首页 <
知识图谱:全部
-
报告Influence of the Rice Sowing Time on the Quantity of Laodelphax striatellus and the Occurence of Rice stripe virus
出版时间:2007水稻条纹叶枯病(Rice stripe virus,RSV)是一种以介体昆虫灰飞虱传播的病毒病。该病在我国最早发生于1964年。近年来由于耕作制度、气候条件、水稻品种等的变化,导致该病再次大范围流行,给水稻生产造成很大的损失。浙江省自2004年在湖州的部分晚粳稻上严重发生以来,其他地区相继发病,病情发展很快。浙江嘉兴市自2002年开始水稻条纹叶枯病零星发生,发病面积不断扩大,2004年发病面积0.33万hm2,2005年70%的乡镇发病,全市合计发病面积达1.26万hm2,占水稻种植面积的10%左右,2006年发病面积继续扩大,全市每个乡镇均有发病,发病面积达1.49万hm2,对水稻造成较大损失。目前水稻条纹叶枯病已成为浙江北部稻区影响水稻高产的主要病害之一。为此,我们从2005年起对水稻条纹叶枯病发病与产量损失的关系开展了研究,现将结果报道如下。选用目前浙江湖州、嘉兴等地种植面积较大的晚粳品种嘉991为供试品种,种子由嘉兴市农业科学院提供,试验在嘉兴市农业科学院试验田中进行。1.2.1 试验小区设置 选定3块播栽期一致、生长均匀的田块作为试验区,其中2块田作为单丛发病率测产,分别标记为A、B区;另1块田作为小区发病率测产,标记为C区。1.2.2 发病率调查 从水稻插秧后开始定期调查试验区的田间条纹叶枯病自然发病情况,直至病情稳定。病情稳定后在田间选定发病的单丛植株和小区。定点单丛试验区每个田块分别选500丛发病植株作为供试样本。调查每丛样本的病株数与总株数,计算其株发病率,对株发病率相同的样本,各测定指标计算平均值。然后比较不同株发病率下各个指标的变化趋势。并在选取发病样本的同时,每块田中分别选取20丛未发病的健康植株作为各自对照。小区发病率测产区在选定的田块上根据田间发病情况随机选取面积2~4m2的小区15个。其中13个为发病小区。统计每个发病小区内的病株数和总株数,计算每个小区发病株率;选定2个没有发病植株的小区作为对照区。1.2.3 水稻产量和经济性状考查 水稻成熟后,将选定的定点单丛和各小区样本分别收获,在实验室进行产量、秕谷率和千粒重等指标测定,定点单丛样本还进行有效穗数统计。小区样本产量统一折合成每平方米的产量,分析发病率与产量之间的关系。实验室测产结果:与对照相比,各发病样本有效穗数明显减少,且随着发病率的升高,穗数减少的比例也呈上升趋势,产量与有效穗数表现出相同的变化趋势。A、B两区的试验结果表明,单丛植株的株病率与减产率相当。其中A区的平均病株率与产量损失率之比为1:1.13,B区发病率与减产率比值为1:0.95,2区平均比值为1:1.04,株发病率与减产率接近1:1。病株率(%)有效穗数减穗率(%)产量(g)减产率(%)0.0010.20.0031.470.008.33101.9629.107.5312.50821.5731.300.5420.00460.7819.9036.7722.22641.1820.0036.4527.27911.7628.708.8028.575.546.0819.9036.7733.33641.1819.3338.5737.504.555.8811.7062.82表1 A区定点单丛条纹叶枯病发病率与水稻产量损失关系分析病株率(%)有效穗数减穗率(%)产量(g)减产率(%)38.46731.3729.107.5340.00641.1820.8033.9141.67641.1817.8043.4442.86460.7817.0045.9844.444.555.8813.6056.7850.00370.599.4569.9757.14370.5911.6063.1483.33190.201.9093.96续表1图1 A区发病率与有效穗数的关系图2 A区有效穗数和产量损失的关系在A区,全部发病样本的平均穗数为5.4个,对照有效穗数为10.2个。与对照相比,病丛有效穗数平均减少4.8个,减少率为47.30%。该区全部发病样本平均病株率为36.73%,产量损失率为41.64%。水稻条纹叶枯病发病率与减产率关系分析表明,平均株发病率每上升1%,产量损失就会增加1.13%。图3 A区发病率与产量损失的关系通过对水稻株发病率、减产率和有效穗数减少率之间的相关性分析,建立发病率(x)与有效穗数减少率(y)的回归方程为:y=1.0618x+6.9534,r=0.8446**;有效穗数减少率(x)与减产率(y)的回归方程为:y=1.0326x-7.8186,r=0.9322**;发病率(x)与减产率(y)的回归方程为y=1.1699x-3.1764,r=0.8400**。相关回归分析表明,有效穗数的减少与产量损失之间的关系最显著,呈正相关,相关系数r=0.9322**,说明引起产量损失的直接原因是有效穗数的减少。病株率(%)有效穗数减穗率(%)产量(g)减产率(%)0.009023.920.008.33811.1120.5014.3011.11722.2221.1011.7914.299023.302.5920.00455.569.0062.3722.227.516.6723.053.6425.00633.3316.6030.6027.279022.207.1928.57544.4416.2032.2733.33811.1123.352.3837.50544.4412.6047.3242.865.538.8920.4014.7250.003.561.118.8063.2155.56455.5613.3044.4057.14544.449.3061.1266.67366.678.9062.7971.43366.677.3069.4975.00277.784.3082.02100.0001000.00100.00表2 B区定点单丛条纹叶枯病发病率与水稻产量损失关系分析图4 B区发病率与产量损失的关系图5 B区发病率与有效穗数的关系B区,发病样本有效穗数平均为5.3个,比对照的平均有效穗数减少3.7个,减穗率达到41.11%。所有发病样本的平均株发病率为41.46%,产量损失率为39.57%。发病率与减产率比值为1:0.95。通过对该区的样本株发病率与减产率、减穗率间进行相关性分析,结果表明,发病率(x)与减产率(y)回归方程为:y=0.9912x-1.446,r=0.8451*;发病率(x)与穗数减少(y)之间回归方程为y=0.9482x+2.2316,r=0.8726*;穗数减少(x)与产量损失(y)之间的回归方程为y=1.0278x-3.121,r=0.9531*。回归分析表明,这几个因素之间存在相关性,其中穗数减少和产量损失之间关系最密切,相关达极显著水平。通过A、B两块田的试验发现,对于单丛发病植株而言,有效穗数的减少是造成产量损失的直接原因,减穗率与减产率之间关系密切。通过对小区样本各指标的田间调查和实验室测产结果,在13个供试发病小区中,所有发病小区单位面积产量都低于对照的产量,说明发病直接导致产量下降,而且从测产结果可以看出,大部分小区产量损失随发病株率上升逐渐加重。供试小区最高病株率为7.97%,减产率为7.08%。13个发病小区平均株发病率为4.79%,减产率为3.52%,即发病率每上升1%,相应减产率增加0.73%。图6 B区有效穗数与产量损失的关系通过对小区病株率和减产率的相关性分析,株发病率(x)与减产率(y)之间呈正相关关系,建立的回归方程为:y=0.9765x-1.2647,r=0.8665*。病株率(%)产量(g/m2)减少量(g)减产率(%)千粒重(g)秕谷率(%)0.0819.40.00.0023.8319.091.48818.21.20.1521.6521.442.75811.09.41.1524.0815.062.93799.220.22.4723.8220.183.17812.37.10.8724.0017.143.65782.736.74.4822.4820.744.38769.250.26.1324.3817.174.38815.53.90.4824.0217.475.74782.536.94.5023.0419.896.00811.57.90.9624.4415.616.33782.536.94.5022.1119.176.46770.548.95.9724.1221.277.08761.458.07.0823.2719.227.97762.257.26.9823.5020.15表3 定点小区条纹叶枯病发病率与水稻产量损失关系分析水稻条纹叶枯病是由介体昆虫灰飞虱传播的病毒病,在水稻秧苗期和分蘖初期最易感染条纹叶枯病毒引起水稻发病,植株一旦发病很难恢复,因此,为害损失极大。在本试验中,初步明确了田间株发病率与产量损失之间的关系,即随着株发病率的上升,产量损失率增大。水稻单丛发病率与产量损失的试验表明,水稻有效穗数减少是导致减产的主要原因,水稻株发病率与产量减少率基本相近。但从小区发病率与产量损失率的试验中可以看出,整个小区内的产量损失率略低于其株发病率,这可能与边际植株的补偿有关。该项试验研究结果,为水稻条纹叶枯病发生为害程度分级,制定水稻条纹叶枯病防治指标提供了科学依据。图7 C区发病率与产量损失的关系 -
报告Influence of the Rice Sowing Time on the Quantity of Laodelphax striatellus and the Occurence of Rice Stripe Virus
出版时间:2007水稻条纹叶枯病(RSV)是由灰飞虱(Laodelphax cstriatellus Fallen)传播的一种病毒病,严重发生时可造成大面积减产,甚至绝收。近几年来浙江省北部水稻条纹叶枯病发生面积逐年扩大,发病程度明显加重。目前,该病已成为嘉兴市水稻生产上的主要病害,并成为制约水稻生产的关键因素之一。水稻条纹叶枯病的发生程度与介体灰飞虱的虫量高低密切相关,而秧田期是条纹叶枯病感染的敏感期,秧田期灰飞虱虫量的高低与发病关系密切。为探明水稻播种迟早对灰飞虱发生量、条纹叶枯病发生流行的影响,我们于2006年、2007年对水稻不同播种时期灰飞虱发生量与条纹叶枯病发病程度的关系进行了研究,分析了水稻播种期、灰飞虱虫量及条纹叶枯病病情之间的相关性,现将结果报道如下:试验在嘉兴市农业科学院试验园区内进行。试验田前茬为水稻,土壤为青紫泥土,水肥条件良好。供试水稻品种为嘉991,种子由嘉兴市农业科学院提供。1.2.1 种子处理 每期播种前均对种子进行药剂处理,浸种时将供试水稻种子用2000倍液的402浸72h,然后将其从药液中取出,用流水冲洗以除去多余的药液,再置于37℃的恒温箱中催芽2天后播种。1.2.2 试验设计 2006年分3期播种,每隔15天播种一期,播种日期分别为:5月10日、5月25日和6月9日;2007年分4期播种,每隔10天播种一期,播种日期分别为5月10日、5月20日、5月30日和6月9日。每期播种时田间分3个小区,每小区面积3m2。各期秧田水肥等田间管理相同,除最后一期在25天秧龄移栽,其他各期均在30天秧龄时移栽。1.2.3 秧田灰飞虱虫量与条纹叶枯病发病率调查 各期播种后,从水稻出苗开始定期调查秧田灰飞虱虫量和条纹叶枯病发病情况。每期每小区调查3个点,每点0.11m2,记录每个样点上的灰飞虱虫量。将移栽前最后一次调查的灰飞虱虫量作为秧田虫量结果,并换算成每667m2虫量;同时统计每期调查的秧苗总数和发病株数,计算发病率。分析比较各播期处理区灰飞虱虫量与条纹叶枯病发病率的关系。1.2.4 大田发病率调查 各播期的秧苗在移栽后,每周调查一次田间条纹叶枯病发病率,直至不再出现病株为止。每次调查分别记录调查株数和发病株数,统计发病率,并将病情稳定时的发病率作为大田发病率,比较各期发病率差异。2006年调查结果表明,播期不同,田间灰飞虱虫量与条纹叶枯病发病率存在很大差异。5月10日、5月25日和6月9日3个时期播种的水稻秧田灰飞虱虫量分别为114.4万头/667m2、56.6万头/667m2和6.82万头/667m2;秧田发病率分别为3.13%、1.2%和0.23%,大田发病率分别为8.63%、4.19%和2.80%。比较各播种期处理区田间虫量和发病率关系,随着播种时间的推迟,灰飞虱虫量和条纹叶枯病发病率均明显下降。水稻播种期从5月10日推迟至5月25日,秧田灰飞虱每667m2虫量减少为57.8万头,秧田和大田发病率也分别下降了1.93%和4.44%;播期从5月25日推迟至6月9日,田间虫量继续减少,每667m2虫量减少为49.78万头,秧田和大田发病率下降为0.23%和2.80%,见表1。播种期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1053761683.13114.401054918.635/254992601.2056.601121474.196/95265120.236.821072302.80表1 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2006)从图1看出,秧田灰飞虱虫量与条纹叶枯病发病率存在密切关系,随着播种时间的推迟,田间虫量表现出近乎直线的下降趋势,随着虫量的减少,秧田发病率和大田发病率都随之下降。图1 水稻不同播种期田间灰飞虱虫量与条纹叶枯病发病率关系通过对各播期秧田灰飞虱虫量和条纹叶枯病发病率之间的相关回归分析,二者呈密切的相关性,秧田条纹叶枯病发病率(y)与灰飞虱虫量(x)的关系式为y=0.027x-0.088(r=0.989**);大田发病率(y)与灰飞虱虫量(x)的关系式为y=0.055x+1.959,r=0.969**。2007年的试验,田间灰飞虱虫量和条纹叶枯病发病率明显高于2006年。5月10日播种的处理区,秧田虫量高达253.6万头/667m2,秧田发病率达到6.1%,后期大田发病率高达21.47%;5月20日播种的,虫量稍有降低,为203.3万头/667m2,但仍维持很高水平,秧田和大田发病率分别为4.02%和17.66%,发病严重;5月30日播种的,田间虫量下降,为66.6万头/667m2,秧田和大田发病率也随之下降,发病率分别为0.97%和6.33%;6月9日播种,秧田虫量很低,为7.72万头/667m2,条纹叶枯病发病率也低,秧田和大田发病率分别为0.21%和2.12%,见表2。播期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1054633336.10253.60133228621.475/2053732164.02203.30128522717.665/305235510.9766.601311836.336/95655120.217.721367292.12表2 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2007)通过对秧田灰飞虱虫量与秧田发病率、大田发病率作图比较分析,播种期从5月10日推迟至5月20日,秧田灰飞虱虫量开始下降,减为50.3万头/667m2,减少19.83%;而播期从5月20日推迟至5月30日,每667m2虫量下降为136.7万头,减少67.24%;从5月20日推迟至6月9日播种,虫量继续大幅下降,减少为7.72万头/667m2。在播期逐渐推迟的过程中,随着虫量的大幅减少,条纹叶枯病发病率也表现出了明显的下降趋势,见图2。图2 水稻不同播种期田间灰飞虱虫量和条纹叶枯病发病率比较通过对2007年调查的灰飞虱虫量与秧田和大田发病率的相关性分析,两者呈密切的相关性,秧田发病率(y)与灰飞虱虫量(x)之间关系式为y=0.023x-0.294,r=0.987**;大田发病率(y)与灰飞虱虫量(x)关系式为y=0.080x+1.314,r=0.999**。综合分析2006年、2007年试验结果可以看出,5月上中旬播种,秧田期灰飞虱虫量保持在一个很高的水平,导致秧田和大田条纹叶枯病发生相当严重;而在5月下旬以后播种的,则田间虫量明显减少,随之条纹叶枯病发生也明显减轻。两年试验结果表明,水稻播种期对秧田灰飞虱虫量、条纹叶枯病发病率有明显影响。5月上中旬播种,田间灰飞虱虫量大,导致秧田和大田条纹叶枯病发病严重。水稻播期推迟至5月下旬至6月上旬播种,秧田灰飞虱数量明显减少,条纹叶枯病发病明显减轻。分析其原因,主要是由于播种早的田块,杂草及大、小麦田中的灰飞虱集中迁入水稻秧田,从而导致秧田虫口基数大。适当推迟播期,则避开了灰飞虱迁移和传毒高峰,发病减轻。通过两年试验和大田调查结果,认为在嘉兴地区将水稻播种期适当推迟至5月下旬或6月上旬,使一代灰飞虱成虫传毒高峰与水稻大田秧苗感病期错开,可有效控制条纹叶枯病的发生为害。 -
报告Research Advances on the Enterotoxin of the Bacillus cereus
出版时间:2007芽孢杆菌属(Bacillus spp.)是一类好氧或兼性厌氧、产生抗逆性内生孢子的杆状细菌,许多为腐生菌,主要分布于土壤、植物体表面及水体中,其在工业、农业、医学、军事和科学研究中有广泛的应用价值。在《Bergey氏鉴定细菌学手册》第8、第9版中,蜡样芽孢杆菌的分类地位为芽孢杆菌属的第I群,该群有22个种。根据营养型菌细胞的宽度分为两类,蜡样芽孢杆菌、蕈状芽孢杆菌、苏云金芽孢杆菌、炭疽芽孢杆菌和巨大芽孢杆菌属“大细孢菌种”。蜡样芽胞杆菌是一种杆状、产内生芽孢的革兰氏阳性细菌,由于蜡样芽孢杆菌自然界分布甚广,常存在于土壤、灰尘、腐草和空气中,极易在食品加工、运输、贮存、销售过程中,通过苍蝇、蟑螂等昆虫和不卫生的用具和手污染,通常被认为是一种条件致病菌,在临床上可导致脓肿、脑膜炎、骨髓炎、心内膜炎等报道,但最常见的是导致两种不同类型的食物中毒:腹泻型和呕吐型。关于B.c.引起非肠道感染及食物中毒的例子很多,从1898年起,就有B.c.造成泌尿系统感染及肠胃炎的记载,有些感染的病例甚至很严重,以致造成死亡。在微生物发展的早期,好氧芽孢杆菌就被怀疑可造成食物中毒,Lubenau1906年描述了发生在一家医院的严重的食物中毒事件,300名医务人员及病人用餐后出现急性肠胃炎,对剩余的食物进行检测,发现含有大量的好氧芽孢杆菌,该污染菌为B.c.。Seitz 1913 年从一例患肠炎与腹泻的病人分离出B.c.。Brekenfeld 分别于1926年及1959年报道了两起B.c.造成的食物中毒事件。1936~1942年,瑞典卫生部对367例食物中毒事件综合分析,证实117例是由B.c.引起,并且认识到被B.c.污染的食物,储藏温度不当时,可能会造成食物中毒,在1973年Bulyba等人报道了污染蜡样芽孢杆菌的乳制品引起食物中毒。由于Smith、Gorden 及其同事在芽孢杆菌分类学上的进展,Hauge 经过对4起食物中毒事件的调查,于1995年首次确认B.c.是一种引起食物中毒的致病菌。目前大部分国家对各类食品中的蜡样芽孢杆菌数量有所限定,多数情况下,引起食物中毒的食品中蜡样芽孢杆菌的数量在105~108 CFU/g,常因食用肉类、海鲜、乳品和蔬菜等食物引起,潜伏期一般为6~15h,一般持续24h;而致呕吐的毒素是该菌在食物中预先产生的,该毒素非常稳定,进入人体后在胃中与其受体5-HT3 结合,导致呕吐。呕吐型食物中毒的潜伏期一般为0.5~6h,一般限于富含淀粉质的食品,特别是炒饭和米饭。主要症状为恶心、呕吐,有时有腹泻、头晕、发烧和四肢无力等症状,引起这两种食物中毒的食品通常都是经过热加工处理的,但蜡样芽孢杆菌具有耐热的芽孢,能在食品加工及烹饪后残留下来,热处理诱发芽孢的萌发,在没有其他微生物与之竞争的条件下,大量生长繁殖,产生毒素并引起食品的腐败。蜡样芽孢杆菌产生的呕吐毒素(cereulide,1.2kD)是一种小的十二边形的热稳定性环状毒素,分子式为(D-O-Leu-D-Ala-L-O-Val-L-Val)3。其结构、性质和毒理与缬氨霉素很相似,是特异性的钾离子载体,能将K 转入线粒体内,破坏线粒体的氧化还原能力。该毒素非常稳定,目前的各种食品加工方法,包括灭菌,均无法使其失活(能耐受126℃ 90min),而且还耐强酸(pH 2.0)、耐蛋白酶水解。N.Agata等对多种食品中呕吐毒素的产量进行了检测,发现对B.cereus NC7401来说,在煮熟后的米饭中其产毒量很高,在富含淀粉质的食物中的产毒量也足以引起食物中毒;而在肉类、蛋品和密封的液体食品如牛奶和豆奶中虽可以检测到该毒素,但其含量较低。还发现在与醋、蛋黄酱及酱类一起煮的食物中,该菌株的生长和产毒都受到抑制,推测这可能是醋导致pH 降低的缘故。在12~15℃时该毒素的产量却明显高于30℃时的产量,而且该毒素的产生与芽孢的产生没有相关性。还有报道称该毒素只有在有氧条件下才能产生,所以缺氧条件如:充氮包装和真空包装能有效地防止该毒素的产生和积累。因为该毒素的分子量很小,无抗原性,这使其检测比较难,到目前为止尚缺乏一种快速可靠的检测方法。最常用是采用HEp-2 细胞进行细胞培养分析。近年来用分子生物学手段检测产毒菌株的报道也较多,如P F Horwood 等人根据NRPS基因的两个可变区的序列,针对产呕吐毒素的菌株设计了特异性的引物,进行PCR 以检测蜡样芽孢杆菌是否产毒,取得了良好的效果,该法灵敏度高,而且检测速度快。在呕吐食物中毒事件中分离的蜡样芽孢杆菌均产生呕吐毒素,而且有着共同的独特表型特征,对其基因进行分析发现它们同源性很高。B.c.所造成的腹泻型食物中毒的致病因子是肠毒素,目前至少已经发现4 种不同的肠毒素,包括2 个三联体肠毒素:溶血素BL和非溶血素Nhe;2个单一亚基肠毒素:细胞毒素K(cytK)、肠毒素T(bceT)。2.2.1 溶血素BL(HBL)Beecher1991年从B.c.菌株中分离提纯了一种具有活性的三亚基肠毒素,命名为溶血素BL(hemolysinBL),能够引起家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其由一个结合亚基B(37.5kD)、两个溶血亚基L1(38.2kD)及L2(43.5kD)组成,编码3个亚基的基因hblA、hblD、hblC经克隆、测序与分析,表明其在同一个mRNA中受一个操众子调控转录如图1。这些组分的物理化学性质非常相似,等电点(pI)为5.34,5.33和5.33。其中hblA编码结合亚基B,hblD、hblC分别编码溶血亚基L1及L2,hblB编码B’蛋白,hblC和hblD仅隔37bp个碱基,B、L1、L2蛋白分别有31、30、32个氨基酸的信号肽,hblD和hblA之间最少有100bp碱基,hblA和 hblB有381 bp的碱基隔开,B’蛋白与B蛋白开始的158个氨基酸非常相似,但其功能尚未清楚。Douglas J.Beecher等人利用等电聚焦电泳技术和快速蛋白液相层析技术证明单独成分的溶血素亚基并不会在血平板上产生溶血环,只有当3个亚基结合后,才会产生溶血环。图1 芽孢杆菌溶血素BL操纵子图谱2.2.2 非溶血素肠毒素(Nhe)非溶血素肠毒素(Nhe)由45、39和105kD的蛋白组成,其蛋白成分已被分离出来。1999年Granum等给出了nhe操纵子的序列,该操纵子有3个开放式阅读框,相应的3个基因分别是:nheA、nheB和nheC。前两个基因的产物分别为45kD和39kD 蛋白,而nheC 的产物尚未纯化出来,其功能未知。Nhe与Vero细胞相互作用的研究表明105kD蛋白是复合物的结合部位,而其他两个组分是无法单独结合到细胞上去。该105kD 蛋白是一种金属蛋白,具有分解明胶和胶原的活力。与hbl 基因不同,编码该毒素的基因位于质粒上。图2 芽孢杆菌非溶血素Nhe操纵子图谱溶血素BL(HBL)与非溶血素肠毒素(Nhe)同时受到PlcR的调控。2.2.3 肠毒素T(entertoxin T)肠毒素T为单一亚基的蛋白质,由 bceT基因编码,日本学者Agata对其基因克隆、测序和分析表明其由336个氨基酸组成。并认为其有细胞毒性,可导致家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其产物属于肠毒素蛋白。该毒素同溶血素BL无同源性,而且认为肠毒素T 不会导致食物中毒。2.2.4 细胞毒素K 早期在法国报道过食物中毒,其氨基酸序列显示它属于β-桶孔形成毒素,能在磷脂双分子层中形成直径至少为7A°的孔,该孔具有微弱的离子选择性,已证实它对人类肠道Caco-2上皮细胞具有毒性。PlcR是条件性人类病原菌B.cereus和共生病原菌B.thuringiensis细胞外毒性因子的一个多效调节子,它在细胞进入稳定期时诱导生长。受到PlcR调节的基因有:plcA编码一个专一性磷脂酰肌醇磷脂酶C(PI-PLC),Plc编码一个改良的磷脂酰胆碱磷脂酶 C(PC-PLC),nhe编码一个无溶血性的肠毒素,hbl编码一个溶血性的肠毒素 BL(HBL);以及推定为S-层类似表面蛋白的基因,以及一个推定为细胞外RNA酶。通过分析37.1kb的hbl,plcA和plcR周围的DNA序列,推定存在28个ORF。3条新基因推定受到PlcR 的调节并编码一个中性蛋白酶,subtilase家族丝氨酸蛋白酶(Sfp)以及一个推定的细胞壁水解酶(Cwh)得到确认。相应的sfp和cwh 基因定位于plcA的上游调节区域,能同时受到位于逆转录基因之间的PlcR结合位点的调控。Sylvie Salamitou等构建plcR基因缺失的突变菌株,该基因编码一个多效细胞外因子的调节子。幼虫期同时取食亲本菌株产生的106孢子亚致死浓度的Cry1C毒性导致70%死亡率,如果使用plcR突变体的孢子,则只有7%的死亡率。小鼠鼻腔灌入108的孢子,亲本菌株导致了100%的死亡率,而灌入相同数量的突变体孢子,死亡率大大降低,甚至没有死亡。应用营养体细胞代替孢子也可以达到相同的效果。导致死亡的原因未知,不可能是由于小鼠内细菌的实际增长所导致。由于受B.thuringiensis 过量突变体感染的小鼠产生的病变,说明溶血素参与其中,发生了作用。B.thuringiensis和B.cereus具细胞溶解毒性的特性。这种细胞溶解毒性的水平在plcR基因缺失的菌株中剧烈下降。表明 B.thuringiensis407菌株和B.cereusATCC14579的致病性受到PlcR的调控。由于蜡样芽孢杆菌及其芽孢广泛存在于周围的环境中,它极易污染食物而引起食物中毒,因此需要发展一种快速的检测方法来实现对致病性蜡样芽孢杆菌的检测,目前对该类蜡样芽孢杆菌的检测主要采用生化检测方法是一项费时费力的方法,需要长时间的选择性培养过程。现在有两种试剂盒可供选择,但由于价格昂贵且不太灵敏,有些致病菌不能够检测。王利国等人对实验室14株芽孢杆菌溶血素BL的检测结果表明,8株蜡样芽孢杆菌全部检测到溶血素BL的基因且产生溶血环,而其他的蜡样芽孢杆菌只检测到hblA基因以外的基因且不产生溶血环,表明只要检测到hblA基因,证明其为致病性菌株,所以通过设计hblA基因特异引物用PCR或通过血平板培养的方法是既经济又快速的检测方法。对其他毒素的检测目前主要是通过设计特异性引物来检测。所以对蜡样芽孢杆菌毒素的检测还需要进一步对其研究,确定最佳的检测方法。 -
报告Comparison of Viruliferous Rate of Rice Stripe Virus in the Small Brown Planthopper Laodelphax striatellus (Homoptera: Delphacidae) by Bioassay and Dot-immuno Binding Assay
出版时间:2007由RSV引起的水稻条纹叶枯病最早于1897年在日本关东发现,后在朝鲜、乌克兰均有发生。1962年我国在江苏、浙江首先发现RSV。目前该病已经在全国16个省、市、自治区发生,在云南、辽宁、北京、河南、山东、江苏、上海十分常见,特别是云南的保山、楚雄、昆明,北京的双桥,河南原阳,山东济宁及江苏北部的姜堰、洪泽等地,发生更为普遍严重。RSV由介体灰飞虱(Laodelphax striatellus Fallen)传播,灰飞虱的带毒虫量是水稻条纹叶枯病发生流行的主要影响因子。因此,建立一种快速灵敏检测灰飞虱带毒率的方法对于预测水稻条纹叶枯病的流行及病害防治十分必要。目前国内外用于检测灰飞虱带毒率的方法主要有ELISA、RT-PCR和Northern杂交等。但RT-PCR和Northern杂交成本高,不适于大批量检测样品。用斑点免疫结合(DIBA)法检测快速灵敏,简单易行,适用于大批量检测,并且适合于基层工作人员直接检测灰飞虱携带的病毒,从而为病害的流行预测提供依据。为此,我们利用斑点免疫结合(DIBA)检测RSV的方法对浙江部分市县的灰飞虱进行了水稻条纹叶枯病毒带毒率测定,并与采用生物法测定的灰飞虱传毒率进行了比较。现将研究结果报道如下:1.1.1 供试虫源、水稻品种 2006年供试虫源为采自浙江长兴和嘉兴两地的灰飞虱虫源,2007年供试虫源为浙江湖州和嘉兴海盐、桐乡、秀洲等县区提供的灰飞虱。供试水稻植株为苗龄15天的嘉991和秀水110两个水稻品种,由嘉兴市农业科学院提供。1.1.2 供试抗体 RSV抗体由江苏省农业科学院植物保护研究所和浙江大学共同研制,效价为1:5000~10000;酶标二抗为辣根过氧化物酶标记的羊抗鼠IgG,由Sigma公司生产(PN为A4416),效价为1:5000~10000。1.2.1 生物法测定灰飞虱传毒率 选用长度15cm、直径2cm、两端开口的玻璃管,首先用纱布罩住管口一端。将事先育好的供试水稻秧苗置于其中,每管一株,然后接入一头供试灰飞虱,再用纱布罩上玻璃管的另一端。将玻璃管竖直放入盛有清水的育苗盘中,保证秧苗根部朝下刚好浸入水中。对每个玻璃管做好标记,记录灰飞虱采集地,并对每株秧苗进行编号。2006年供试水稻秧苗数量和灰飞虱虫量均为257,其中长兴虫源104头供试虫全部接在嘉991品种上,嘉兴市新丰虫源中73头供试虫接于嘉991品种上,80头供试虫接于秀水110品种上。2007年测定了湖州和嘉兴市海盐、桐乡、秀洲共4个不同地区的灰飞虱传毒率。其中湖州和桐乡供试虫口为123头和132头,均接于嘉991秧苗上取食;海盐和秀洲供试虫口分别为159和167头,接于秀水110秧苗上取食。待该批灰飞虱在供试秧苗上取食24h后,将活的灰飞虱按编号回收冷冻备用。同时将已被取食的供试秧苗按编号移栽到观测圃中,观察并记录回收活虫对应的植株发病情况。1.2.2 斑点免疫结合(DIBA)法测定灰飞虱带毒率 将生物测定法中收回的供试灰飞虱单头置于100μl碳酸盐包被缓冲液(0.05mol/L,pH值9.6)中,用木质牙签捣碎,5000r/min离心3min后取上清液作为待测样品备用。在NC膜方格上,每格加入3μl待测样品后在室温下晾干;将干燥的膜正面朝上浸入5%封闭液中,置于37℃水浴锅中30min后,用PBST洗涤3次,浸入用封闭液稀释1000倍的单抗液中置于37℃水浴锅中1.5h;用PBST洗涤3次后,将膜浸入用封闭液稀释5000倍的辣根过氧化物酶标记的二抗中,置于37℃水浴锅中1.5h,洗涤后加入固体显色底物液,置于37℃水浴锅中30min(参见马占鸿等的方法)。随后晾干,统计NC膜上显色格的数量,计算所检测灰飞虱的带毒率。在生物法测定灰飞虱传毒率的试验中,被取食供试苗最早于接虫后13天初见发病症状,首先从水稻叶脉附近出现褪绿的斑点,并且斑点排成和叶脉平行的直线,随后病斑逐渐增多,连成互相平行的多条病斑,最后整个叶片发黄直至卷曲。35天后供试苗不再出现新的发病植株。2006年利用生物法测定传毒率时观察秧苗发病率发现,供试的257株秧苗中有11株发病,发病率为4.28%,其中长兴虫源取食的104株供试苗中有7株发病,即有7头灰飞虱传播病毒,传毒率为6.73%;嘉兴新丰虫源在嘉991和秀水110上取食后的发病植株分别为2株,灰飞虱在嘉991和秀水110上的传毒率分别为2.74%和2.50%。各地平均传毒率为3.99%。2007年利用生物法测定传毒率观察秧苗发病率时发现,所测4个地区供试的581株秧苗中共有25株发病,发病率为4.30%,其中湖州虫源的传毒率最高,为6.50%;海盐、桐乡和秀洲3个地区的灰飞虱传毒率差异不大,分别为3.77%、3.79%和3.59%,各地平均传毒率为4.41%。利用在生物测定法中回收的供试虫源样本,在实验室采用斑点免疫结合(DIBA)法测定灰飞虱带毒率,试验发现采用斑点免疫结合(DIBA)法测定的灰飞虱带毒率要高于在生物测定法中的传毒率(秧苗发病率)。2006年采用斑点免疫结合(DIBA)法测定的供试样本平均带毒率为6.15%,其中取自长兴的104头灰飞虱中,检测发现其中11头呈阳性反应,带毒率为10.58%。采自嘉兴的虫源在取食嘉991和秀水110两个品种中分别回收活虫73头和80头,各有3头在检测中发生呈阳性反应,带毒率分别为4.11%和3.75%。对生物学和快速检测法检测结果比较发现,采用斑点免疫结合(DIBA)法检测的带毒率高于生物法测定的传毒率,两者之比平均为1:0.65,幅度为1:0.64~0.67,见表1。虫源地带毒率测定(DIBA测定)发病率观察(生物法测定)供试虫数反应点带毒率(%)对应检测株反应株传毒率(%)传毒率/带毒率长兴(秀水110)1041110.5810476.730.64嘉兴(嘉991)7334.117322.740.67嘉兴(秀水110)8033.758022.500.67各地平均6.153.990.65表1 2006年生物法测定结果与DIBA法测定结果比较2007年采用斑点免疫结合(DIBA)法测定的供试样本平均带毒率为8.68%,其中湖州和嘉兴秀洲虫源的带毒率最高,分别达到了13.01%和11.38%;海盐和桐乡带毒率也较高,分别为5.03%和5.30%。对生物法和快速检测法测定结果比较发现,采用斑点免疫结合(DIBA)法检测的带毒率高于生物法测定的传毒率,两者之比平均为1:0.57,幅度为1:0.32~0.75,见表2。虫源地带毒率测定(DIBA测定)发病率观察(生物法测定)供试虫数反应点带毒率(%)对应检测株反应株传毒率(%)传毒率/带毒率湖州(嘉991)1231613.0112386.500.50海盐(秀水110)15985.0315963.770.75桐乡(嘉991)13275.3013253.790.72秀洲(秀水110)1671911.3816763.590.32各地平均8.684.410.57表2 2007年生物法测定结果与DIBA法测定结果比较通过对不同地区虫源在两个不同水稻品种上的试验发现,在浙江嘉兴和湖州采集的灰飞虱供试虫源中均有一定数量的灰飞虱携带病毒并有传毒能力。通过2006年、2007年两年利用斑点免疫结合法和生物法对灰飞虱带毒率和传毒率检测试验表明,灰飞虱带毒率高于传毒率,而且传毒率与带毒率之比相对较为稳定,两年平均为0.61,其中2006年灰飞虱传毒率与带毒率之比为0.65,2007年灰飞虱传毒率与带毒率的比值为0.51。以上结论初步明确了浙江嘉兴、湖州两地越冬代灰飞虱体内水稻条纹叶枯病带毒率与传毒率之间的关系,为两种检测方法数值转换和病害预测提供科学依据,但其他世代灰飞虱带毒率与传毒率之比是否与此一致尚有待进一步研究。 -
报告观赏海棠轮纹病病原的初步研究
出版时间:2007多数苹果属植物野生种或栽培种的花和果都具有观赏价值,在观赏园艺花卉树木中占有重要地位。20世纪以来,国外植物学家从我国引种并进行了大量杂交选育工作,培育了一系列具观赏用途的海棠品种,统称为观赏海棠(Malus spp.)。近年来,国内学者从国外引进的观赏海棠品种几十个,它们姿态各异,色彩斑斓,大量果实点缀枝头直到深冬,丰富了景观内容。但是,这些观赏海棠不少品种的植株枝干上往往产生大量轮纹状、马鞍形的瘤状突起,严重时,病斑相连,导致树皮粗糙,严重影响树势甚至引起枝干坏死。本研究对其病原进行了初步研究,以期为进一步研究其发生发展规律和防治技术奠定基础。观赏海棠(M.spp.)植株为山东省泰安市区栽植树种。在6月份从病树上采集病斑,显微切片观察其病原形态,并对其大小进行测定。按常规方法,进行分离培养并纯化。观察其培养性状和产孢特征。在6月底,将分离纯化的病原菌分别采用烫伤接种法、针刺接种法、喷雾接种法对健康的海棠枝条进行接种,定期观察其发病情况,确定其致病性。设置不同温度条件(5℃、15℃、25℃、28℃、37℃、40℃)、不同pH值条件(pH值4.0、5.0、6.0、7.0、8.0)、不同培养基条件(琼脂、蛋白胨、LB、BPY、PMA、PSA、PDA),用菌碟法分别测定不同条件下病原菌的菌丝生长状况;并在以上不同温度、不同pH值条件以及不同营养条件(0.5%、1%、2%葡萄糖,0.5%、1%、2%蔗糖)下,采用凹穴法测定病原菌孢子萌发情况。受害海棠枝干从皮孔开始发病,以皮孔为中心形成近圆形斑点,暗褐色,凹陷,边缘稍隆起;随后病斑中央突起,呈瘤状,质地坚硬,成为灰白色;病健交界处发生龟裂,病皮翘起,有点呈马鞍状,或呈轮纹状;病斑表面产生黑色的小粒点。严重时,病斑相连,病皮粗糙,导致部分枝干死亡。对病斑上黑色粒点切片镜检,发现:子座扁球形,其上分生孢子器1~3个,分生孢子器扁圆形或椭圆形,大小为(142~284)μm×(162~289)μm;内壁密生分生孢子梗,分生孢子梗棍棒状,单胞,顶端着生分生孢子;分生孢子单细胞,无色,纺锤形或长椭圆形,一端钝圆,一端截平,大小为(20.1~32.9)μm×(7.6~9.8)μm。从发病枝干上分离培养获得病原菌纯培养,菌落初灰白色,逐渐呈灰黑色,气生菌丝浓密,呈絮状隆起,后期菌落中产生灰黑色子座。对病原菌进行致病性测定,通过不同方法对海棠进行接种试验,发现烫伤接种法和针刺接种法处理的海棠发病率为100%,而喷雾接种法处理的海棠则几乎没有发病。其症状表现为,伤口先凹陷变黑,后形成褐色小突起。同时发现,在山东省泰安市,在6月底接种,该病原菌侵染的潜伏期为7~10天。经鉴定,认为该病害的病原为Botryosphaeria berengeriana,病害为观赏海棠轮纹病。25~28℃、pH值4.0~7.0、BPY和PDA培养基等条件,最适合菌丝生长,菌落生长快,且菌丝白色浓密呈絮状隆起,易产生黑色分生孢子器。28℃、pH值7.0、1%蔗糖条件最适合病原菌分生孢子萌发,12h观察孢子萌发率能达到80%左右,孢子萌发芽管较短、粗,多数两端萌发。观赏海棠轮纹病发病严重,目前对其病原鉴定方面未见报道。本研究初步确定其病原为Botryosphaeria berengeriana,并测定了其部分生物学特性。结果也显示该病原菌从形态和生物学特性上与引起苹果轮纹病的病原菌[1]和梨轮纹病[2,3]的病原菌有一定的差异。该菌的寄主范围、对苹果属、梨属植物的致病性、ITS的序列测定等工作正在开展中,这些信息对于该菌分类地位的进一步确定有重要价值。 -
报告Study on the Differentiation in Pathogenicity of Different Isolates of Botrytis cinerea Pers to Tomato
出版时间:2007由灰葡萄孢(Botrytis cinerea Pers.)侵染引起的番茄灰霉病是当前番茄生产上重要病害,尤以设施栽培条件下发生较重,一般引起产量损失20%~30%。灰葡萄孢的寄主很广,已经报道过的寄主至少有235种,能为害多种粮食作物、经济作物、蔬菜、果树和观赏植物[1]。随着高效农业的发展,温室中蔬菜、花卉、果树轮作、间作日渐频繁,使得同种作物间、不同种作物间交互感染成为可能[2~3]。为了明确来自其他寄主植物的灰葡萄孢菌株能否侵染番茄,不同寄主来源的菌株对番茄的致病力是否存在差异,从而为生产上包括番茄灰霉病在内的灰葡萄孢所致植物灰霉病的综合治理提供参考依据,作者对不同寄主来源的灰霉菌株对番茄的致病力及其分化进行了研究。2005~2007年,从合肥市、蚌埠市、长丰县、和县等地区的番茄、辣椒、草莓、葡萄等发病寄主上分离鉴定获得18个灰葡萄孢菌株,采用菌丝块创伤接种法,分别测定了上述不同寄主来源的灰葡萄孢菌对番茄果实和叶片的致病力。结果表明,所有供试菌株接种番茄果实后均可引起发病,但不同菌株所致病斑的平均直径有显著差异,提示灰葡萄孢菌株间对番茄果实的致病力存在明显分化。按照在番茄果实上所致病斑的平均直径大小可将供试菌株划分为致病力较强、致病力中等和致病力较弱3种类型。总体来说,来自番茄的菌株对番茄果实的致病力较强,来自草莓、葡萄和辣椒的菌株对番茄果实的致病力较弱,但来自相同寄主的菌株间致病力也存在差异,菌株致病力差异与菌株地域来源无明显相关。供试灰葡萄孢菌株接种番茄叶片后,除CF1外,均可引起番茄叶片发病,但不同菌株所致番茄叶片病斑的平均直径也有显著差异,但菌株致病力差异与菌株的寄主和地域来源无显著相关。本文关于灰葡萄孢不同菌株致病力存在差异的研究结果与Kersises[4]的报道一致。Lorenz[5]和Kersises[4]认为灰葡萄孢不同菌株致病力分化的原因可能与异核现象有关。作者也曾采用细胞核染色法观察到部分灰葡萄孢菌株菌丝细胞内存在多核现象,但这种多核现象与异核现象乃至致病力分化之间的关系尚不清楚。因此,有关灰葡萄孢不同菌株致病力分化的机制尚需进一步研究。灰葡萄孢菌株对番茄果实和叶片的致病力测定结果比较表明,除FQ外,其余各供试菌株对番茄果实所致病斑直径均比叶片病斑直径大,但各供试菌株接种番茄果实和叶片后所致病斑直径之间没有明显的相关性。作者认为,采用菌丝块创伤接种法测定灰葡萄孢菌对番茄的致病力时,以接种果实为宜;由于不同菌株的致病力差异较大,所以在番茄抗病性测定时,宜选用强菌株或混合菌株。本研究结果指出,来自辣椒、草莓、葡萄等其他寄主植物的灰葡萄孢菌株能够侵染番茄果实和叶片,意味着上述植物上的灰霉病菌(灰葡萄孢)可以成为番茄灰霉病的侵染来源,建议在番茄灰霉病的综合治理中应予以注意。 -
报告Identification of Pathogens Causing Leaf Spot Disease on Zingiber officinale Rosc*
出版时间:2007姜(Zingiber officinale Rosc.)为姜科(Zingiberaceae)、姜属(Zingiber),多年生草本植物,是一种既能作为调味蔬菜,又能入药的重要的经济作物。山东省是我国姜的主要产区,近年来,由于多数品种长期无性繁殖及连年重茬种植,出现了一种严重影响姜产量和质量的病害,该病害主要为害姜叶部,发病初期呈现水浸状小斑点,随后变成黄色,逐渐扩大成为椭圆形、近圆形或不规则形的白色病斑,边缘则为黄褐色,病斑继而彼此融合,导致整叶干枯;在老熟病斑上可见大量黑色小颗粒。目前国内外有关文献报道认为,引起姜叶斑病的病原菌为姜叶点霉(Phyllosticta zingiberiHori)[1],白金铠[2]在《中国真菌志》中描述过Phyllosticta zingiberi的形态特征,而Mathur[3]曾提到Phyllosticta zingiberi T.S.Ramakr.为Phoma zingiberi Khune的基原异名,但关于Phoma zingiberi的产孢细胞等形态特征及ITS序列分析未见报道。由于茎点霉属(Phoma)真菌与叶点霉属(Phyllosticta)真菌有诸多类似的地方,如分生孢子器和分生孢子的形态、颜色、大小等。因此,Phoma和Phyllostica两属间的分类及属下种的分类问题一直存在着许多争议。Saccardo[4]认为,两者的主要区别在于寄生部位的不同,即Phoma寄生于植物叶以外的部位,而Phyllosticta寄生于植物叶片上,这种主观的划分受到许多真菌学家的批评。由于产孢方式是Phyllosticta和Phoma两属共同具有的稳定特征。因此,目前已作为被多数学者所接受的分类标准。对于植物病原真菌,传统的分类方法多以真菌的形态特征为依据,而近年来分子生物学手段的应用为真菌的分类鉴定提供了更多遗传信息方面的依据。核糖体基因内转录间隔区(Internal Transcribed Spacer,简称ITS)在真菌种间存在丰富的差异,已广泛应用于真菌亲缘关系较近分类群的系统发育研究。目前,对于形态学上难以区分的Phoma和Phyllosticta两属真菌,尚未开展ITS序列的比对研究,其ITS序列资源也有待进一步丰富。本文发现的病害症状与已报道的由Phyllosticta zingiberi引起的姜叶斑病症状基本一致。为了正确鉴定分离到的姜叶斑病的致病菌,本文利用传统的形态学观察并结合分子手段对该病原菌的分类归属进行了研究。姜病叶采自山东省生姜主要产地莱芜市姜田。1.2.1 病菌的培养及光镜观察 将发病叶片表面消毒后置于PDA培养基上培养4~5天,从菌落边缘取直径为5mm的菌落圆片进行纯培养,在Olympus光学显微镜下观察并描述分生孢子器、分生孢子、产孢细胞形态特征,用显微测量尺测定分生孢子器及分生孢子的大小。1.2.2 透射电镜样品制备与观察 将新鲜的感病叶片切成小于0.5cm×0.5cm的材料,固定于3%戊二醛中,再用1%锇酸二次固定,乙醇梯度脱水、Epon812树脂浸透、包埋、超薄切片,经醋酸双氧铀、柠檬酸铅双重染色,JEM-1200EX透射电镜观察、拍照。将配制好的孢子悬浮液(低倍镜下每视野约30个孢子)喷洒在4~5叶期健康的姜新叶上,接种后套袋保湿48h。定期观察并记录发病情况和症状特点。取病斑上产生的子实体镜检,并从发病组织中再次分离致病菌,观察并描述病原菌形态特征。菌丝染色体DNA的提取参照何月秋[5]的方法并做适当的修改,质粒提取采用碱裂解法,大肠杆菌Escherichia coli DH5α感受态制备、连接、转化等参考《分子克隆实验指南》(第三版)[6]。以总DNA为模板,以通用引物ITS1:5′-TCC GTA GGT GAA CCT GCG G-3′和ITS2:5′-GCT GCG TTC ATC GAT GC-3′,ITS3:5′-GCA TCG ATG AAG AAC GCA GC-3′和ITS4:5′-TCC TCC GCT TAT TGA TAT GC-3′分别扩增ITSI和ITSII片段。PCR反应程序如下:94 ℃预变性3 min,94 ℃变性1min,50 ℃退火1min,72 ℃延伸30s,30个循环,最后72℃延伸10min。PCR产物连接到pMD18-T(大连宝生物工程有限公司),转化E.coli DH5α,经鉴定的重组质粒送上海英俊生物技术公司测序。该病原菌在PDA培养基上菌丝初为白色,后变为褐色,25 ℃培养20~25天后,逐渐出现分生孢子器。光镜观察分生孢子器为球形、扁球形,暗褐色,直径55~135μm,高75~130μm,器壁褐色,由3~5层细胞组成,壁厚9~13μm,内壁形成产孢细胞,上着生分生孢子;分生孢子椭圆形、卵形,无色,单胞,两端各含有一油球,5~8.5μm×2~4.5μm,其形态与报道的Phyllosticta zingiberi基本一致(Figure 1),但光镜和透射电镜观察其产孢方式为内壁芽生瓶梗式(eb-ph)(Figure 2)。Figure 1 Picnidium(Micro)(×400)Figure 2 Morphology of conidiogenous cell(Micro)(×1 000)用分生孢子悬浮液接种姜嫩叶后,发病症状和病原菌形态特征与自然发病株相同。取病健交界处组织再分离,其培养性状和形态特征与第1次分离结果一致。根据柯赫氏法则,接种菌即为姜叶斑病的致病菌。2.3.1 菌丝染色体DNA的提取与核糖体DNA ITS的PCR扩增 用改进的CTAB法提取该菌染色体DNA,琼脂糖凝胶电泳检测。采用真菌核糖体基因ITS区域通用引物ITS1和ITS2、ITS3和ITS4分别扩增了茎点霉的ITSI和ITSII,1%琼脂糖凝胶电泳检测结果均为单一条带,大小分别为224bp和343bp。2.3.2 核糖体DNA ITS序列分析 将克隆到的ITSI和ITSII测序后进行拼接,确定了ITS片段的核苷酸序列(Genbank登录号为EF408240)。用DNAStar软件对所得序列进行编辑和排序比对,得出该病原菌ITS序列与叶点霉的同源性最高为58.7%,与茎点霉的同源性最高为95.6%。利用MEGA3.1软件分析核苷酸组成并计算种间遗传距离,结果显示该病原菌与茎点霉亲缘性更大。以往报道认为,引起姜叶斑病的病原为Phyllosticta zingiberi Hori,Hara记载并描述了Phyllosticta zingiberi Hori的形态特征:叶上病斑圆形、不规则形,中央灰白色,直径1~3mm;分生孢子器球形、扁球形,暗褐色,直径50~120μm,分生孢子椭圆形、卵形,单胞,无色,两端各含有一油球,5~9μm×2.5~3.5μm。后人Sawada[7]对中国台湾省姜叶上的Phyllosticta zingiberi Hori、戚佩坤等[8]对广东姜叶上的Phyllosticta zingiberi Hori以及本研究对分离菌的描述与上述基本一致,应视为同种。Ramakrishnan[9]描述的印度姜叶上的Phyllosticta zingiberi T.S.Ramakr.的形态特征为,叶上病斑卵圆形,中央灰白色,可形成穿孔,9~10μm×3~4μm;分生孢子器球形,78~150μm,分生孢子无色,椭圆形,3.7~7.4μm×1.2~2.5μm,两端各含有一油球,此形态与Phyllosticta zingiberi Hori基本一致。因此,Phyllosticta zingiberi T.S.Ramakr.应视为Phyllosticta zingiberi Hori的同物异名。Sutton[10]通过对Phoma和Phyllosticta产孢方式的研究,认为Phoma是内壁芽生瓶梗式(eb-ph),Phyllosticta是全壁芽生单生式(hb-sol),这与Dictionary of the fungi第九版[11]对两属产孢方式的描述一致,而吕国忠电镜观察结果显示,两属的产孢方式相同,均为全壁芽生环痕式(hn-ann),同样,王琪[12]对龙眼叶点霉(Phyllosticta dimocarpi)研究结果也是全壁芽生环痕式(hn-ann),周永力[13]则认为Phyllosticta为内壁芽生瓶梗式(eb-ph)。因此,有关两属的产孢方式目前尚有争论。本研究对该病原菌的光镜和电镜观察结果表明,其产孢方式为内壁芽生瓶梗式(eb-ph),符合Kendrick等对Phoma产孢细胞特征的描述,ITS序列分析结果发现,该菌与Phoma ITS序列同源性高达95.6%,远远高于与Phyllosticta ITS序列的同源性(58.7%)。本研究结果支持Mathur的观点,认为Phyllosticta zingiberi T.S.Ramakr.为Phoma zingiberi Khune的基原异名。由于Phyllosticta zingiberi T.S.Ramakr.是Phyllosticta zingiberi Hori的同物异名。因此,引起姜叶斑病的病原菌应为姜茎点霉(Phoma zingiberi Hori)。致谢:山东农业大学张天宇教授、张修国教授对本研究提供了热情帮助,并对论文修改提出了建议。 -
报告基因Rgls位点的精细定位及分子标记可靠性验证
出版时间:2019高分辨熔解曲线 (High Resolution Melting,HRM) 分析技术是近年来国际上兴起的一种最新的应用于基因突变检测和 SNP 分析的方法。因为所用的荧光染料只能嵌入并结合到双链 DNA 上,因此利用实时 PCR 技术,就能通过实时检测双链DNA 熔解过程中荧光信号值的变化,将 PCR 产物中存在的差异以不同形状熔解曲线的方式直观地展示出来,并且可以借助于专业的分析软件对测试群体实现基于不同形状熔解曲线的基因分型或归类 (殷豪等,2011)。高分辨熔解 (HRM) 曲线分析技术具有三个突出的优势:一是高通量、高灵敏度、高特异性、低成本且不受检测位点的限制;二是操作简单、快捷、节省时间成本;三是闭管操作,无污染且 DNA 不受损伤,熔解分析后还可以进行凝胶电泳或测序分析。在 LightCycler ? 480分析仪上一次可以完成96个或348个样本的分析,从反应开始到数据生成仅需要90~120 min。目前HRM技术在果树的种质鉴别和基因分型研究中已有应用。吴波等 (2012) 引入高分辨率熔解曲线分型技术对柑橘进行SNP 分型;Ganopoulos等 (2013) 利用 HRM 技术对9个甜樱桃基因上的 SNP 位点进行分析,成功的实现了对21 个甜樱桃品种的鉴别,准确率达到 99.9%;Distefano 等 (2013) 第一次将HRM技术应用于对柑橘品种 SNP 及 InDel的检测,并利用21 个 SNP标记实现了对柑橘不同品种的区别。分子标记辅助选择育种 (marker assisted selection,MAS) 作为一种高效的现代分子育种技术,已被广泛应用于作物品种选育和遗传改良。它是利用与目标基因紧密连锁的分子标记,来鉴定不同个体的基因型,从而进行辅助选择育种。与通过表现型间接对基因型进行选择的传统育种方法相比,MAS具有更大的信息量,能有效结合基因型与表型鉴定结果,更加高效和准确,避免选育过程中的盲目性和不可预测性,能够将育种时间从传统的十几年缩短到几年时间,从而显著提高育种效率。分子标记对目标性状鉴定的准确性是影响分子标记辅助选择效率的一个重要条件。本试验利用HRM分析技术对上一章节所开发的SNP 和InDel标记进行筛选和验证,以获得与抗炭疽菌叶枯病基因 R gls位点紧密连锁的SNP 及InDel标记,对抗病基因进行精细定位,缩小抗性基因位点的区域范围,为基因克隆提供数据。同时利用筛选出的4 个与 R gls基因位点紧密连锁的分子标记对50 个苹果栽培品种和品系进行准确性鉴定,以验证分子标记的可靠性。选择青岛农业大学苹果试验基地 (山东省胶州市) 2009 年种植的,经过人工离体接种鉴定的 ‘金冠’ב富士’ 的F1 杂交群体207株实生树为材料用于验证 SNP、InDel标记及进行抗炭疽菌叶枯病基因的精细定位。所用群体与第三章SSR标记的开发与遗传定位为同一群体。选择该试验基地栽培的 50 个田间栽培品种和品系做为试材,经人工离体接种鉴定并提取DNA,用于分子标记准确性的验证。同第三章。用于引物设计的SNP 和 InDel位点来源于第四章中所筛选出的位于第15条染色体上3.9~4.9 Mb候选区域的18 个 SNP 位点和30 个InDel位点。从网站 https://www.rosaceae.org/gb/gbrowse/malus_x_domestica/下载位于SNP 和InDel位点上游150 bp和下游150 bp距离内的contig 序列用于引物设计。引物设计的主要参数为:产物大小60~150 bp;引物退火温度 (Tm) 在 55~65℃,且上、下游引物 Tm相差不大于 2℃;引物 GC (%) 含量为 45%~55%,引物大小在60~160 bp。引物序列 (附表 5-1)。所有引物由生工生物工程 (上海) 股份有限公司合成。PCR扩增和高通量熔解曲线分析在 LightCycler ? 480Ⅱ荧光定量PCR 仪 (Roche) 上进行。反应试剂来自 LightCycler ? 480 High Reso-lution Melting Master试剂盒。反应体系为15 μl,内含10 ng/μl的基因组 DNA 1.0 μl,1×Master Mix 7.5 μl,2.0 mmol/L MgCl2 1.5 μl,左右引物为 0.2 μmol/L各0.5 μl。PCR扩增程序为95℃预变性10min,然后按95℃变性10min,55℃退火15s,72℃延伸10s的程序进行45个循环。在PCR循环结束后,立即对扩增产物进行HRM检测,程序为:95℃1min,40℃1min,65℃1s,在65℃升温至95℃的过程中,以25次/℃的频率收集荧光信息,最后降温至40℃。高分辨率熔解曲线分析用LightCycler?480的Gene Scanning软件(1.5version)进行。用18对 SNP 及30对InDel引物在亲本和抗感基因池中筛选,将出现不同分型的引物在分离群体上进行验证,以确定该标记是否与目的基因连锁。将筛选的多态性标记在重组个体上的基因型表现与重组个体的抗病表型进行统一分析,对抗炭疽菌叶枯病基因 R gls位点进行精细定位,缩小抗性基因位点的范围。为后续的候选基因筛选及图位克隆提供准确的信息。将进一步缩小的R gls位点区域内的基因进行统计并进行同源比对和GO功能富集分析,以筛选该区段内可能与抗病相关的候选基因。SSR标记的PCR产物利用3.5%的琼脂糖凝胶电泳进行标记基因型鉴定。SNP 和InDel标记利用HRM技术进行基因分型鉴定。通过对设计的引物进行 BSA 筛选,获得了与 Rgls基因位点连锁的6个SNP 及5个 InDel标记,分别为 SNP3955、SNP4236、SNP4257、SNP4299、SNP4336、SNP4432 和InDel4199、InDel4227、InDel4254、InDel4305、InDel4334。在6个SNP 位点中有A/G、G/A、T/C和C/G四种变换形式,其中发生A/G转换的占50.0%,发生G/A转换,T/C转换,C/G颠换的各占16.7%(表5-1)。引物名称引物序列序列长度参考碱基突变碱基位置SNP3955R:CCCTTAAAAGCCATGGAAGAGF:GTTCTGCATAAAAACCTCGCA133AGchr15∶3,955,630-3,955,763SNP4236R:GCTTATCATAAAAAGCAAGACCACF:ATCATATAATTGTGTAATTTAGTAGAACA114AGchr15∶4,236,220-4,236,353SNP4257R:GGAGTCATAAGCCACAACGAGF:TCAGCTTTGAAGCATCCAATT145GAchr15∶4,257,141-4,257,286SNP4299R:GGTTATACATAGAGGCACTTAGAGCF:GCACAAAACTTAGATCAAAGATGAG135TCchr15∶4,299,179-4,299,314表5-1 SNP、InDel引物筛选引物名称引物序列序列长度参考碱基突变碱基位置SNP4336R:AGTTCGTTCTTTTCCGTTGCTF:GCGGTCCTGATTCAGGTACAG133CGchr15∶4,336,382-4,336,515SNP4432R:CGAGGAGCAAACGATAGTCAGF:ATTGGTCTCCGAATTAGAAGTCC137AGchr15∶4,432,529-4,432,666indel4199R:ATTGTGAAACCTTGATTGGGF:GAGATTATCCTTATTTTGTGGG156AAAGchr15∶4,198,916-4,199,072indel4227R:AGCGTTGCTATGCTTCTAATGF:AAGATGGAAATGGTATGTGAT81TTCchr15∶4,227,569-4,227,650indel4254R:ATAAAGTCACTTCTAGCACAAATAF:CGAAAAACGCTTTACTTAGG119GGCchr15∶4,254,896-4,255,015indel4305R:GTAAACTCATTAAATTATGCTTGF:TGCTTTACTCCGATTCTTC134CCCAchr15∶4,305,342-4,305,476indel4334R:ATACTATGAGGTGAAGGATTTAAF:GTATCTTCTACATTATCTTTCGTG115TTAchr15∶4,334,597-4,334,712表5-1 SNP、InDel引物筛选(续)-1将获得的11个标记在207 株 F1 群体上检验其与抗炭疽菌叶枯病基因的连锁情况,结果表明,这11 个标记的扩增子熔解曲线形状明显不同,可据此区分抗病型和感病型植株 (附图5-1)。将从全基因组重测序中筛选出并经群体验证的与 R gls位点紧密连锁6个SNP 及4个InDel标记 (InDel4305标记在染色体上的物理位置与遗传位置不符,未用于精细定位分析),加上1 个 SSR标记,共11个标记与重组个体基因型及表型进行分析。结果显示,InDel4227、SNP4236和InDel4254标记与基因Rgls位点共分离,没有重组个体。标记InDel4199有一个重组个体 S29 和标记 SNP4257 有两个重组个体R16和R31,这三个关键的重组个体将基因 Rgls位点定位于 InDel4199和SNP4257 两标记之间,物理距离由 500kb 缩小为 58kb (附图5-2)。按照基因位置信息从蔷薇科基因组网站 GDR下载基因组15 号染色体4.1~4.3 Mb内基因45个。通过perl脚本整理基因组GFF文件,BLAST同源比对NR数据库,选取最优比对结果。获得目的区段内的45个基因,其中5 个基因功能未知,2 个为转录因子,另外40 个基因均有明确的注释信息 (表5-2)。序号MDP号码同源基因1MDP0000180944生长素诱导蛋白15A2MDP0000205434非病原性诱导蛋白3MDP0000148158生长素诱导蛋白15A4MDP0000177664蛋白酶体beta亚基5MDP0000177665转录共抑制因子LEUNIG6MDP0000215349转录共抑制因子LEUNIG7MDP0000664885抗烟草花叶病毒蛋白N8MDP0000877582抗烟草花叶病毒蛋白N9MDP0000200748转录因子10MDP0000481972抗烟草花叶病毒蛋白N11MDP0000481973抗烟草花叶病毒蛋白N12MDP0000381897转录因子13MDP0000297052抗烟草花叶病毒蛋白N14MDP0000700563黄瓜素15MDP0000242744阳离子运输调控蛋白216MDP0000551192阳离子运输调控蛋白217MDP0000242745转录因子18MDP0000153007来自转座子TNT1-94的反转录病毒Pol多肽蛋白19MDP0000130036未知功能转录因子20MDP0000199184未知功能转录因子21MDP0000489432三角状五肽链重复包含蛋白22MDP0000318360类LRR丝氨酸/苏氨酸受体蛋白激酶23MDP0000247898类LRR丝氨酸/苏氨酸受体蛋白激酶表5-2 区段内基因同源比对结果序号MDP号码同源基因24MDP0000811774核糖核酸酶H2亚基B25MDP0000309446未知功能线粒体蛋白26MDP0000272143单尿苷绑定蛋白1B;与mRNA3’-UTR绑定27MDP0000871880脱水响应蛋白RD2228MDP0000272145酪蛋白激酶Idelta小体29MDP0000167752结构域包含蛋白3430MDP0000167753核糖核酸酶H2亚基B31MDP0000596125核细胞溶解酶TIA-1小体32MDP0000201427拓扑异构酶I33MDP0000149447脱水响应蛋白RD2234MDP0000596128酪蛋白激酶Ideta小体35MDP0000201428UDP-糖转运蛋白36MDP0000201429环核苷酸离子通道蛋白1437MDP0000255274环核苷酸离子通道蛋白1438MDP0000120033丝氨酸精氨酸富集剪接因子。39MDP00001695343-酮脂酰-CoA合酶640MDP0000203647细胞分裂素-O-葡糖基转移酶341MDP0000864010鼠李糖生物合成酶142MDP0000279973肌氨酸氧化酶43MDP0000178030未知蛋白44MDP0000289536肌氨酸氧化酶45MDP0000272940转录因子WRKY11表5-2 区段内基因同源比对结果(续)-1为了对基因功能做进一步分析,提取区段内基因的 GO (gene on-tology) 信息,采用基因功能GO分类网站WEBGO ( http://wego.ge-nomics.org.cn/cgi-bin/wego/index.pl) 进行基因分类。结果显示,这40个基因在细胞组成上涉及到4 个 GO 分类,包括细胞、细胞组分、细胞器组成以及大分子复合体的组成;在分子功能方面,该区段内基因涉及到电子传递、转运蛋白、水解、绑定、催化以及物质传递6 个GO分类;在生物过程方面,该区段内基因涉及到免疫过程、生物调控过程、细胞过程、色素沉着过程、程序性死亡过程、代谢过程、响应刺激过程、定位以及定位确立9个生物过程 (附图5-3)。经离体接种鉴定,50 个作为分子标记准确性鉴定材料的品种(系) 中有33 个抗病品种 (系) 和17 个感病品种 (系)。从与抗炭疽菌叶枯病基因紧密连锁的分子标记中挑选出4 个有代表性意义的分子标记SSR标记S0405127,S0304673,SNP 标记 SNP4236,InDel标记InDel4254作为鉴定标记。其中SSR标记 S0405127 与基因 Rgls位点的遗传距离为 0.5cM,S0304673 的遗传距离为 0.9 cM (见第三章),标记SNP4236和 InDel4254与目的基因共分离。鉴定结果显示,SSR标记 S0405127,S0304673,SNP 标记 SNP4236,InDel 标记 In-Del4254 鉴定抗感品种 (系) 的准确率分别为 90.0%,94.0%,98.0%,96.0%。在基因型与表型鉴定结果中,不相符的个数分别为5个,3个,1个,2 个。这 4 个分子标记鉴定结果的准确率均达到90%以上,可以应用于田间栽培品种、品系、种质资源以及杂种后代幼苗对炭疽菌叶枯病抗性的鉴定 (表5-3)。序号品种/系表型S0405127S0304673SNP4236InDel42541海棠RRSRR2斗南RRRRR3福丽RRRRR4福艳RRRRR5红勋1号RRRRS6华帅RRRRR7鲁加1号RRRRR8鲁加2号SSSSS9鲁加4号RRRRR10鲁加6号RRRRR11旭RRRRR12早杂1号RRRRR13威赛克旭RRRRR14五月金RRRRR15早翠绿RRRRR表5-3 四个分子标记对苹果栽培品种和品系的抗病性的鉴定结果序号品种/系表型S0405127S0304673SNP4236InDel425416国光RRRRR17霞光RRRSS18烟富1RRRRR19福早红SSSSS20嘎拉SSSSS21金冠SSSSS22秦冠SSSSS23华硕RSRRR24瑞丹SSSSS25乙女RRRRR26王林RSRRR27青农红SSSRR28秦冠SSSSS29瑞红SSSSS30赛金RSRRR31红肉1号RRRRR32双阳红SSSSS33望山红RRRRR34新红星RRRRR35青冠RRRRR36弘前富士RRRRR37富士RRRRR387C-102RRRRR39N2SSSSS40PinavaRRRRR417C-35SRRSS4295-161RRRRR4395-231RRRRR4495-232SSSSS4595-32RRRRR4695-93RRRRR477C-104SSSSS487C-105SSSSS497C-106SRRSS507C-107SSSSS表5-3 四个分子标记对苹果栽培品种和品系的抗病性的鉴定结果(续)-1精细定位通常采用的方法是侧翼分子标记法,对于有参基因组植物来说,就是根据对目的基因的初步定位结果,选择位于目的基因两侧的分子标记之间的碱基,用于设计合适的分子标记。筛选出的与目的基因连锁的分子标记,通过鉴定更大的群体来确定发生交换的重组单株,最终找到与目的基因紧密连锁的分子标记,从而实现对目的基因的精细定位。精细定位是图位克隆策略中重要的一步,可以通过开发新的分子标记,整合原来已有的遗传图谱来进行图谱加密,以实现对目的基因的精细定位。本研究利用全基因组重测序技术开发出的 SNP 及 InDel标记,结合Rgls基因初步定位结果,选出在 Rgls基因两侧的 SSR 标记 S0304673和S0405127之间的SNP 和InDel标记,通过HRM曲线分析技术对18个SNP 位点和30 个 InDel位点进行了分析,筛选出6 个 SNP 及5 个InDel标记与Rgls基因位点紧密连锁。并选择其中的10 个标记用于Rgls基因位点的精细定位。标记InDel4227、SNP4236和 InDel4254表现出与R gls基因位点共分离。由于所用群体规模的限制,所以筛选出的SNP 及InDel标记仍无法对R gls基因位点进行真正意义上的精细定位。由于现有的金冠苹果基因组数据库中可能存在组装错误,所以在对定位区域内的基因进行分析中,扩大 R gls基因位点区域。对苹果第15条染色体4.1~4.3 Mb距离内的基因进行统计分析,结果表明在该区段存在40个有功能注释的基因,涉及到细胞组成方面,分子功能方面,生物过程方面共18个GO分类。在细胞组成层面上,参与细胞组成的基因,一般是由主效基因或寡基因控制的质量性状,是个体保持组成性抗性的基础,影响着品种的垂直抗性。在分子功能层面上,植物个体抗性与电子传递、转运蛋白、水解、绑定、催化以及物质传递等生物过程密切相关。例如,植物受到病原菌侵染后,体内会产生并积累一些次生代谢物质,如植保素、酚类、木质素、菇类等化合物,对病原菌产生抵抗作用 (Pirie and Mullins,1976)。植物次生代谢途径尤其是苯丙烷类代谢途径是与植物抗病性密切相关,许多抗菌物质 (包括酚类、类黄酮、绿原酸、酮类等) 的生物合成都是通过这条途径完成的 (RalPhL,1992;Cole R.A,1985)。在生物过程层面上,程序性死亡过程,响应刺激过程以及免疫过程与抗病机制密切相关。细胞程序性死亡 (programmed cell death,PCD) 是细胞死亡的两种基本类型之一,是细胞接受某种信号或受到某些因素刺激后主动发生的由基因调控的死亡过程。植物与病原菌互作过程中发生的过敏性反应 (hypersensitive reaction,HR) 是PCD 的重要表现形式之一,是植物抵抗病原菌入侵的早期重要抗性反应,对植物抗病性有着重要意义。在该区域内存在着4个编码WRKY转录因子的基因MDP0000272940、MDP0000242745、 MDP0000381897、 MDP0000200748 以及5 个 TIR-NB-LRR 家族基因 MDP000066488、 MDP0000877582、 MDP0000481972、MDP0000481973、 MDP0000297052。许多研究结果表明,当植物受到病原菌入侵或植食性昆虫取食植物后,植物体内的一些WRKY 转录因子的表达水平会随之发生改变 (Hui et al.,3003;Zhao et al.,2007)。Huang等 (2002) 研究了一个茄科植物的 WRKY 蛋白 STHP-64,发现其在低温胁迫下表达增强,Rizhsky 等 (2004) 发现拟南芥的 At-WRKY25蛋白与氧化胁迫下胞液抗坏血酸过氧化物酶的表达有关。Li等 (2006) 通过对WRKY70蛋白过表达的转基因植株和变异植株的研究,证明过表达拟南芥 WRKY70 蛋白的转基因植株能提高水杨酸(SA) 介导的抗病性,但降低茉莉酸 (JA) 介导的抗病性。2006 年Ryu等对水稻WRKY 转录因子在不同生物胁迫下的表达量变化进行了研究。结果显示在45 个水稻 WRKY 转录因子中有15 个 WRKY 转录因子可以被稻瘟病病菌 ( Magnaporthe grisea) 诱导表达,其中12个可以同时被水稻白叶枯菌 ( Xanthomonas oryzae Dowson) 诱导表达。在对防御反应相关的信号分子对 WRKY 转录因子的影响的研究中发现OsWRKY10、OsWRKY82和OsWRKY85可以在经过茉莉酸诱导的叶片中表达,OsWRKY45 和 OsWRKY62 可以在经过水杨酸处理的叶片中诱导表达,OsWRKY30 和 OsWRKY82 可以同时被水杨酸和茉莉酸诱导表达,这说明WRKY 转录因子参与了植物的诱导防御反应。抗性基因 (R gene) 编码的蛋白大部分是 NB-LRR 蛋白,不同类别的 NB-LRR蛋白可以直接或间接的识别不同来源的病原菌效应子,从而激发相似的防御反应。这9个基因是人们重点关注的基因。进一步的基因功能研究及苹果与炭疽叶枯菌的分子互作机制研究将围绕着SNP 定位的5个候选基因及该区段内的相关基因展开。随着分子生物学技术的快速发展,特别是以DNA多态性为基础的分子标记技术在苹果育种中的应用,大大提高了目标性状早期选择的效率,缩短了育种周期,加快了新品种选育的速率。Tartarini 等(2000) 报道了利用获得的与抗苹果黑星病的显性单基因Vf紧密连锁的RAP D标记测验了携带该基因个体,淘汰错误率为3%,保留错选率仅为 0.02%。Cheng等 (1996) 利用与控制果色的Thd01基因紧密连锁的RAP D标记,在苹果实生苗发育早期进行了标记筛选,实现了对果色这一特定性状的早期选择,大大减少了人力物力的浪费。苹果柱型性状有利于形成集约高效的现代苹果栽培模式,能够降低生产成本,提高产量。Moriya等 (2012) 所得到的 3个与控制苹果柱型性状Co基因共分离的标记 Mdo.chlO.12、Mdo.chlO.13 和 Mdo.chlO.14,对于柱型苹果杂交育种中对群体材料的早期选择、基因的克隆及转化有着重要意义。王彩虹 (Wang caihong,et al.,2011) 通过SCARs标记和SSR标记对控制梨矮生性状基因 PcDw 进行了基因定位,对梨矮化育种有着重要的意义。随着不同果树基因组测序的完成,在果树方面陆续开展了相关 SNP 芯片研发和利用。Chagne等 (2012) 对27 个苹果品种进行低深度重测序检测并确认全基因组范围的 SNP,开发了苹果 8 K 的 SNP 芯片,可用于苹果幼苗大规模检测,这将会促进标记—位点—性状之间关联性的发现,进一步阐明质量性状的遗传结构特性,推动遗传变异研究。本实验利用四个紧密连锁的分子标记 S0405127、S0304673、SNP4236和 InDel4254对50个田间栽培品种和青岛农业大学选育出的优系进行了抗炭疽菌叶枯病的基因型鉴定,并结合其抗病的表型鉴定对四个标记的准确性进行了分析。结果表明四个标记的准确率分别为90.0%,94.0%,98.0%和96.0%,可以有效的应用于分子标记辅助育种。在第三章的研究结果中,SSR标记S0405127 与基因Rgls位点的遗传距离为0.5cM,而S0304673 的遗传距离为0.9 cM,理论上标记S0405127与抗性基因位点连锁的更紧密,准确性应该更高,而在品种群体验证中,标记 S0304673 鉴定抗感品种 (系) 的准确率为94%,而标记S0405127的准确率为90%。在利用重组个体对基因Rgls位点进行精细定位中,SNP4236 和 InDel4254 标记与目的基因共分离,在品种的群体验证中应该显示100%的准确性,但实际上还是有1~2个表型鉴定与基因型鉴定不符的个体。这种现象存在的原因一是可能由于用于鉴定的品种或品系数量有限,导致了结果的偏离。二是标记S0405127的条带显示为有和无的差异,在电泳时有可能存在读带误差。三是在对做图群体进行表型鉴定中,可能存在表型鉴定误差,导致遗传距离计算的偏差。四是在精细定位中,需要应用更大的群体筛选重组的单株以完成对目标基因的精细定位。而由于实验材料的限制,所用群体规模不是很大,所以可能导致定位结果的误差。这些问题尽管在实验中是不可以避免的,但是在以后进行更精细的遗传定位研究中,以更大规模的群体和更严谨的实验操作来进一步验证,可以减少这些误差的产生,提高遗传作图的精度。