大类。在近代科学发展史上,以林奈为代表的生物分类学家将生物分成两界(即动物界Animaliae和植物界Plantae),这两界系统被人类科技界沿用了200多年。16~18世纪,随着显微镜发明和细胞学说的建立,人类才发现了单细胞生物——细菌。对于细菌在生物进化过程中,专家们普遍认为:细菌的出现应该是在植物和动物出现之前就已经存在了。1969年魏泰克将生物界分成五界系统,即:(1)以细菌为主的原核生物界;(2)以单细胞原生动物和藻类为主的原生生物界;(3)多细胞生物中以光合作用制造营养的植物界;(4)以多细胞为主吸收营养的真菌界;(5)多细胞生物中以摄取食物为营养来源的动物界。1974年黎德勒认为:取消原生生物界,将生物化分成四界系统,即:原核生物界、真菌界、植物界和动物界。1977年我国科学家陈世骧提出了生物学界的三总界构成六界系统,即:无细胞总界——(病毒界);原核生物总界——(细菌界、蓝藻界);真核生物总界——(真菌界、植物界、动物界)。1988~1989年(Cavalier-Smith),将生物学界划分成:两个总界组成的八界系统,即:一、细菌总界:①真细菌界;②古细菌界;二、真核总界:③古菌界;④原生动物界;⑤植物界;⑥动物界;⑦真菌界;⑧藻界。到2003年,他取消了古细菌界和古菌界,改为二总界六界学说。许志刚教授在2005年正式提出三域七界的最新分类体系,即无细胞生物域的病毒界;原核生物域的细菌界;真核生物域的原生生物界、真菌界、藻物界、植物界和动物界。反映了当前人们的认识水平。从上述分类系统可以看出,细菌的分类始终处于原核生物界内,它与真核生物在细胞结构及其组成成分上存在着许多本质上的差异。原核生物是以单位膜为界的,细胞核质无核膜包围,呈原核状态。含肽聚糖的细胞壁有或无;核糖体在细胞质内70S。染色体的数目为1。细菌的质粒DNA游离于细胞质中。细菌都是单细胞生物,它们的细胞膜外都有一层主要由肽聚糖(革兰氏阳性细菌)或脂多糖(革兰氏阴性细菌)构成的坚韧细胞壁。真核生物:具有以单位膜为界的细胞器,细胞壁不含肽聚糖。细胞核有核膜包围,呈真核状态,核糖体80S,在细胞器内的核糖体70S。细胞内有内质网、高尔基体、溶酶体、叶绿体有或无、有微管系统。染色体中有组蛋白;有核仁;要发生有丝分裂;细胞器有DNA(如线粒体);配子能够融合;DNA不单向转移形成部分二倍体。最典型的是真核生物具有真正的细胞核以及其他细胞器组成成分。核是细胞的控制中心,它由核膜包着与核外的细胞质分开。核膜内有核仁和核质。植物病理学家们长期以来将植物细菌性病原种与对寄主的致病性作为一个非常重要的因素,同时要依据病原细菌的生理生化性状和血清学性状等指标来综合确定植物病原细菌的种。在《伯杰氏细菌学手册》第七版出版时已经命名的植物病原细菌种有200多种。根据生物学命名中优先命名权不能侵犯的原则,确定每一个新种必须查阅大量文献,以避免同物异名的出现。在《伯杰氏细菌学手册》第八版中将植物病原细菌种由原来的200多种削减为几十种,以保证所有种都可以用生化试验来进行鉴定并尽量保证能在实验室条件下可以重复实验,使之更具有科学性和重复性。1994年,根据《伯杰氏细菌学手册》第九版的系统分类:将细菌分成了四大类35个群。2000年以后,《伯杰氏细菌学手册》第二版分五卷陆续出版发行,该版本的最新分类体系中将细菌界包括了16门、26组、27纲、62目、163科、814属,共计4727种。植物病原细菌属于细菌界中普罗特斯门、放线菌门和厚壁菌门。普罗特斯门细菌细胞壁主要由脂多糖组成,肽聚糖含量较少,因而革兰氏染色阴性。放线菌门细菌的细胞壁中肽聚糖含量高,革兰氏染色阳性。厚壁菌门中的病原生物包括植原体(Phytoplasma)和螺原体(Spiroplasma)。已经描述的引起植物病害的原核生物有28个属。植物细菌性病害的病原菌主要分成五大类别。第一类:黄单胞菌属(Xanthomonas)。黄单胞菌属是细菌中的特殊类群,目前文献中描述的黄单胞菌属的种几乎都是植物病原细菌。它可以为害120多种单子叶植物和270多种双子叶植物。黄单胞菌引起许多重要植物病害,比较典型的病害有:(1)甘蓝黑腐黄单胞菌(X.campestris pv.campestris);(2)水稻白叶枯病(X.oryzae pv.oryzae);(3)水稻细菌性条斑病(X.oryzae pv.oryzicda);(4)柑橘溃疡病(X.campestris pv.citri)。由黄单胞菌属细菌引起的植物病害大多数症状为叶枯、坏死、萎蔫等症状。第二类:假单胞菌属(Pseudomonas)。假单胞菌属细菌大多数都是土壤、水、其他基质上的腐生菌,有些是植物病原细菌。它的生态适应性广,表型差异大,是一个非常异质的组群。丁香假单胞菌(Pseudomonas syringae)是重要的植物病原细菌,能为害多种植物。在《伯杰氏细菌学手册》第九版中正式命名的植物病原细菌有7个种。第三类:欧文氏菌属(Erwinia)。欧氏菌属细菌是人类第一个发现的植物病原细菌。有史以来所发现的欧氏菌属细菌一部分是植物病原细菌,最常见的是各种植物的软腐病,也有萎蔫和坏死。典型的病害有:梨火疫病(E.amylovora);玉米细菌性枯萎病(E.stewartii);马铃薯和大白菜的软腐病等。由欧氏菌引起的细菌性软腐病在全世界均有发生分布。第四类:土壤杆菌属(Agrobacterium)。土壤杆菌属细菌是一类习居于土壤的细菌,在土壤中广泛的分布。常见的致病性细菌种有根癌土壤杆菌和发根土壤杆菌。根癌土壤杆菌(A.tumefaciens)能为害多种双子叶植物,在近土根茎部形成恶性肿癌。发根土壤杆菌(A.rhizogens),在侵染双子叶植物幼根后形成丛生的毛发状根群,称之为发根。第五类:棒形杆菌属(Clavibacter)。它是从棒状杆菌属(Corynebacterium)中分列出来的一个新属。国内发现的植物病原棒形杆菌属细菌中,最典型的病害有马铃薯环腐病菌(C.m.pv.sepeadonicum)在国内马铃薯产区均有分布。由于该病菌是以种薯传带的,所以在调运马铃薯种薯时必须要实施检疫。小麦蜜穗病菌(C.tritici)在国内华北冬麦区、山东、安徽、江苏、浙江、贵州等省已有发生。植物病原细菌从植物的气孔、皮孔、蜜腺等自然孔口以及伤口侵入寄主。植物细菌性病害主要见于高等被子植物和栽培植物上较多。植物病害的症状包括病状和病症两个方面。所谓病状:是指感病植物的外部特征,主要表现有:(1)变色:指整个植株、叶片或叶片部分变色。(2)坏死:指植物体局部细胞和组织的死亡。(3)腐烂:整个植物的组织和细胞被破坏和消解。(4)萎蔫:植物病害中的萎蔫是指植物的输导系统被病原物毒害或病组织的产物阻塞而造成不可逆转性的萎蔫。(5)畸形:感病植物组织和器官所发生的皱缩、卷曲、萎缩、丛枝、发根、肿瘤,花器和种子变态。所谓病症:是指病原物在病株发病部位上所表现的特征。主要表现有:(1)霉状物。(2)粉状物。(3)锈状物。(4)粒状物。(5)根状菌索。(6)菌脓。菌脓:是指发病部位产生的胶黏脓状物,干燥后形成白色的薄膜或黄褐色的胶粒。菌脓是细菌性病害在田间特有的病症。从多年田间病害症状诊断的实践环节看,植物细菌性病害田间症状诊断上着重注意几点:细菌性病害往往会出现局部坏死斑点,如柑橘溃疡病的病斑。腐烂:很多蔬菜类作物上出现的软腐病、马铃薯环腐病等。萎蔫:作物上出现的青枯病,全株性萎蔫。菌脓:如水稻细菌性条斑病病叶上出现的胶黏脓状物。细菌性病害往往不会出现整株变色、叶片上不会出现霉状物、粉状物、丛枝、萎缩等症状。细菌性病害会出现发根和肿瘤等症状。这个问题是一个非常复杂的问题,要回答好这个问题并非易事。从理论上探讨,所有植物病原细菌都可以通过种子传带。细菌附着在种子表面,也可以存活于种皮内,以及块茎组织内部。细菌在植物种子上一般存活1~2年。植物病原细菌一般产生胞外多糖,且一般具有鞭毛结构。因而,雨水的溅射和细菌自身在水中的游动可导致其传播。此外,随着灌溉水的流动,细菌可以在田块间传播。在20世纪60~70年代,水稻白叶枯病在四川省水稻产区流行蔓延,造成水稻产量严重减产,损失惨重。植物病原细菌可以通过苗木、接穗传播。嫁接工具、人为操作不当的行为均可以传播植物细菌性病害。柑橘溃疡病在我国柑橘主产省区均有不同程度地发生为害。狂风暴雨夹带雨滴是沿海岸线柑橘产区柑橘溃疡病蔓延猖獗的主要环境因素。通过媒介昆虫可以传带细菌性病害。柑橘黄龙病传毒主要媒介是柑橘木虱。要使柑橘黄龙病发生蔓延的几大因素是:一是要有柑橘黄龙病病树存在;二是要有传毒的媒介昆虫;三是要有感病的寄主。同时,昆虫的越冬寄主枳壳、九里香等存在为病菌的越冬和第二年的病菌的侵染循环创造了条件。如何掌握植物细菌性病害发病规律,作者认为应该注意以下几点:(1)植物的种子、苗木、接穗等一切繁殖材料均有可能携带植物细菌性病害的病原,并能在植物体表或表皮内较长时期的存活,是远距离传播植物细菌性病害的主要原因。(2)由于植物病原细菌的细胞有胞外多糖,在有水膜存在下可以加快细菌侵染速度,为害程度由点到片逐步加重。在雨季、大风、甚至飓风条件下加快了点片发生与为害的程度。(3)有灌溉水存在的条件下可以加快植物细菌性病害的流行蔓延,是大面积造成为害损失的主要诱因。(4)有媒介昆虫的发生、越冬寄主的存在,为植物细菌性病害的再次侵染循环奠定了基础和创造了条件。(5)嫁接工具、农事活动操作不当均可以造成寄主大量伤口,有利于病原细菌的侵入,导致田间植物细菌性病害近距离传播为害。(6)适宜的温湿度条件,加速了植物细菌性病害的侵染循环。根据植物细菌性病害发病的诱因和发病基本规律可以看出:种子、苗木可以带菌;细菌繁殖速度快、侵染途径多;远距离传播与近距离扩散相辅相成,加快了细菌性病害点、片发生,具有暴发成灾、损失严重的特点。植物细菌性病害很难防治,药剂防治效果很难奏效。四川省在防治水稻白叶枯病、水稻细菌性条斑病、柑橘溃疡病、柑橘黄龙病等细菌性病害中都不是单一地采用药剂防治。药剂防治只能作为综合治理植物细菌性病害技术环节中的一个重要环节,特别是柑橘溃疡病防治技术中,国内外至今尚未见到仅仅依靠药剂防治来完全控制其为害蔓延的成功范例。柑橘黄龙病的综合治理更是如此。(1)建立无病虫种子、苗木繁殖基地,生产健康无检疫性病虫的种子苗木。(2)种子苗木调运前实施田间产地检疫和抽样实验室检验相结合,保证调出种子苗木是无病的。(3)调入地尽量集中成片种植,播种前进行种子消毒处理,有利于生产管理和病虫害综合治理。(4)加强田间病虫害预测预报,发现细菌性病害点、片发生时,及时拔除病株销毁,并用药剂对周围植株进行保护性防治。(5)严格对发病田块的肥水管理,防止有病田块流水串灌或漫灌。(6)对较大面积发生细菌性病害的发病区要及时隔离,防止上游流水继续向下游流传,造成更大面积的细菌性病害流行。同时对发病区要进行较大规模的药剂防治。(7)及时换种、加强轮作换茬,防止细菌性病害在田间菌量的不断积累和再次暴发成灾。(8)注意嫁接工具的消毒,防止农事活动中人为的传播感染。 -
报告Advances of Study on Burkholderia cepacia1
出版时间:2007洋葱伯克霍尔德菌(Burkholderia cepacia)是一种广泛存在于水、土壤、植物和人体中的革兰氏阴性细菌。1949年美国植物病理学家Burkholder首次发现B.cepacia可以引起洋葱酸皮病[1]。随后在20世纪50年代人们从第一例由B.cepacia引起的心内膜炎开始,发现该菌广泛存在于医院,并且可以使人类患上多种疾病,尤其是囊性肺纤维化(Cystic fibrosis,简称CF)病人的易感细菌之一,严重的会因此患“洋葱伯克霍尔德菌综合症”致死。最近研究表明,该菌致人死亡的一个原因要归咎于它含有脂多糖(Lipopolysaccharide)分子[2]。在进行医学研究的同时,发现该菌在工业和农业上有生物降解、生物防治等功效,对农业生产和环境保护起着重要的作用,具有广泛的应用前景。近年来,随着细菌分类技术的发展,洋葱伯克霍尔德菌已不仅只是作为一个种,而是一组基因型不同、表型相近的复合物,称为洋葱伯克霍尔德菌复合型(Burkholderia cepacia complex,简称Bcc)[3]。本文将在农业、分类地位等方面对Bcc的研究进展做一综述,以达到全面了解该菌的目的。人类第一次发现伯克霍尔德菌是由于它导致了洋葱酸皮病,该病菌主要分布在土壤和灌溉水中,在洋葱鳞茎形成后,从其因收割等原因造成的伤口侵入,或者是黏在叶部的菌被水冲刷进入组织内引起鳞茎腐烂。Ulrich在1975年研究表明[1],该病原菌在低pH值环境下可以产生一种内多聚半乳糖醛酸酶,使洋葱组织软化,利于病原菌的入侵和扩展。后来郭道森等人研究表明,该菌与松材线虫共同侵染黑松和马尾松,导致松林大面积死亡[4],在后续的研究中发现,松材线虫的分泌物及死虫体均可促进该菌株的生长繁殖和致病作用,且活线虫的促进作用比死虫体更加显著,这可能是由于松材线虫提供给该菌株某些重要的营养物质[5]。2005年,意大利西西里东部地区种植的天堂鸟(Strelitzia reginae Aiton)幼苗(苗龄2~3个月)发生新病害,鉴定发现致病菌为唐菖蒲伯克霍尔德菌(Burkholderia gladioli),这是关于该菌导致天堂鸟叶斑病及枯萎病的首次报道。在植物体上广泛存在着一些细菌,它们都具有诱发植物体内水分结冰的作用,称为冰核细菌。在没有冰核细菌存在的植物能耐-7~-8℃的低温而不发生霜冻,但是在一些B.cepacia 细菌存在的情况下,同样条件的植物在-2~-3℃可诱发多种植物细胞水结冰而发生霜冻。张耀东等从菠菜上分离到一株具有冰核活性的Bcc菌株[6]。1.3.1 对有毒物质的降解 一些工业排放物中含有大量的有害芳香烃类物质,随着工业化进程的加快,残留于自然环境中的芳香烃类物质含量急剧增加,如何解决这类物质造成的危害,成为研究者要解决的问题,而利用微生物降解是消除其危害的重要途径之一。洋葱伯克霍尔德菌可以利用多种物质为唯一碳源,这意味着其能够以土壤和地下水污染的有毒且难降解的物质(邻苯二甲酸盐、除草剂和氯代烃类化合物等)为碳源并将其降解[7]。例如,Bcc的一个菌株G4可通过由苯酚诱导的芳香族途径将三氯乙烯降解,由于苯酚是环境优先污染物之一,因而不宜被推广使用;但该菌株的突变体G45223 PR1可以不利用任何诱导物而直接降解三氯乙烯[8]。另外,许多芳香烃化合物在降解过程中都会形成中间产物邻苯二酚,细菌可以通过邻位裂解和间位裂解两种途径继续降解邻苯二酚[9]。刘涛等[10]从炼油厂废水中分离筛选到一株苯酚高效降解的洋葱伯克霍尔德菌L68,该菌株可产生邻苯二酚2,3-双加氧酶[11],而邻苯二酚2,3-双加氧酶是降解芳香族化合物的关键酶,在间位降解途径中,该酶可以催化邻苯二酚的苯环裂解,转化为2-羟黏糠酸半醛。因此,洋葱伯克霍尔德菌对消除芳香烃类化合物的污染具有重要作用。另外,洋葱伯克霍尔德菌对化学农药也有很强的降解作用。如,Sarfraz Hussain 等人研究发现,在pH值为8.0,温度为30℃时,该菌对α-硫丹和β-硫丹的降解率达90%以上,从而减少了杀虫剂硫丹(Endosulfan)对土壤和地下水的污染[12]。1.3.2 对油脂的降解 洋葱伯克霍尔德菌降解油脂的特性在国外已有研究,Pooja Rathi,Hustavova等人报道了该菌产脂肪酶应用于催化酯化水解反应等研究[13],洋葱伯克霍尔德菌能在降解利用油脂的同时还分泌出一定量的胞外脂肪酶,同时通过所产生的脂肪酶等降解酶系作用于油脂,将其分解氧化为低级脂肪酸、甘油、醇类等低分子有机物,最后降解为H2O、CO2等代谢产物[14]。徐保成[15]等人对该菌所需的降解工艺条件进行优化研究,结果表明在优化的油脂降解条件下(pH值7.0,30℃,溶解氧3.0mg/L),处理初始油脂浓度1000mg/L废水,24h后其油脂降解率达到90%以上,COD(Chemical Oxygen Demand)去除达到92%。B.cepacia产生的脂酶可以催化拆分外消旋化学农药,使其变为光学活性农药,从而成倍地提高了药效,而且减轻了生物体内的积累与毒副作用,避免了不必要的环境污染[16]。洋葱伯克霍尔德菌可以防治多种植物病害,如从樱桃果实表面和伤口上分离获得的洋葱伯克霍尔德菌对甜樱桃褐腐病表现出显著的抑制效果[17];郑维等从堆肥样本中分离的洋葱伯克霍尔德菌株CF-66具有广谱抗菌活性,并初步鉴定该菌属于洋葱伯克霍尔德菌基因型Ⅴ[18];李纪顺等对伯克霍尔德菌B418进行了研究,表明该菌对小麦纹枯病、小麦全蚀病和番茄南方根结线虫病有很好的防治效果[19]。陈京元等从湿地松苗根际分离得到1株B.cepacia C23菌株,对引起湿地松猝倒病的立枯丝核菌(Rhizoctonia solani)、链格孢菌(Alternaria alternata)有明显的抑制效果。洋葱伯克霍尔德菌的防病机制主要为其能产生多种具有抗菌活性的代谢产物,如铁载体(Pyochenlin、Pyoverdine)、吩嗪、硝吡咯菌素、苯基吡咯、单萜生物碱、Cepaciamide A(B)、Cepacidine A(B)、Cepacin A(B);菌株H111 能够有效杀死线虫Caenorhabditis elegans,其作用机理主要是由该细菌产生的细胞外毒素所致死[20]。B.cepacia AMMDR1可以抑制由瓜果腐霉病菌(Pythium aphanidermatum)和根腐丝囊菌(Aphanomyces euteiches)引起的豌豆和甜玉米苗猝倒病,作用机理主要是该菌抑制游动芽孢的裂解,阻止孢囊的萌发而影响病原菌的生长[21]。在不断的研究中发现,该菌可以与杀菌剂共同使用,如I.Omar等人发现,在对大豆根腐霉病菌(Fusarium oxysporum)引起的番茄冠根腐病的研究中,B.cepacia菌株C91与低浓度杀菌剂混合使用,相比单独使用高浓度杀菌剂,杀菌效果提高了20%[22]。这不但减少了杀菌剂的使用,同时减少了杀菌剂对环境的污染。美国环保署(EPA)已经批准了两种以洋葱伯克霍尔德菌为主要成分的生防菌剂的生产,其商品名为Deny和Intercept,Deny用于防止Rhizoctonia spp.、Pythium spp.、Fusarium spp.和线虫引起的病害,而Intercept则用于防治Rhizoctonia solani、Fusarium spp.、Pythium spp.引起的病害[23]。具有拮抗作用的细菌往往与植物的生长有很大的关系,这些细菌都可产生一些抑制真菌生长的物质,如:铁载体(Siderophores),细胞溶酶的分泌物,抗生素等。对真菌生长的抑制就可以直接促使植物生长[24]。B.cepacia可以产生铁载体,一方面根际促生菌铁载体的产生很快耗尽了病原菌生存所需要的铁,从而使病原菌的繁衍和侵染能力大大下降;另一方面根际促生菌通过铁载体向植物提供铁营养,从而使植物获益[25];另外,B.cepacia还可以产生抗生素有效地抑制周围其他微生物的繁衍。同时,B.cepacia的一些菌株具有固氮和产生吲哚乙酸(IAA)的作用,有助于植物对营养物质的吸收[26]。Bcc菌株具有较强的溶解磷酸盐的能力,推动植物对释放的磷的吸收,促进植物生长,Babu-Khan等克隆到其溶解磷酸盐的基因[27]。另一方面其通过对病原微生物的生物防治,减轻或抑制有害的根围微生物,从而间接的促进植物生长。例如,玉米种子被Bcc菌株MCI7包衣后,其植株感染病原镰刀菌的几率大大降低,且植株鲜重和株高均显著增加[28]。B.cepacia 原名Pseudomonas cepacia,1950 年首次被Burkholder报道可引起洋葱酸皮病[29]。该菌的其他名字还包括eugonic oxidizers group 1,Pseudomonas kingii和Pseudomonasmultivorans[30],但是相关研究明确指出这些命名是P.cepacia的同义词,而且P.cepacia具有命名的优先权[31]。因此,这些命名没有被写入细菌手册,直到1981年,Palleroni 和Holmes才重新找到依据区分这些命名的不同[32]。1992年Yabuuchi 等正式将该菌及其他6个属于rRNAⅡ群的假单胞菌(P.solanacearum,P.pickettii,P.gladioli,P.mallei,P.pseudomallei 和P.caryophylli)归为一个新属,即伯克霍尔德菌属(Burkholderia)。与Pseudomonas属不同的是,该属被归为变形菌门(Proteobacteria)[33]。当Burkholderia属的分类地位被确定以后,该属已包括超过30个不同的种:B.cepacia(典型种),B.caryophylli,B.mallei,B.pseudomallei,B.gladioli,B.plantarii,B.glumae,B.vietnamiensis,B.andropogonis,B.multivorans,B.glathei,B.pyrrocinia,B.thailandensis,B.graminis,B.phenazinium,B.caribensis,B.kururiensis,B.ubonensis,B.caledonica,B.fungorum,B.stabilis,B.ambifaria,B.hospital,B.terricola,B.sacchari,B.tropicalis,B.brasilensis,B.anthina,B.dolosa,B.cenocepacia,B.xenovorans,B.tuberum,B.phymatum。通过研究得知B.caryophylli,B plantarii,B.glumae,B.andropogonis是植物的致病病原菌,能够使不同种属的植物患上根腐、叶斑、条斑等病害。在不同植物中分离得到的B.vietnamiensis,B.kururiensis,B.tropicalis,B.brasilensis,B.tuberum,B.phymatum,B.caribensis有促进根瘤形成,增强固氮的能力,同时促进植物根的生长。B.mallei和 B.pseudomallei则能够引起人和动物的鼻疽病。对于B.glathei,B.graminis,B.phenazinium,B.caribensis,B.caledonica,B.hospital,B.terricola,B.sacchari在环境、生态中所起的作用还不是很清楚。同时,还有一些具有多重作用,可以是植物致病菌,植物有益菌或是人类的机会致病菌,例如:Burkholderia cepacia complex,Burkholderia gladioli 和 Burkholderia fungorum[34]。从20世纪90年代中期开始,一些研究者发现来源于各种环境的Bcc分离物具有明显的遗传异质性,1996年,有报道说利用分子鉴定和临床观察,发现伯克霍尔德菌至少有3个不同的基因型是CF病症的致病菌[35]。直到1997年,Vandamme等运用多相分类研究方法对从CF病人中分离到的致病菌进行研究,才发现所设定的B.cepacia种中,至少存在5种不同的基因型[36]。包括B.vietnamiensis(基因型V)、B.multivorans(基因型II)、基因型I,III和 IV。这5种基因型被统称为伯克霍尔德菌复合型(B.cepacia complex)。利用不同的方法从医学和环境微生物的角度对伯克霍尔德菌复合型进行了探索研究,其中包括使用不同的选择性培养基。结果发现,农业研究中利用的培养基,能从土壤和植物根际附近发现大量的伯克霍尔德菌复合型的族群[37];在医学研究中,几乎无法从自然界中发现伯克霍尔德菌复合型的存在[38]。直到伯克霍尔德菌分类的又一次改变,才使这些固有的不同有机的联系起来,一些研究者发现基因型IV与Bcc中的其他基因型有明显的差异,于是被归类B.stabilis[39]。接着从美国和英国的CF致病菌中分离出基因型VI,它除了与B.multivorans没有差异外,与其他基因型均有差异[40]。从人类致病菌与环境中都能分离B.ambifaria(基因型VII),因此它也具有生防菌的特征。最近,发现B.pyrrocinia(基因型Ⅸ)也属于B.cepacia complex[41]。因此,已报道的洋葱伯克霍尔德菌复合型由9个不同基因型组成,分别是B.cepacia(基因型Ⅰ)、B.multivorans(基因型Ⅱ)、B.cenocepacia(基因型Ⅲ)、B.stabilis(基因型Ⅳ)、B.vietnamiensis(基因型Ⅴ)、B.dolosa(基因型Ⅵ)、B.ambifaria(基因型Ⅶ)、B.anthina(基因型Ⅷ)、B.pyrrocinia(基因型Ⅸ)。后来,Yabuuchi E等人在泰国某地的表层土中分离得到的B.thailandensis的一株,被重新归类为Burkholderia ubonensis,经过鉴定初步断定也归类为B.cepacia complex[42]。各基因型间DNA-DNA同源性为30%~50%,其16S rRNA 和recA 基因序列相似性很高,分别为98%~99%和94%~95%[43]。直到目前,对Bcc的基因型组成仍在研究中,Zhang L等人在玉蜀黍和水稻的根际发现了大量的Bcc菌株,并且通过Bcc recA基因的同源性的分析,发现分离所得的Bcc R456菌株可能属于一种新的基因型[44]。虽然能从不同的环境条件下分离获得大量的Bcc,但却不清楚Bcc株系主要的存活环境。事实上,只有很少的研究涉及环境中Bcc的生态特征,一些研究者也仅仅是对Bcc的一个或几个基因型进行研究[45]。现有的伯克霍尔德菌复合型中有许多有生防效果或是作为植物促生剂,现今生产B.cepacia生物农药的菌株都来源于环境,但问题是,对这些菌株是否是非致病菌也无法区分,因为除了Bcc基因型Ⅵ只能从CF病人中分离到,基因型Ⅸ只从土壤中分离到以外,其他所有基因型的B.cepacia均可从环境和医院中分离[46]。同样,无法很清楚的在菌株基因型或是表现型方面来区分环境菌和人类致病菌。同时,每年都可以从CF的致病菌中获得新的Bcc株系,并且也能够从自然环境中获得这些菌株[47]。因此,如何区分环境菌和人体致病菌以及其是否具有致病性,对应用于农业上的Bcc菌株进行风险评估是必要的,也将是今后的研究难点和热点之一。目前,对细菌的鉴定一般都先选择合适的选择性培养基培养分离出的样本,然后利用生理生化手段检测分离到的菌株,接着利用SDS-PAGE技术,全细胞蛋白电泳,16S rDNA序列分析手段鉴定出分离所得样本的属,最后配合RFLP探针技术或AFLP探针技术以确定菌株的基因型。现有的伯克霍尔德菌复合型由9个不同的基因型构成,各个基因型在形态上非常相近,这就需要非常便利的生物化学的鉴定手段和具有针对性的分子鉴定方法对各个基因型进行精确的区分[48]。利用16S rDNA测序、recA-RFLP分析、recA 基因特异引物PCR检测、DNA-DNA 同源性分析以及全细胞蛋白电泳(PAGE)方法可区分Bcc中的一些种,但还没有一种技术可以针对性的区分出每个基因型。因此,寻找一种简单可行可靠的鉴定技术是今后研究的热点之一[49]。Bcc致病毒力因子包括脂肪酶、蛋白酶、溶血素、脂多糖、过氧化氢酶、内毒素等,以紫花苜蓿作为植物模型研究Bcc的毒力,发现9个基因型中除了B.multivorans 和B.stabilis外,其余都可以从发病的紫花苜蓿上分离获得[50]。但植物与人类病原菌存在着差异,如革兰氏阴性人体条件致病菌绿脓杆菌(Pseudomonas aeruginosa)和植物病原菌丁香假单胞菌(P.syringae)均存在Ⅲ型蛋白分泌系统,但后者对人和动物不致病,表明致病因子存在并不能充分说明其能致病。为了确定细菌致病性毒力的决定因子,Chung J W等人利用蛋白质组学描述来比较两种B.cenocepacia在老鼠肺上的存在状态,发现临床分离所得的C1394 很快被致死,C1394mp2依然存活。利用Two-dimensional(2D)凝胶电泳发现从易感病寄主上得到的C1394mp2,缺少烷基氢过氧化物还原酶亚基C(AhpC)蛋白位点,反之增加了鞭毛蛋白,这使C1394mp2增强了在高温和低pH值条件下的氧化应激能力。这揭示了B.cenocepacia致病毒力在易感模型上出现不同的表现与应激能力的内在原因[51]。对于使用易感动物作为模型进行研究是一个进步,但是对于动物模型的选择、如何利用等都受到时间、道德等原因的制约,寻找合适的动物模型仍是今后需要解决的问题之一。洋葱伯克霍尔德菌对于人本身来讲,是一种可怕的致病菌,不但污染医院的药品和器具,而且引起可怕的“洋葱伯克霍尔德菌综合征”。对于整个人类来讲,有好也有坏。它是自然界中一些植物的病原菌又是一种重要的生防、环保以及工业用菌,减少了对环境的危害,不少国家把它作为生物农药和环保制剂使用。如何区分哪些是人体致病菌、哪些是植物致病菌、哪些是生防或环保菌,成了一个令人困扰的问题。这有赖于对其生态多样性、致病机制以及分类学的全面了解。只有确定Bcc生防或降解菌株对人体不致病,或者该菌株为单独一个种而不是人体致病菌一员时,才能将其安全的应用于农业生产上,使其为人类造福。现在已经有许多研究者从不同的方面入手来进行研究,但仍有未涉及或很少涉及的领域,如该菌在自然界的分布及多样性研究,其基因型的详细鉴定及针对性的鉴定方法,这些都是需要注意的问题。因此,在今后的研究中,要广泛地参考结合各学科领域的研究进展,充分地认识了解该菌的生物学特性及在不同方面的风险性测试评价,以期更好地使其为人类服务。 -
报告李、杏生产技术
出版时间:2019杏树是蔷薇科、李属梅亚属的一种落叶乔木,在自然生长时,树冠高达10m以上,树龄一般50~80年,如条件适合,单株寿命可达200~300年。杏是深根性果树,根系生长能力极强,侧根多呈直角着生,多数分布在10~50cm土层。根组织细胞体积小,厚壁细胞壁厚、细胞排列紧密,组织不易失水,所以杏根具有较高的抗旱力。杏树的芽属早熟性芽,很小,根据外部形态和内部构造分为叶芽和花芽两大类,叶芽瘦小,呈长三角形,内含有枝叶原始体,萌发后根据营养状况及着生的位置,成为长、中、短枝,是扩大树冠和增加结果面积的基础。杏树的花芽是纯花芽,比较肥大。杏树潜伏芽的寿命很长,20~30年后,当主枝受到强烈刺激时,仍可萌发成枝,这为进入衰老期的杏树树冠更新复壮创造了有利条件。由于杏树具有早熟性的芽,因种子实生繁殖的杏苗,一般在3~4年后开始结果、用嫁接法繁殖杏树苗第二年就可开花结果,定植后7年左右进入盛果期,以15~30年生杏树产量最高,盛果期可维持30~40年之久,如果栽培管理条件能够满足杏树生长要求,盛果期持续时间还会更长,杏的花芽多为侧芽,生长过旺的徒长枝上不易形成花芽,在生长势中庸和健壮的结果枝上,花芽形成较多。1.砧木李树栽培上应用的多为嫁接苗木,砧木绝大部分为实生苗,少数为根蘖苗。李树的根系属浅根系,多分布于距地表5~40cm的土层内,但由于砧木种类不同根系分布的深浅有所不同,毛樱桃为砧木的李树根系分布浅,0~20cm的根系占全根量的60%以上,而毛桃和山杏砧木的分别为49.3%和28.1%。山杏砧李树深层根系分布多,毛桃砧介于二者之间。2.根系活动规律根系的活动受温度、湿度、通气状况、土壤营养状况以及树体营养状况的制约。根系一般无自然休眠期,只是在低温下才被迫休眠,温度适宜,一年之内均可生长。土温达到5~7℃时,即可发生新根,15~22℃为根系活跃期,超过22℃根系生长减缓。土壤湿度影响到土壤温度和透气性,也影响到土壤养分的利用状况,土壤水分为田间持水量的60%~80%是根系适宜的湿度,过高过低均不利于根系的生长。根系的生长节奏与地上部各器官的活动密切相关。一般幼树一年中根系有三次生长高峰,一般春季温度升高根系开始进入生长高峰,随开花坐果及新梢旺长生长减缓。当新梢进入缓慢生长期时进入第二次生长高峰。随果实膨大及雨季秋梢旺长又进入缓长期。当采果后,秋梢近停长土温下降时,进入第三次生长高峰。结果期大树则只有两次明显的根系生长高峰。了解李树根系生长节奏及适宜的条件,对李树施肥、灌水等重要的农业技术措施有重要的指导意义。李树的芽分为花芽和叶芽两种,花芽为纯花芽,每芽中有1~4朵花。叶芽萌发后抽枝长叶,枝叶的生长同样与环境条件及栽培技术密切相关。在北方李树一年之中的生长有一定节奏性,如早春萌芽后,新梢生长较慢,有7~10d的叶簇期,叶片小、节间短,芽较小,主要靠树体前一年的贮藏营养。随气温升高,根系的生长和叶片增多,新梢进入旺盛生长期,此期枝条节间长,叶片大,叶腋间的芽充实、饱满,芽体大。此时是水分临界期,对水分反应较敏感,要注意水分的管理,不要过多或过少。此期过后,新梢生长减缓,中、短梢停长积累养分,花芽进入旺盛分化期。雨季后新梢又进入一次旺长期—秋梢生长。秋梢生长要适当控制,注意排水和旺枝的控制,以防幼树越冬抽条及冻害的发生。李树是喜光果树,在良好的光照条件下树势旺盛、生长健壮、叶片浓绿、产量高、品质好。若光照不足,枝条细弱,花芽少而不充实,产量低。所以,李树要通过整形修剪的办法,避免枝条重叠,使叶面积分布匀称,提高光能利用率。在李树的建园中,要特别注意选择园地,合理安排栽培密度和方式。李树对温度适应性较强,但在它的生长季节,仍然需要适宜的温度,才能使生长发育与开花结果良好。李树花期最适宜的温度为12~16℃,不同发育阶段对低温的抵抗能力不同,如花蕾期-1.1~5.5℃就会受害;花期和幼果期-0.5~2.2℃则会受害。李树的花期早,花易遭受晚霜严重冻害,为了获得李树的高产稳产,应采取有效的防霜措施。可采用树干涂白、霜前灌水及熏烟防霜法。李树对土壤水分反应敏感。在开花期多雨或多雾能妨碍授粉;在生长期,如果水分过多,能使李树的根缺乏氧气,而且土壤中还积累了二氧化碳和有机酸等有毒物质,因而影响了根系的发育,严重的可使植株窒息而死。所以,李树宜栽在地下水位低、无水涝危害的地方;在幼果膨大初期和枝条迅速生长时缺水,则严重影响果实发育而造成果实的脱落,减少产量。李树对土壤要求不严,只要土层较深、土质疏松、土壤透气良好和排水良好的平地和山地都可以种植。对低洼地必须挖深沟,起高畦种植,以利于排水防涝。杏树对环境条件的适应性极强。在我国普通杏树从北纬23°~48°,海拔3800m以下都有分布。主产区的年平均气温为6~14℃。杏树休眠期能抵抗-40~-30℃的低温,例如:龙垦1号可抵抗-37.4℃低温,但品种间差异较大。杏树的适宜开花温度为8℃以上,花粉发芽温度为18~21℃。早春萌芽后,如遇-3~-2℃低温,已开的花就会受冻,受冻的花中雌蕊败育的比例较高。在中国杏树的主产区花期经常发生晚霜为害。杏果实成熟要求18.3~25.1℃。在生长期内杏树耐高温的能力较强。杏树喜光。光照充足,生长结果良好。光照不良则枝叶徒长,雌蕊败育花增加,严重影响果实的产量和品质。杏树抗旱力较强,但在新梢旺盛生长期、果实发育期仍需要一定的水分供应。杏树极不耐涝,如果土壤积水1~2d,会导致病虫害严重,果实着色差,品质下降,发生早期落叶,甚至全株死亡。杏树对土壤要求不严,平原、高山、丘陵、沙荒、轻盐碱土上均能正常生长,但以排水良好、较肥沃的沙壤土为好。李、杏树初果期长势很旺,生长量大,生长期长。此期的修剪任务主要是尽快扩大树冠,培养全树固定骨架,形成大量的结果枝,为进入结果盛期获得丰产做好准备。李树休眠期修剪以轻剪缓放为主,疏除少量影响骨干枝生长的枝条,对于骨干枝适度短截,促进分枝,以便培养侧枝和枝组,扩冠生长。李子树一般延长枝先端发出2~3个发育枝或长果枝,以下则为短枝、短果枝和花束状果枝;直立枝和斜生枝多而壮,有适当的外芽枝可换头开张角度。杏树休眠期修剪任务主要是短截主、侧枝的延长枝,一般剪去1年生枝的1/4~1/3为宜。少疏枝条,多用拉枝、缓放方法促生结果枝,待大量结果枝形成后再分期回缩,培养成结果枝组,修剪量宜轻不宜重。在核果类果树中,杏萌芽率和成枝率较低。一般剪口下仅能抽生1~2个长枝,3~7个中短枝,萌芽率在30%~70%,成枝率在15%~60%。杏幼树生长强壮,发育枝长可达2m,直立,不易抽生副梢,多呈单枝延长。发育枝短截过重,易发粗枝,造成生长势过旺,无效生长量过大;短截过轻,剪留枝下部芽不易萌发,会形成下部光秃现象。因此,杏初果期树的延长枝短截应以夏剪为主,通过生长期人工摘心或剪截可促发副梢,加快成形。盛果期的李树,因结果量逐年增加,枝条生长量逐年减少,树势已趋稳定,修剪的目的是平衡树势,复壮枝组,延长结果年限。盛果期骨干枝修剪要放缩结合,维持生长势。上层和外围枝疏、放、缩结合。加大外围枝间距,以保持在40~50cm为宜。对树冠内枝组疏弱留强,去老留新,并分批回缩复壮。盛果期杏树产量逐年上升,树势中等,生长势逐渐减弱。修剪的主要任务是调整生长与结果的关系,平衡树势,防止大小年的发生,延长盛果期的年限,实现高产、稳产、优质。主要任务有:延长枝剪去1/3~1/2,疏除部分花束状结果枝。对生长势减弱的枝组回缩到抬头枝处,恢复生长势,改善光照条件。骨干枝衰老后,可按照粗枝长留,细枝短留原则,剪留1/3~1/2。此期的杏树,树冠内包括徒长枝在内的新梢,几乎都能着生花芽而成为结果枝,花量大,修剪时应根据预期产量、败育花率、坐果率、单果重等,在留足花芽的前提下,通过疏截过多的果枝,控制留花量,以减少养分浪费。李树、杏树定植后3~4年、树冠尚未覆盖全园时,可以间作一年生豆科作物、蔬菜、草莓、块根与块茎作物、药用植物等矮秆作物。成龄园多进行覆盖或种植绿肥及生草。覆盖有机物后,使表层土壤的温度变化减小,早春上升缓慢且偏低,有利于推迟花期,避免李、杏树遭受晚霜危害。李树、杏树追肥时期为萌芽前后、果实硬核期、果实迅速膨大期和采收后,后两次可合为一次。生长前期以氮肥为主,生长中后期以磷钾肥为主。氮磷钾比例为1∶0.5∶1,土壤及品种不同,比例有所差异。追肥量可按每667m2施尿素25~30kg、钾肥20~30kg、磷肥40~60kg的量,分次进行。除土壤追肥外,也可进行叶面喷施。如萌芽前结合喷药喷施3%~5%的尿素水溶液,可迅速被树体吸收。谢花2/3后叶面喷0.3%磷酸二氢钾+0.2%硼砂,对花粉萌发和花粉管生长具有显著的促进作用。我国李、杏树栽培区多干旱,冬春旱尤为严重,对萌芽、开花、坐果极为不利。为了果园丰产、优质,早春李园、杏园必须及时灌水。春季花前灌水会使花芽充实饱满,为充分授粉和提高坐果率打好基础。早春灌水量不宜过大,以水渗透根系集中分布层,保持土壤最大持水量的70%~80%为宜。花前灌水可结合追肥同时进行。树盘漫灌费水,沟灌、穴灌、喷灌、滴灌相对节水,可酌情采用。李树、杏树花量大,坐果多,往往结果超载。适当疏花疏果可以提高坐果率,增大果个,提高质量,维持树势健壮。疏花越早越好,一般在初花期就要疏花。疏花时先疏去枝基部花,留枝中部花。强树壮枝多留花,弱树弱枝少留花。在花后15~20d进行,但早期生理落果严重的品种,应在花后25~30d,确认已经坐住果后进行。一般进行两次,第一次先疏掉各类不良果和过于密集的果,10d以后进行定果。生产上可根据果实大小、果枝类型和距离留果。小型果品种,一般花束状果枝和短果枝留1~2个果,果实间距4~5cm;中型果品种每个短果枝留1个果,果实间距6~8cm;大型果品种,每个短果枝留1个果,果实间距10~15cm。中果枝留3~4个果,长果枝留5~6个果。要根据树冠大小、树势强弱和品种特性,确定单位合理产量,如大石早生李盛果期树产量应控制在1500~2000kg/667m2,黑宝石李盛果期树产量应控制在3000~4000kg/667m2。杏树疏果宜早不宜迟,在花后15~25d进行,最迟在硬核前完成,以利果实膨大,避免营养浪费。一般短枝留1个果,中枝留2~3个果,长枝留4~5个果。也可按距离进行,即小型果间距3~5cm,中型果间距5~8cm,大型果向距10~15cm,保证全树20片叶以上留1个果。鲜食杏的产量控制在1000~1500kg/667m2为宜。疏果时要注意疏去小果、病虫果、发育不正常果、双果中直立向上果、过大过小果、果形不正及有伤的果。 -
报告果树生产基础知识
出版时间:2019果树是指能生产人类食用的果实、种子及其衍生物的多年生植物及其砧木的总称。果树生产是人们为获得优质果品,按照科学的管理方式,对果树及其环境采用各种技术措施的过程,它包括苗木培育、果园建立、病虫害防治、栽培管理直至果实采收的整个过程。果树产业是指开发利用能提供干鲜果品的多年生木本和草本果树进行商品生产的产业,它包括果树生产、育种,果品的储藏、加工、运输,以及生产资料供应、信息技术服务、市场营销网络等所有生产要素的集合,是由多领域、多行业、多学科共同参与的系统化综合产业。只有达到从生产到消费整个过程的相互衔接,果树生产才能获得最佳效益。果树生产的任务是生产高产、优质、低成本和高效益的各种果品,以满足国内外消费者的需求。随着社会的进步和人民生活水平的提高,果树生产目前的状况是:由单纯追求高产向优质丰产迈进,由偏重果品经济效益向生产绿色无公害果品发展。果树不仅具有春华秋实的年周期变化,还受生命周期中较长的各个生育阶段规律的支配,同时具备经济效益期长、投资报酬高的特点。果树生产对环境条件和栽培技术的反应有时效性和持续性的累积效应,要求栽培技术、土肥水管理、病虫害防治水平均较高。由于鲜食是目前我国果品消费的主要方式,故果树生产技术必须适应鲜食消费的需求。第一,必须以果品安全无公害作为生产的基本目标,并进一步发展为绿色果品和有机果品的生产。第二,必须做到以周年供应市场鲜果为目标,进行设施生产和提高储运技术。第三,由于果品质量档次的高低由市场需求定位,故生产中要充分考虑到供应时间、消费对象及果品质量档次等因素。果树种类繁多,种间差异很大。只有针对不同树种采取与之适应的精细管理技术,才能生产出适应市场需求的多种优质果品,取得更高的经济效益。果树栽培学上根据果实形态结构相似、生长结果习性和栽培技术相近的原则,先将果树分为落叶果树、常绿果树和多年生草本果树,再将各类按生长结果习性、栽培技术及果实特点做如下分类。(1)仁果类果树。仁果类果树属于蔷薇科,包括苹果、梨、海棠果、山楂、木瓜等。果实主要由子房和花托共同发育而成,为假果。果实的外层是肉质化的花托,占果实的绝大部分,内果皮骨质化,食用部分主要是花托。果实大多耐储运。(2)核果类果树。核果类果树包括桃、李、杏、樱桃等。果实由子房外壁形成外果皮,中壁发育成果肉,内壁形成木质化的果核。果核内一般有一个种子。食用部分为中果皮。(3)浆果类果树。浆果类果树包括猕猴桃、树莓、石榴、葡萄等。果实多浆汁,种子小而多,大多不耐储藏。该类果实因树种不同,果实构造差异较大。其代表树种葡萄,果实由子房发育而成,外果皮膜质,中内果皮柔软多汁。食用部分为中内果皮。(4)坚果类果树。坚果类果树包括核桃、板栗、榛子、银杏等。其特点是果实外面多具有坚硬的外壳,壳内有种子。果实部分多为种子,含水分少,耐储运,俗称干果。(5)柿枣类果树。柿枣类果树的果实的外果皮膜质,中果皮肉质。枣内果皮形成果核,食用部分是中果皮。柿内果皮肉质较韧,食用部分是中、内果皮。(1)柑果类果树。柑果类果树包括柑、橘、橙、柚等。果实由子房发育而成,外果皮革质,具有油胞,中果皮为白色海绵状,内果实发育成为多汁的囊瓣。食用部分为内果实。果实大多耐储运。(2)其他。其他类果树包括荔枝、龙眼、枇杷、杨梅、椰子、杧果、油梨等。(3)多年生草本果树。多年生草本果树包括香蕉、菠萝、草莓等。果树种类繁多,不仅形态结构差异较大,树体组成差别也较大。一般来讲,果树树体分为地上部和地下部两部分。地上部包括树干和树冠,地下部为根系,其地上部和地下部的交界处称为根颈,如图1-1所示。图1-1 果树树体结构(1)树干。树干是指树体的中轴,分为主干和中心干。主干是指地面到第一分枝之间的部分。中心干是指第一分枝到树顶之间的部分。有些树体有主干,但没有中心干。(2)树冠。主干以上由茎反复分枝构成骨架,由骨干枝、枝组和叶幕组成,总称为树冠。①骨干枝。树冠内比较粗大而起骨干作用的永久性枝称为骨干枝。由于骨干枝的组成、数量和配置不同,从而形成不同的树形结构,这种结构对果树受光量和光合效率影响很大,是决定果树能否高产的关键。骨干枝一般由中心干、主枝和侧枝三级枝条构成。着生在中心干上的永久性骨干枝称为主枝。着生在主枝上的永久性骨干枝称为侧枝。着生在中心干和各级骨干枝先端的一年生枝叫作延长枝。随着果树矮化密植技术的推广,骨干枝的级次呈明显减少的趋势。辅养枝是指临时性的枝。为了使果树在幼树时期能提早结果及利用辅养枝上的叶片制造养分,加速幼树生长发育,适当保留部分辅养枝是必需的,但成形后要根据其生存空间的变化进行体积缩减,改造为大型结果枝组或彻底疏除。②枝组,也叫结果枝组,是指着生在各级骨干枝上、有两个以上分枝的小枝群,是构成树冠、叶幕和结果的基本单位。枝组按其体积大小分为大型枝组、中型枝组和小型枝组;按其着生部位分为直立枝组、水平枝组、斜生枝组和下垂枝组。枝组在骨干枝上配置合理与否,直接影响到光能利用率的高低及产量与品质的高低。枝组和骨干枝是可以互相转化的,加强枝组营养,减少其结果量或不结果,就能进一步发育成为骨干枝;有些骨干枝通过增加结果量或体积缩减,也能改造成为枝组。③叶幕。叶片在树冠内的集中分布称为叶幕。叶幕的形状和体积应根据果树的树种、品种、树龄、树形和栽植密度不同而异。生产上常以叶面积指数(总叶面积/单位土地面积)来表示果树叶面积。一般果树的叶面积指数以3~5比较合适,叶面积指数低于3是果树叶面积不足的标志,但过高则表明叶幕过厚,会导致树冠内光照不良,无效光合叶面积区域过大,产生果树的产量和品质下降等负面影响。(1)根系的类型。根系按其来源分为实生根系、茎源根系和根蘖根系三类,如图1-2所示。①实生根系,是指由种子胚根发育形成的根系。其特点是主根发达,生命力强,入土较深,对外界环境适应能力强,但个体间差异较大。②茎源根系,是指由母体茎上产生不定根形成的根系。例如,葡萄、无花果、石榴等采用扦插、压条繁殖的果树。其特点是没有主根,侧根虽发达却入土较浅,寿命较短,但地上部个体间差异较小。图1-2 果树根系类型③根蘖根系,是指着生有根蘖苗的一段母体根系,与母体切离后成为独立个体而进一步发育成的根系。例如,山楂、石榴、枣等采用分株繁殖的果树。其生长发育特点与茎源根系相似。(2)根系的结构。果树的根系主要由骨干根和须根两类根群组成。一般来说,由种子的胚根向下垂直生长先形成主根。主根分生出的侧根,称为一级根,依次再分生出各级侧根,构成全部根系。主根和各级大侧根构成根系的骨架部分,称为骨干根。骨干根粗而长,色泽深,寿命长,主要起固定、输导和储藏作用。主根和各级侧根上着生的细根统称为须根。须根细而短,大多在营养期末死亡,未死亡的进一步发育成骨干根。须根起生长、输导、合成和吸收的作用。芽是叶、枝、花等的原始体,是果树度过不良环境的临时性器官。芽与种子特征相似,具有遗传性,在特定条件下也可发生遗传变异而产生新品种。枝条有以下几种:(1)依枝条的性质和功能分,枝条分为生长枝、结果枝和结果母枝。枝条上仅着生叶芽,萌发后只抽生枝叶不开花结果的枝称为生长枝(营养枝)。生长枝根据生长状况又可分为普通生长枝(生长中等,组织充实)、徒长枝(生长特别旺盛,枝长而粗,节间长,不充实)、纤弱枝(生长极弱,叶小而细)和叶丛枝(极短,小于0.5cm)四种。枝条上着生有纯花芽或当年抽生的带果新梢称为结果枝。依其年龄分为两类:一类是花芽着生在一年枝上,而果实着生在二年生枝上,如核果类果树;另一类是花和果实着生在当年抽生的新梢上的枝,如苹果、梨、葡萄、板栗、核桃、柿、山楂等。结果母枝是指着生有混合花芽的一年生枝。(2)依枝条的年龄分,枝条分为新梢、一年生枝、二年生枝和多年生枝。当年抽生的枝条,在当年落叶之前称为新梢。按其抽生的季节不同,又可分为春梢、夏梢、秋梢和冬梢。落叶果树春梢明显,夏梢、秋梢的情况表现各异。落叶后的新梢称为一年生枝。一年生枝在春季萌芽后称为二年生枝。两年以上的枝条称为多年生枝。(3)依枝条在树体上的着生姿势分,枝条分为直立枝、斜生枝、水平枝和下垂枝。树冠内枝条的生长势以直立枝最旺,斜生枝次之,水平枝再次之,下垂枝最弱,此现象称为垂直优势。 -
报告柑橘(砂糖橘)生物学特性
出版时间:2018中国是柑橘的重要原产地之一,柑橘资源丰富,优良品种繁多,有4000多年的栽培历史。经过长期栽培、选择,柑橘成了人类的珍贵果品。砂糖橘,因果实味甜如砂糖而得名,且果形美观,优质丰产,因而极具市场竞争力。尤其是无核砂糖橘,具有无核化渣的特点,如今,已经成为我国柑橘的更新换代品种,是柑橘类品种中的“佼佼者”,现广泛分布于广东省各市、县,并已发展到广西、湖南、四川、福建及江西等省、自治区。柑橘(砂糖橘)为常绿果树。其树势中庸偏旺,树姿开张,树冠呈圆头形。枝条纤细稠密,稍直立,萌芽率高,成枝力强。叶片呈椭圆形,深绿色。果实呈圆形或扁圆形,顶部有瘤状突起,果蒂端凹陷,果面平滑,有光泽,色泽橙黄,油胞小而密,囊壁薄,易剥离。果形指数为0.78,单果重62~86克,可食率71%,含可溶性固形物12.9%~13.8%,糖10.55克/100毫升、酸0.35g/100毫升。果肉爽脆,汁多,化渣,味清甜,吃后沁心润喉,耐人寻味。果实在11月中下旬至12月下旬成熟。该品种用枳壳作砧木,适应性广,品质优良,早结丰产,果实淳甜化渣,为柑橘类优良品种之一。图1-1 砂糖橘根系结构砂糖橘以枳壳作砧木,进行嫁接繁殖。其根系包括主根、侧根、须根和菌根等部分(图1-1)。(1)主根。由枳壳种子的胚根发育而来,向下垂直生长,构成了砂糖橘根系的主根。主根是根系的永久中坚骨架,具有支撑和固定树体,输送与贮藏养料的作用。(2)侧根。直接着生在主根上的较粗大的根系,称为侧根。砂糖橘的各级侧根和主根构成根系的骨架部分,为永久性的根,称为骨干根。侧根也具有固定树体,输送和贮藏养料的作用。(3)须根。着生在主根和侧根上的大量细小的根,称为须根。经过须根的生长,构成了强大的根系,增强了根系吸收和输送养料的作用。(4)菌根。栽培的砂糖橘是经嫁接繁殖的树体,须根发达。其根系一般不生根毛,而是靠与真菌共生所形成的菌根来吸收水分和养分。图1-2 砂糖橘的叶片砂糖橘的叶片为单生复叶,带有较短的叶柄,叶身与翼叶之间有节。叶片的大小和形态因发生时间、管理水平的不同而差异显著。春梢的叶片最小,平均长6.5厘米,宽3.2厘米,为狭长披针形或长椭圆形,先端较尖,这是区别夏、秋梢叶片的重要标志。其质地也比夏梢叶薄,而比秋梢叶厚。翼叶在三种枝梢中最窄,叶柄基部肥大。夏梢叶片在三种枝梢中最为肥大而厚,平均长7.3厘米,宽3.7厘米,叶色浓绿。秋梢叶片似夏梢,但稍小,平均长6.8厘米,宽3.4厘米,色较浅,质地在三种叶片中最薄(图1-2)。砂糖橘叶片的大小与厚薄,除与抽生季节有关外,还与树体营养状况密切相关。营养条件差,叶小而色浅;肥水管理好,叶片大而厚,色深而有光泽。叶片的多少、大小、厚度与色泽变化,是衡量生长势强弱与产量高低的主要标志。图1-3 砂糖橘的花砂糖橘的开花结果习性,包括花芽分化、开花与结果等方面的特性。1.花的形态结构砂糖橘的花为完全花,花形小,有浓香。发育正常的花,由花萼、花冠、雄蕊、雌蕊和花盘等部分构成(图1-3)。(1)花萼。萼片宿存,深绿色,呈杯状,紧贴在花冠基部。萼片先端突出,呈分裂状,有3~6裂,通常为5裂。(2)花冠。花冠有4~6个花瓣,通常为5瓣。花瓣较大而厚,乳白色,革质,成熟时反卷,表面角质化,有蜡状光泽。(3)雄蕊。雄蕊普遍为15~16枚。花丝通常3~6个,在基部联合。花药二室,花粉多,金黄色,带黏性。(4)雌蕊。雌蕊柱头扁圆形,乳白色。柱头上的表皮细胞分化为乳头状突起的单细胞毛茸,能分泌黏液,有利于受粉和花粉发芽。砂糖橘子房上位,但它不是直接着生在花托上,而是着生在花托上面的一个叫作蜜盘的特殊组织上。心室8~10个。大多数砂糖橘种子都是受外来花粉受精由珠心胚发育而成。图1-4 砂糖橘的花芽分化过程(5)花盘。子房的下部有花盘,花盘外部具有蜜腺。蜜腺能分泌蜜液,从开花时起,一直到花瓣脱落为止。2.花芽分化花芽形成的过程就是花芽分化。从叶芽转变为花芽,通过解剖识别起,直到花器官分化完全时为止,这段时期称花芽分化期。砂糖橘开始花芽分化,需要一定的营养物质作基础,故枝梢上的花芽分化,要待枝梢停止生长后才能开始。花芽分化又分为生理分化和形态分化。砂糖橘花芽的形态分化,分为以下6个阶段(图1-4)。(1)未分化期。生长点凸起,窄而尖,鳞片紧包。(2)开始分化期。生长点开始变平,横径扩大并伸长,鳞片开始松开。(3)花萼形成期。生长点平而宽,两旁有两个突起,成“凹”形,花萼原始体出现。图1-5 砂糖橘果实及剖面(4)花瓣形成期。花萼生长点内另形成两个小的突起,花瓣原始体出现。(5)雄蕊形成期。雄蕊原始体出现,或出现两列雄蕊。(6)雌蕊形成期。生长点中央突出伸长,即雌蕊原始体出现。一般认为,芽内生长点由尖变圆就是花芽开始形态分化,在此以前为生理分化,到雌蕊形成,为花芽分化结束。砂糖橘的果实为柑果,由子房受精发育而成果实。果实着生在结果枝上,由果柄连接,萼片紧贴果皮,果柄与萼片连接处称果蒂。果蒂由萼片、花盘和果柄所构成。果实上相对应的另一端有花柱凋落后,留有柱痕部分称果顶,果顶的两旁称上果肩,果蒂的两旁称下果肩。果蒂到下果肩部之间叫颈部,常有放射状沟纹或隆起。果实横切面称横径,果实纵切面称纵径,纵径与横径之比称果形指数(图1-5)。砂糖橘果实的外形有圆形、扁圆形等。 -
报告环境条件的影响及柑橘的生物学特性
出版时间:2018柑橘,主要起源于我国南方多雨森林地带,是亚热带常绿果树,性喜温暖湿润气候,不耐低温,较耐阴,根部好气好水,要求有机质含量丰富的肥沃土壤。光照,是柑橘叶片进行光合作用、制造有机养料不可缺少的条件。光照充足,有利于叶片的光合作用,形成的光合产物多,树势强健,花芽分化好,结果多,产量高,果实色泽鲜艳,而且含糖量高,果实品质优良。光照不足,树体营养差,不利于花芽分化,易滋生病虫害,果实着色差,产量低,品质下降。柑橘耐阴性较强,要求适度的光照,尤其是慢射光。日照过弱,对其生长发育不利。但光照过强,易形成日灼果,甚至伤害到树枝与树干。柑橘系亚热带常绿果树,对低温十分敏感,温度是限制柑橘分布和种植的主要因素。适宜柑橘生长的气温是年平均气温15~22℃,生长期不低于10℃的年活动积温为4500~8000℃。柑橘树体生长最适气温为23℃,其生理活动的有效温度为12.8~37℃,低于12.8℃或高于37℃都会使生理活动处于抑制状态而停止生长。根系生长要求的土温和地上部相似,但其生理活动的最适土温为17~26℃。冬季低温不低于-5℃才能安全越冬。夏季高温,影响柑橘的生长发育。当气温上升到35℃时,其光合作用就降低50%。温度过高,在水分缺乏时,易造成树体落叶,果实发生日灼。柑橘在花期和幼果期,遇到高温,尤其是在35℃以上的持续高温,加上天气干旱,会加剧花果的脱落,出现异常的落花落果现象。生产上应采取树盘覆盖,并结合灌溉,防止高温干旱造成的落果,对保果意义重大。昼夜温差大,有利于柑橘品质的提高。水分是柑橘生命活动中必不可少的物质,柑橘在生长发育过程中,需要大量的水分,如光合作用、呼吸作用和物质的吸收过程等,与水分关系密切。一般枝、叶的含水量为50%左右,果实为85%以上,茎尖和根尖的含水量可高达80%~90%。水分也是柑橘生长发育不可缺少的因素,当水分不足,生长停滞,从而引起枯萎、卷叶、落叶与落花落果,产量下降,并影响到果实品质。当土壤水分过多,造成积水,土壤中氧含量下降,根系进行无氧呼吸,无氧呼吸所积累的有毒物质,引起根系毒害,形成黑根烂根现象,根系生长缓慢,甚至停止生长,也会引起落叶落果。在年降水量1200~2000mm的地区,且降水比较均匀有利于柑橘的生长。在雨量不足或分布不均的地方,种植时要有水源和灌溉设施。空气湿度对柑橘生长也有很大的影响。例如,空气过于干燥或湿度过低,都不利于柑橘的生长结果,落花落果严重。空气湿度在80%左右时,有利于柑橘的生长。在雨水充足的地区或多雾地区,栽种柑橘,由于空气湿度较高,生产的果品,表现为果形大而均匀,果皮薄而光滑,色泽鲜艳,果汁多,风味佳,落果少,产量高而且稳定。柑橘园应保持适量的土壤水分,通常要求土壤田间持水量保持在60%~80%,这对于枝叶生长、果实发育、花芽分化及产量提高,都极为有利。土壤是柑橘生长的基础。确保土壤的肥沃、深厚和疏松,是柑橘栽培的关键。通常要求土层厚度不少于50cm,有机质丰富,土壤pH值在5.5~7.5,土壤以沙壤土、壤土和轻壤土最佳。含沙质多的土壤,柑橘产量低,果实小,果汁少,风味淡,品质差,而土壤黏重时,则果实偏酸,因此,在瘠薄地建园时,宜行深耕,翻压绿肥,增施有机肥料,提高土壤肥力,为柑橘的生长发育创造一个良好的土壤环境条件,保证根系健壮生长,从而达到高产、优质、高效的栽培目的。风是由空气流动而产生的气流。微风能促进空气流动,调节树叶周围的二氧化碳与氧气的浓度比,加强光合作用的进行,有利于风媒传粉,提高产量,减少病虫为害,并可改善生态环境条件,因而对柑橘生长有利。但是,强风却会带来不良的影响,轻则吹落花果,折枝碎叶,影响植株的正常生长;若风速大于10m/s时,则常使枝干折断,果实脱落,甚至拔树毁园。早春及春夏之交,大风,尤其是狂风暴雨,对柑橘造成很大的危害。若伴随冰雹发生,则受灾更重,影响柑橘的正常生产。此外,冬季大风常伴随着低温寒冷,低于-3℃的低温易出现冻害。因此,在有风害的地方种植柑橘时,必须营造防风林带。一般柑橘土壤有机质含量为1%左右。生产实践证明,柑橘园土壤有机质含量在3%~5%时有利于柑橘生长,这是土壤肥沃度的重要指标。因此,增施有机肥料是改良土壤的主要措施。柑橘寿命长,产量高,种类、品种繁多(脐橙、甜橙、金柑、椪柑、蜜柑、柚类、柠檬等)。柑橘喜冬暖夏凉,性不耐寒,要求年平均温度为16~22℃。喜漫射光,较耐阴。喜湿润环境(一般甜橙类对水敏感,不耐旱,柑和橘类次之,枳和酸橙耐旱性较强)。(1)特早熟品种。生长周期为120~150天。(2)早熟品种。生长周期为150~180天。(3)中熟品种。生长周期180~240天。(4)晚熟品种。生长周期240天以上。柑橘主要通过嫁接繁殖,砧木则以实生繁殖,实生砧木的主根和侧根构成根系的骨架。侧根上分生出大量的须根,须根是根系吸收营养水分及合成活性物质的活跃部分。须根有生长根和吸收根。每年吸收根多的柑橘树,生长健壮、产量稳定、树体营养状况好。柑橘的根系主要依靠菌根吸收水分和养分,丰富的有机质及土壤中充足的氧气有利于菌根的繁殖与活动。根系对柑橘的生长发育有重要的影响。柑橘根系分布依种类、品种、繁殖方法、树龄大小、土层深浅、地下水位的高低和中耕施肥、土壤含氧量等条件不同而有差异。如柚、酸橙、枳橙等根系分布较深,枳、橘等根系较浅;蜜柑、柚子为网状型横生根,栊柑为网状型竖生根。实生苗根系深,而压条、扦插苗根系较浅。实生砧木常有主根入土较深,空中压条苗木或扦插繁殖的砧木,无真正的主根入土较浅。根据根系在土壤中分布的方向不同,将根系分为水平根和垂直根。垂直根分布的范围决定了根系分布的深度;水平根分布的范围决定了根系分布的宽度。柑橘根系的分布,在土层深厚的情况下,根系发达,常具层性。通常有三层,以最上面第一层根系最发达,第二层和第三层根系依次减少。整个根系呈圆锥状,与树冠上部呈对称状态。当土温在12℃左右时,柑橘根系开始生长,通常是先长枝后长根。柑橘的根系在一年中通常是与枝梢交替生长。在土壤水分适宜的条件下根系在2—11月连续生长,根系生长是周期性的,一年内有4~5次生长高峰,并且在枝梢生长期内,根系生长量缓慢、总数降低。在枝梢生长停顿时,根系的生长量增加。因此,在土壤温度和含水量不受限制时,枝梢生长是控制根系生长强度的主要限制因子。在土壤含水量明显降低,如土壤水势达到-0.05Pa时根系的生长受到抑制。根系开始生长的土温为12~13℃,适宜生长的土温为23~31℃,土温37℃以上即停止生长。根系生长适宜的土壤湿度,一般为土壤田间最大持水量的60%~80%。土壤的透气性对根系生长极为重要,因根系的生长及吸收通过呼吸才可以取得能量。柑橘新根的生长要求土壤孔隙含氧量在8%以上;当土壤孔隙含氧量低于4%时,新根的生长缓慢;含氧量低于1.5%时,不但新根不可能正常生长,原有根系也将腐烂。因此,土壤积水或板结时,根系生长减弱,叶片黄化,产量降低,甚至不能正常开花结果。芽是柑橘树冠形成、恢复及生长发育与繁殖的重要器官。柑橘的芽是混合芽,既有花原始体也有叶原始体,先萌芽后开花。柑橘芽为裸露的复芽,每一叶腋内着生2~4个芽,分主芽和侧芽。通常只在枝梢上部2~3个叶腋中的主芽萌发新梢。如果抹除早发的芽,可刺激同一叶腋的副芽或附近节位的芽萌发,柑橘的“抹芽放梢”就是利用这一特性。柑橘的芽具有早熟性,一年可多次发生;同时,顶端优势不强,枝梢上部或顶端几个芽往往一齐萌发生长,因此易形成丛生枝。柑橘的叶芽有很强的潜伏能力,可长期不萌发而保持活力,这是柑橘容易更新复壮的生物学基础,可利用老枝或主干上潜伏芽进行树冠更新。根据新梢在生长结果中的作用,可将其分为营养枝与结果枝两类。营养枝指当年不开花结果的枝梢,包括发育枝、徒长枝、纤弱枝等。结果枝指由枝梢顶端一至数个芽萌发、着生花果的枝梢。柑橘结果枝分为叶结果枝和无叶结果枝两大类。萌发结果枝的枝条称结果母枝。柑橘一年内能抽3~4次新梢,有春梢、夏梢、秋梢、冬梢的区别。幼树一年多次抽梢,随树龄增大,二次和三次梢逐年减少,春、秋二次梢是良好的结果枝。枝梢是树冠的主要组成部分,结果枝与营养枝可以转化。春梢:指立春至立夏前抽生的枝梢。由于气温较低,枝梢生长缓慢,所以,春梢节间短,叶片较小且先端尖,叶色浓、叶脉不明显、翼叶小。发枝量大且抽生较整齐,在中亚热带以北地区是翌年最主要的结果母枝。春梢能继续抽生夏梢、秋梢,结果部位便上移到夏、秋梢部分,是一年中最重要的枝梢。夏梢:指立夏至立秋前抽生的枝梢。因处在高温多雨季节,枝条生长快,节间长,但夏梢抽生不整齐。叶色浓绿,肥大而厚,先端微尖、翼叶最大。幼树和生长势旺的树抽生夏梢多,常利用夏梢做骨干枝,使树冠迅速扩大。秋梢:指立秋至霜降前抽生的枝梢。此时气温虽高,但雨水较少,昼夜温差大,枝梢一般比夏梢充实,枝梢粗而节间较短,叶片较春梢大,较夏梢狭长先端较钝微凹。秋梢多在春梢上发生,即春秋二次梢,幼树则有一定数量的春、夏、秋三次梢。生长充实的早秋梢是翌年良好的结果母枝。幼树秋梢结果母枝较成年多,如5年生大红甜橙幼树,夏梢进行摘心,秋梢结果母枝多的达37%,而成年树一般秋梢结果母枝较少。在柑橘栽培的北缘地带要避免9月以后抽发秋梢。冬梢:指立冬后抽生的枝梢。在初冬气温较低的地区,冬梢无利用价值,要避免抽发。由于柑橘一年多次抽梢,据其在同一枝上连续抽发的次数,可以分为一次梢、二次梢、三次梢等。从上一年的枝上抽发一次的即为一次梢。从春梢上再抽夏梢或秋梢即为夏秋梢、春秋梢,都是二次梢。以此类推三次梢即春夏秋梢。在四川盆地,二次梢是甜橙和宽皮柑橘的重要结果母枝,春梢是主要结果母枝。柑橘新梢生长到一定长度以后,前端数节则停止生长,经1~2天,在靠近顶端1~4节处,产生离层而脱落,这种现象称为自剪。在下一个季节或翌年,断口下一个或几个叶腋的侧芽代替顶芽生长,形成假轴分枝的特性。由于假轴反复继续分枝,没有明显的主干,树冠的形状多为圆头形或近似圆头形。柑橘的分枝角度因品种和树势不同会有差异,像橘类直立性较强,而温州蜜柑则相对开张。柑橘枝梢生长也具有垂直优势。柑橘直立枝优势强,不利于花芽形成,横生枝和下垂枝有利于营养积累形成花芽。柑橘枝干忌阳光直射。强光暴晒枝干发生日灼。因此,柑橘的修剪不宜过重,要注意枝干的荫蔽。柑橘叶的形状是区别种和品种的重要形态标记。柑橘的叶仅有枳一个种为三出复叶,其余皆为单身复叶。叶身与翼叶之间有节,保留着复叶的痕迹。生产中利用的多数柑橘叶柄有翼叶。柚类的叶片最大,金柑的最小,甜橙与宽皮柑橘居中。同一品种又以夏梢叶片最大,春梢叶最小。叶是储藏养料的重要器官,丰富的碳水化合物都存积于叶片中,储藏的氮素占全树总氮量的40%以上。磷在叶中含量仅次于花,钾在叶中含量仅次于果。一般在正常落叶前养分回流树体,如提早落叶,氮素和其他营养成分损失很大。因此,栽培上要保护叶片的正常生长发育,防止过早落叶才能获得高产。叶片的颜色和矿质元素的含量反应树体的营养和健康状况。如缺铁叶肉失绿而叶脉仍为绿色为网纹状失绿,这是形态诊断的依据。柑橘类除枳为落叶性、枳橙为半落叶性之外,其余均为常绿性。实际上柑橘的叶片不像落叶果树那样在休眠之前集中落叶,而是一年中陆续发生新叶,陆续脱落老叶从而显示出常绿的特性。柑橘叶片的寿命为12~24个月或更长。1~2年生叶片是叶幕构成主体,叶片寿命的长短与树体的营养状况和栽培条件密切相关。低温、营养或水分不佳,根腐病或叶螨为害等伤害叶片的诸多因素均可导致叶片的异常脱落,严重的异常落叶导致树势衰弱,畸形花增多和花果脱落。通常认为丰产园叶面积指数以4~6为宜。(1)花芽分化。当树体具备成花条件时,营养枝上的某些叶芽分化成花芽。柑橘的花芽为混合芽,花芽萌发,抽出新梢,在新梢上开花结果。花芽分化的时期因种类、品种与产地气候条件的不同而异。亚热带地区的大多数柑橘种类是在冬季果实成熟前后开始形态分化,至翌年春季萌芽前花芽内各部发育完成。在同一植株上以春梢分化较早,夏梢及秋梢次之,有时秋梢分化期比春梢晚1个月左右,但可较快地完成整个分化过程。据在重庆地区观察,甜橙在10月大部分进入生理分化初期,2月中旬开始形态分化,3月中旬分化完毕。在同一植株上,各个时期可能重叠。如2月中旬,分化期、花萼期、花瓣期与雄蕊期4个时期同时存在。影响花芽分化的因素包括如下内容。①环境条件:在亚热带地区秋冬季2~4个月的冷凉气温是柑橘成花的主要诱导因素;在热带地区生长的柑橘,由于不存在低温条件,其成花的主因是干旱。广州地区,人们为了在春节观赏到金柑和四季橘的金黄果实,最常见的技术就是控水促花。②营养物质:在柑橘的栽培过程中有利于贮存糖类的措施,就有利于促进花芽分化。小年树积累的糖类多,分化花芽多,翌年为结果大年。栽培中常采用的环剥或环割、疏果等技术,能促进分化花芽,都与增加树体内糖类的积累有关。③生长调节剂:在花芽生理分化期喷布赤霉素,会抑制花芽分化。相反,喷布PP333、CCC等拮抗赤霉素的生长调节剂,能明显地促进花芽分化。柑橘的花为雌雄同花,多单生或丛生,为完全花,能自花授粉结实。有些柑橘品种能单性结实或自花授粉不亲和,例如,温州蜜柑的雄蕊常退化,花药缺乏花粉;南丰蜜橘的雌雄蕊也有退化现象,两者都能单性结实产生无核果实。(2)果实发育。柑橘是由子房发育而成的柑果,连接果柄的部分称为果蒂,近果蒂的一端称为果基,与果基相对的部分为果顶。果实由果皮、果肉和种子三部分组成。果皮由外果皮和中果皮组成,外果皮即油胞层,中果皮即白皮层。果肉由子房内壁发育而成,称囊瓣,内含汁胞或种子。囊瓣壁上的维管束称橘络。中心柱为果实中心的海绵柱状维管束。柑橘果实发育过程分3个时期:一是细胞分裂期,即自开花至第二次生理落果结束间的时期。在此期内果实各组织如果皮、砂囊细胞反复分裂以增大果实。二是细胞增大期,即自第二次生理落果结束起,至果实开始着色为止。这个时期果实各部分的细胞迅速增大,果实体积增长较快。此时期与夏梢生长存在养分竞争,同时,对水分的需求比较明显。三是果实成熟期,即从果实开始着色到完全成熟的过程。这一时期果实将发生一系列的明显变化如果皮着色、组织软化、可溶性固形物和糖增加,酸减少,果实风味逐渐变浓并表现出特有的外观和内质。
