首页 <
知识图谱:全部
-
报告论系统思维和科学管理
出版时间:20091873~1883年,恩格斯(F.Engels)在写作《自然辩证法》草稿时,根据对近代科学发展最新成果的研究和概括,指出自然界是一个普遍联系的整体系统:“我们就能够依靠经验自然科学本身所提供的事实,以近乎系统的形式描绘出一幅自然界联系的清晰图画”;“整个自然界构成一个体系,即各种物体相联系的整体。”19世纪90年代,恩格斯在关于历史唯物主义的书信中,指出人类社会(及其历史)是一个相互作用、复杂的有机整体系统:“人们总是通过每一个人追求他自己的、自觉预期的目的来创造他们的历史,而许多按不同方向活动的愿望及其对外部世界的各种各样作用的合力,就是历史。”表面看来,这个合力来源于人的“愿望”和意志,实质上来自于同自然一样的物质:“这里表现出一切因素间的相互作用,而这种相互作用归根到底是经济运动作为必然的东西通过无穷无尽的偶然事件向前发展。”由此,整个世界(自然界和人类社会)是一个具有物质统一性的普遍联系、相互作用的整体系统,这就是恩格斯的整体系统观。19世纪末20世纪初,美国产生了科学管理。该理论系统性与实用性并具,标志着现代管理学的诞生,并极其深远地影响了现代文明的进程。虽然没有文献表明泰罗(F.W.Taylor)曾经阅读过恩格斯的著作,但泰罗系统管理的确在经济生产领域具体地体现了恩格斯的整体系统观。工业经济以获取最大利润为目的,高效率是实现利润的主要方式之一,科学管理的直接表现就是能大幅提高生产效率,这使得人们总是习惯于首先从获利工具的视角出发看待科学管理。事实上也正是在1910年东部铁路公司运费案中,“哈林顿·埃默森(H.Emerson)关于如果实行科学管理,该公司每天可以节约100万美元的证词,在关心成本的制造商和公众中引起了极大的注意。”泰罗过去30年的研究和推广工作并未取得太多成果,一句证词却成为导火索,科学管理方法被广泛关注并迅速推广开来。推广过程中遇到的最大阻力就是有组织的工人的反对和罢工,并导致众议院任命特别委员会进行调查并于1911年10月到1912年2月举行两次意见听证会。面对“效率专家”对科学管理的肢解式滥用,面对听证会上持有不同误解和猜疑的各色人等的盘问,泰罗接连用了十几个“不是”批驳了人们对科学管理那种孤立的、片面的认识:“科学管理不是一种有效率的方法,不是一种获得效率的方法,也不是一串或一批有效率的方法;科学管理不是一种计算成本的新制度,不是一种支付工人工资的新办法,不是一种计件工资制,不是一种奖金制度,不是一种付酬制度,也根本不是一种支配工人的计划;科学管理不是拿着秒表观察一个人的工作并记下他的情况;它不是工时研究,不是动作研究或对工人动作的分析;科学管理不是印制一大批表格发给一些人,……不是分工工长制或职能工长制;不是在谈到科学管理是一般人所想到的任何方法……科学管理不是其中的任何一种方法。”泰罗认为,科学管理是“一次完全的精神革命”。所谓完全,首先要求公司全体员工都投入到科学管理的精神革命中来:“科学管理在实质上包含着要求在任何一个具体机构或工业中工作的工人进行一场全面精神革命,……此外,科学管理也要求管理部门的人——工长、监工、企业所有人、董事会——同样进行一场全面的精神革命。”泰罗说到,当全员参与的科学管理“以友好合作和互相帮助来代替对抗和斗争”时,“他们的共同努力所创造出来的盈利会大得惊人”,以供劳资双方共享。泰罗的这个观点并非1911年在听证会上才产生的应景之物。早在他最早的公开发表的《计件工资制》(1895)和《车间管理》(1903)中,就已经明确把合作双赢作为其制度的基本理念。《科学管理原理》(1911年)中“资方和工人的紧密、亲切和个人之间的协作,是现代科学或责任管理的精髓”的表述,是对这一基本理念一以贯之的强调。泰罗强调全员投入的观点,可谓恩格斯“人们通过合力创造历史”论断在公司组织中的具体体现。把公司看作一个整体系统来进行管理,首先就要把公司内的所有人员捏合成一个整体组织来调配和管理,这是科学管理的第一步,也是系统管理的第一步。需要指出的是,恩格斯的合力系统论是关于整个人类社会历史的论断,既包括和平建设时期,也包括革命斗争时期,所以使用了更为抽象的“相互作用”一词;而泰罗的科学管理针对的是和平环境下的建设型组织——公司,所以强调了“合作”。所以,泰罗的上述辩驳如果是真诚的,那就显得过分天真和理想化了:资本主义经济的逻辑是不可能允许无产者享有与有产者同等的分配权益的,社会历史发展的实际已经雄辩地证明,这种单纯强调“协作”以实现双赢的理想是不可能实现的。既然是“精神革命”,就不可避免会存在抵触和冲突。成功的系统管理,不是忽视或回避斗争,而是要懂得如何化解或利用它们。科学管理要求的第二个转变,就是要把科学研究和知识用于“工厂内的一切事情,……这包括每项工作所采用的方法和完成每项工作所需要的时间。”虽然说自从有了人类社会就有了管理活动,但直到19世纪中叶之前,经济活动中的人们更关注的是操作行为,管理行为的重要性是在大工业组织出现之后才渐渐显露出来的。泰罗虽然没有像同时代的法约尔(H.Fayol)那样系统整理出企业组织的6种职能活动,但他指出科学管理是“诸种要素——不是个别要素——的结合……它可以概括为科学、协调、合作、最高的产量和发挥每个人最高的效率。”如果说这个表述还比较模糊,没有清晰表达出系统管理的思想的话,那么泰罗反复强调的科学管理四项根本原则(underlying principle)——“第一,一门真正科学的形成。第二,对工人的科学选择。第三,对工人的教育和培训。第四,资方与工人之间的亲密友好的合作”——则比较明确地表达了组织系统管理的思想。科学管理的系统,首先是发展科学,找到科学规律;接下来在真正的、科学的工时研究的基础上建立科学的操作程序和恰当的绩效标准;然后选择、教育和培训“头等工人”在职能工长管理下操作;最终根据其完成任务情况参照绩效标准支付报酬。如此,泰罗就通过程序化实现了整个企业的系统管理。这里的系统管理,不仅仅指的是工时研究等高效率手段等各阶段的程序化和系统化,而且还包括工人的选择、培训、管理者与工人之间的友好合作等各种因素构成的一个组织整体性的程序化和系统化。综上所述,泰罗对公司中人的因素和事的因素两个方面都具有整体组织的思想并且把两种因素结合了起来,所以科学管理被后人看作系统管理的先驱,泰罗也被尊为现代管理学的奠基人。而当我们跳出管理学的范畴,以系统认识发展的视角来评判泰罗科学管理的时候,则可以说在恩格斯总结出合力整体系统观之后的20世纪上半叶,科学管理和其他各种具体的系统思想在社会生活中得到了进一步的扩展和深化;这些具体的实践,为贝塔朗菲(L.Bertalanffy)等一般系统论的提出,开启了可资参照的理论思路,奠定了丰富的实践基础,切实营造了系统思考和行动的社会文化氛围。 -
报告Study on Inhabiting of Methanol Extracts from Stellera chamaejasme L.Against Botrytis cinerea Pers*
出版时间:2007番茄灰霉病(Botrytis cinerea Pers)是保护地番茄的重要病害之一,主要为害花和果实,尤以青果受害最重,大幅度降低番茄的产量和品质。近几年来,番茄灰霉病为害越来越严重,轻者减产10%~20%,重者达30%以上[1],而病原物极易对化学农药产生抗药性,因此化学防治用药量大、防效差、污染重,严重威胁着人们的身体健康。植物源农药可在环境中迅速分解,在植物体内也几乎没有残留,是符合人们对绿色农产品要求的。瑞香狼毒(Stellera chamejasme L.),又名断肠草、红狼毒,为瑞香科,狼毒属植物,是当前中国草地上危害较严重的毒草之一,但是瑞香狼毒又具有可利用的一面,其根是传统中药狼毒的基质,有逐水、祛痰、破积、杀虫之功效[2]。目前国内外对其化学成分、杀虫活性、抗癌活性都有了深入的研究和报道。有文献表明瑞香狼毒对于植物病原菌也有较好的抑制作用[3]。本试验就瑞香狼毒甲醇提取物对番茄灰霉病抑制作用进行了室内测定,旨在为开发出一种经济,安全,有效的新型杀菌剂提供理论依据。1.1.1 供试样品 试验所用瑞香狼毒采自山西怀仁金沙滩,将采集的植物材料洗净后充分阴干,放入恒温箱内(40~45℃)烘干,粉碎后过60目筛备用。1.1.2 供试菌种 番茄灰霉病菌(Botrytis cinerea Pers)均由山西农业大学农学院植物病理实验室提供。1.2.1 瑞香狼毒提取液的制备 称取瑞香狼毒根部粉末50g,装入500ml广口瓶内,加入干粉5倍量的有机溶剂甲醇浸泡3~5天后,过滤并浓缩至稠膏状。取适量瑞香狼毒甲醇提取物,加入少量甲醇溶解并配成60mg/ml溶液,备用。1.2.2 抑菌活性测定 采用生长速率测定法[4~6]测定瑞香狼毒提取液对黄瓜枯萎病菌菌丝生长抑制作用,具体操作如下:取60mg/ml瑞香狼毒提取物溶液配制成60mg/ml,30mg/ml,15mg/ml,7.5mg/ml,3.75mg/ml的溶液,制作平板时,在一个培养皿中加入2ml,再加入13ml培养基,摇匀,凝固后即为全药平板培养基。每一处理做5个重复并标记;另取3个培养皿分别加入2ml蒸馏水、13ml PDA培养基作为对照。将供试菌种用6mm打孔器打出菌饼,用接种针小心地将供试菌饼置于平板培养基上(菌丝面朝下,每皿一块,放于中央),置光照培养箱中培养(上述一系列操作必须在严格无菌条件下进行)。48h后,用十字交叉法测每个菌落的直径(每一天测一次,连测两次),以下式求菌丝生长抑制率:瑞香狼毒甲醇提取物对番茄灰霉病菌作用结果如表1和表2。浓度(mg/ml)72h96h菌落直径(cm)ColonyRadius抑制率(%)Inhabitingrate菌落直径(cm)ColonyRadius抑制率(%)Inhabitingrate81.8078.181.9579.4542.0374.002.2175.4923.0256.003.4756.3214.0337.644.5739.570.55.3713.276.3812.02CK6.107.17表1 不同浓度瑞香狼毒甲醇提取物对番茄灰霉病菌菌丝生长的抑制作用Table 1 Inhabiting of the different concentration of the extracts of Stellera chamaejasme against Botrytis cinerea Pers时间Time毒力方程RegressiveequationEC50?相关系数r95%置信限Confidencelevel72hY=4.5546+1.5754x1.920.97251.61~2.6896hY=4.5519+1.6433x1.870.96741.58~2.22表2 瑞香狼毒甲醇提取物对番茄灰霉病菌的毒力Table 2 Virulence of the extracts of Stellera chamaejasme against Botrytis cinerea Pers从表1可以看出,瑞香狼毒甲醇提取液对番茄灰霉病菌菌丝生长有一定的抑制作用,并且提取液浓度越大,抑菌作用越明显,即在5个不同浓度稀释液中,8mg/ml的效果最好,接近80%。从表1的数据可以看出:8mg/ml、4mg/ml、2mg/ml的提取液对番茄灰霉病菌的抑菌率都在50%以上,1mg/ml、0.5mg/ml的提取液对番茄灰霉病菌的抑菌率在50%以下,这说明瑞香狼毒中含有的一些活性物质能够很好地抑制黄瓜枯萎病菌菌丝的生长。从表2可以看出瑞香狼毒甲醇提取物对番茄灰霉病菌的毒力EC50在72h、96h分别为1.92mg/ml、1.87mg/ml。本试验表明,瑞香狼毒甲醇提取物对番茄灰霉病有一定程度的抑制作用,而且瑞香狼毒在我国资源丰富,有望开发成一种生物农药,具有良好的前景。虽然本试验做出一定的结果,但是也有一些不足之处:(1)试验中只是做了室内测定,没有做室外试验,在室外是否也有如此好的效果不能确定;(2)试验中只做了生长速率法像其他方法,如孢子萌发法没有做,它对孢子有什么样的效果也不知道;(3)试验只对瑞香狼毒植株进行粗提取并不确定其有效的活性成分为什么物质。以上问题需在以后的实验中着手解决。目前国内青海省天然草地上生长的瑞香狼毒面积达73.3万hm2,密度为每百平方米350株丛,最多可过1998~5000株丛[7]。海北洲海晏县青海湖乡每百平方米有狼毒400~1400株丛,盖度为20%~40%。另据不完全统计,内蒙古泽里木盟阿鲁旗已经形成了以瑞香狼毒为主要植物群落的草场约4万hm2,有瑞香狼毒生长的草场约13.3万hm2以上,占全旗104万hm2草场面积的28%。在内蒙古乌兰察布干草原,狼毒已成为退化草地的景观植物[8]。因此,在山坡或沟谷,劳力充足的地区,春秋季可进行人工采挖,收集瑞香狼毒的根,既可作到清除狼毒,保护草原,又可“化害为利”,获得经济效益和社会效益的双赢。 -
报告Cloning and Identification of a Conidiation Associated to Gene CMPEX2-like of Coniothyrium minitans
出版时间:2007盾壳霉(Coniothyrium minitans)是核盘菌(Sclerotinia sclerotiorum)的重要寄生真菌,在世界范围内广泛存在,是菌核病的一种重要生防菌。本研究自盾壳霉ZS-1菌株的T-DNA标记插入突变体库中筛选到一株产孢缺陷型突变体ZS-1T16229,以之为材料进行研究。突变体ZS-1T16229与出发菌株ZS-1相比,偏向于培养基质中生长,不产孢,或产生少量的分生孢子(3.4×102个孢子/cm2),在与核盘菌对峙培养时,于两菌落融合处,突变体产生大量的分生孢子。突变体ZS-1T16229的生物产量大幅下降,在PDA培养基上培养6天、9天和12天,其生物学产量分别为8.2mg、24.2mg和58.7mg,而野生菌株ZS-1的生物学产量分别为17.4mg、39.3mg和78.8mg。突变体ZS-1T6229同时丧失了产生抗细菌物质的能力。另外,突变体ZS-1T6229的寄生致腐菌核的能力有显著的下降,用突变体的菌丝片段处理核盘菌的菌核,在沙粒上于20℃保湿培养30天,菌核腐烂指数为22%,而用野生菌株ZS-1进行相同处理,菌核腐烂指数为86%。Southern杂交证实T-DNA标记在突变体ZS-1T16229中为单拷贝插入;以ZS-1T16229为材料,采用TAIL-PCR和RT-PCR技术对T-DNA标记插入位点的基因组DNA进行了克隆,获得了大小为1527bp的DNA片段;对该基因组DNA片段进行了序列分析,并利用GenScan软件进行了阅读框(ORF)预测,结果表明该DNA片段含有一个完整的阅读框:编码508aa。对推定蛋白的氨基酸序列进行功能预测,发现该序列中含有一个保守区域,即Pex2-Pex12结构域,与其他真菌的过氧化物酶体蛋白PEX2具有极高的同源性,如与烟曲霉(Aspergillus fumigatus)的PEX2相同部位等同的氨基酸为54%,类似的氨基酸达68%。故命名该基因为CMPEX2。通过RT-PCR结果表明CMPEX2基因在突变体ZS-1T16229基因组中不表达,在出发菌株ZS-1的基因组中表达。构建了CMPEX2基因敲除载体,利用农杆菌介导转化的方法,获得了3个CMPEX2基因敲除转化子,通过PCR证实这3个转化子确实为CMPEX2基因敲除转化子。这3个转化子的表型与突变体ZS-1T16229相同。初步认为CMPEX2基因与盾壳霉产孢相关,起正调控作用。 -
报告苹果腐烂病的流行原因分析与防治关键技术探讨
出版时间:2007苹果是我国种植面积最大的水果,目前全国苹果种植面积达190万hm2以上,产量达2110万t,居世界前列[1]。近几年来,苹果腐烂病在我国尤其是冀北地区,连续多年中偏重到大发生,已成为对苹果生产影响最大的病害,严重制约着我国苹果产业的健康发展。虽然目前针对苹果腐烂病的研究较多,但始终未能找出解决问题的根本措施,致使该病发生势头有增无减,蔓延十分迅速,甚至在新栽果园内都能找到大量病株。因此对该病的流行原因进行系统分析、对防治关键技术进行深入探讨势在必行。苹果腐烂病又称串皮湿、臭皮病、烂皮病,是一种发生范围广、为害程度重、损失极大的苹果树病害,全国各苹果产地均有发生,尤其是近10多年来在全国各地蔓延较迅速。该病轻者造成枝干枯死、结果能力锐减、产量和品质下降、结果年限缩短,重者可导致整树枯死,甚至毁园。据笔者近5年来调查,冀北地区苹果园苹果腐烂病感染率几乎达到100%,成龄果树病株率35%以上,严重的果园达到80%以上,幼树病株率也有10%左右,目前已有20%苹果园因此病而毁园。通过对产量损失率的调查,仅该病就达到20%左右,占苹果树整个病虫损失率的50%以上。苹果腐烂病的病原物是苹果黑腐皮壳,属子囊菌亚门真菌。苹果腐烂病菌是一种寄生性很弱的兼性寄生菌,具杀生寄生性。该病侵入寄主后,先处于潜伏状态,不立即致病,当树体或局部组织衰弱,或果树进入休眠期,生理活动减弱、抗病力降低时,病菌才由侵入部位向外扩展,进入致病状态[2]。因此,苹果树本身的抵抗能力强弱是该病能否发生的前提条件。2.1.1 施肥水平明显不足 据调查,20世纪80年代和90年代初期,苹果是冀北地区许多农户的主要收入来源,因此管理比较精细,平均每年每株果树施优质农家肥50 kg以上,夏季还要进行压青草、扩水盘、改良土壤、追施肥料等措施,冬季一般都要进行树干涂白。另外在病虫防治上,也基本上做到了及时防治、统一防治。因此,果树树势较强,各种病害发生均较轻。20世纪90年代后期尤其是近5 年以来,随着果品价格下降,果农积极性下降,管理比较粗放。据调查,目前有90%以上的苹果树不施用有机肥,50%以上的苹果树不追施肥料,20%以上的苹果树不施任何肥料,即使是施肥的,也多是在春季每株基施磷酸二铵等0.5 kg左右,不但养分含量单一,而且施肥量明显不足。2.1.2 掠夺式生产现象比较严重 大多数果农只追求眼前利益,一是不舍得疏花疏果,使果树负担过重,大小年现象严重,使树体过早衰弱,抵抗力下降;二是为了争取多挂果,普遍采取环剥措施,尤其是主干环剥现象还比较常见,造成环剥就有花芽、不环剥就没有花芽的恶性循环,不但造成树体衰弱、抵抗力下降、各种病害泛滥,而且使果树结果高峰期明显缩短。另外,近几年天气干旱,有的果园不能及时灌水,也是粗放管理的一个重要方面。防治不当主要表现在5个方面:一是施药次数不足。部分果农对苹果树重视不够,有的全年只施一、两次药,甚至有的果农完全不施药,也不进行其他管理,早期落叶病、瘤蚜等病虫害发生严重,造成树势极度衰弱,进而促使腐烂病大发生,提供了充足菌源,也危及到了整个果园;二是施药时期把握不好。苹果腐烂病萌芽前用药消灭枝干上的菌源十分重要,许多果农不重视此次施药,萌芽后刮除病斑必须进行,而多数果农到了花期以后病斑明显时才刮除,病斑扩展迅速,还会使病原菌大量传播;三是病斑刮除不彻底。发现病斑后,应刮除至木质部,边缘要超过病部1cm左右,而有的果农刮得浅或刮得范围小,造成病斑复发率较高,还有的果农不将刮下的病皮带走,再次形成侵染源;四是药剂选择不合理。目前用于防治腐烂病的药剂较混乱,许多果农选择不当,也是造成防治效果不好的重要原因;五是不注重夏秋季施药。多数果农只注重春季涂药,不注重夏秋季喷药保护和秋季涂药保护,形成新增病斑。20世纪80年代之前,冀北地区苹果主要品种是国光,其次是金冠、元帅、红星、白龙、倭锦、鸡冠等,苹果腐烂病很少发生,但随着品种间异地交流的广泛进行,富士等新品种开始传入,腐烂病也开始迅速发生。随着果农不断栽植和对老树进行改接换头,几乎所有果园均有外来接穗不断引入,目前这些已成为当地的主栽品种,在一定程度上造成菌源的不断传入,因此,品种间异地交流是苹果腐烂病发生的原因之一。苹果腐烂病的防治必须贯彻以加强栽培管理为中心内容的“预防为主、综合防治”的方针。健身栽培是指在苹果生产过程中,利用农业和物理等措施促进植株生长,增强植株对病虫的抵抗能力,减少病虫害的发生率,从而增加苹果的产量,提高品质。健身栽培是目前生产无公害苹果最有效、最根本、最安全、最经济的手段,也是防治苹果腐烂病的最重要手段。3.1.1 加强水肥管理,提高树势 在秋季落叶后至早春萌芽前,增施以有机肥为主,N、P、K、微肥配合的基肥,适时追肥,叶面喷施氨基酸叶肥、沼渣沼液等,要根据不同树龄、不同土壤条件、不同时期采取平衡施肥措施,通过增施有机肥和磷钾肥、补充叶肥等手段,增强树体对腐烂病的抵抗能力;萌芽前、春梢生长期、果实膨大期、采果后和封冻前要及时根据灌水指标灌水,保证土壤的田间持水量,尤其要防止春旱,但也要注意雨季及时排水,保证树体含水量正常,降低病菌扩展能力,促进伤口愈合。3.1.2 及时修剪,合理负担 大小年现象是造成树势衰弱的重要原因,因此要通过疏花疏果、修剪等措施,合理负担,避免树体消耗过大;适时冬剪和夏剪还可剪去病虫枝、枯死枝、内膛过密枝,改善树体通风透光条件,以减轻其他病虫害的为害,从而提高树势。3.1.3 及时清理病虫及残体,减少菌源 病枝、病树皮中有大量的腐烂病菌,因此要及时剪除病枝和病果、及时清理将刮下的树皮,带出园外深埋或焚烧处理,防止孢子飞散传播。3.1.4 减少环剥,避免树势衰弱 环剥在一程度上可以提高花芽分化率,从而增加挂果量,但也会造成树势衰弱,尤其是主干环剥,后果更严重,因此,应优先选用施沼渣沼液、喷芸薹素内酯等植物生长调节剂、涂抹促花剂等方法,尽量少环剥。3.1.5 增加保护,防止冻害发生 冻害是诱发腐烂病的重要因素,在冬季温度较低的地区,要通过树干涂白等措施,防止冻害发生。苹果腐烂病刮除病斑工作应根据其发生规律,及时进行。当春季气温回升后,树液开始流动,营养向生长点转移,造成树体枝干营养水平相对较低,导致抗病能力迅速降低,病菌则乘机扩展蔓延,形成春季发病高峰。另外,秋季果实迅速膨大,营养向果实大量转移,也会造成树体枝干营养相对缺乏,形成秋季发病高峰。因此,刮除病斑应在每年春、秋季分别进行。通过实践表明,每年进行3次比较合适,第一次在萌芽期,此时病斑尚未蔓延;第二次在苹果花期,尤其是降过一场春雨过后,此时病斑最容易辨别,可及时发现第一次未发现的病斑;第三次是在9月份,此时是该病蔓延的另一个高峰。刮病斑时,要刮至露出木质部,边缘要超过病部1cm左右,刮好后及时涂药保护。通过笔者调查和试验,目前防效较好的涂抹药剂有:3.315%甲硫·萘乙涂抹剂(灭腐新)原液、2.12%腐殖酸铜水剂(腐烂净)原液、4%腐殖酸铜水剂(843康复剂)原液、21%过氧乙酸水剂(果富康)5倍液、精制木酢液原液、40%氟硅唑(杜邦福星)15倍液等,一般防治效果可达80%~90%。病斑涂药保护时,有一些不易发现的病斑往往被忽略,造成年年涂药年年有新发病斑。因此,全树喷药防治是必不可少的措施,可有效消灭树皮浅层病菌,预防发病。可在萌芽前、谢花后2~4天、落皮层形成期(7月份)、果实生长中后期(8月下旬~9月上旬)各喷一次药,尤其是萌芽前施药尤为重要,可有效消除树体上潜伏的病菌。萌芽前喷施药剂可选用18%过氧乙酸水剂200倍液、石硫合剂5波美度、2.12%腐殖酸铜水剂100倍液、45%代森铵(施纳宁)水剂300~400倍液等;萌芽后喷施药剂可选用18%过氧乙酸水剂500倍液以及腐殖酸铜水剂等;秋季涂抹药剂可选用3.315%甲硫·萘乙涂抹剂(灭腐新)原液、腐殖酸铜类药剂等。另外,在苹果腐烂病发生高峰期,还可用21%的过氧乙酸200倍液进行树干淋洗或3~5倍液涂刷树干及骨干枝、45%代森铵(施纳宁)水剂100~200倍液涂刷树干及骨干枝,可收到很好的效果。在5~9月份,其中以5~6月份最好,用锋利的刀将所有的病皮、粗翘皮全部刮除,露出白绿或黄白色皮层为止,不要触及形成层,皮层中若有坏死病斑也一律刮除。重刮皮可将多年积累的各种类型病变组织和侵染点彻底清除,且可刺激树体产生愈伤组织,增强抗病力。对于主干上病疤较大、为害较严重的果树,要及时采取桥接或脚接的方式,促进树势恢复。 -
报告Study on Epidemic Pattern of Rice Stripe Virus and Its Control
出版时间:2007Rice stripe virus(RSV)is a kind of virus disease which spread through vector of planthoppers L.striatellus.It is hard to prevent and control once rice is infected with RSV,and suffer a great loss of rice yields.In recent years,the incidence rate of RSV in north Zhejiang province is speeding up because of altering of cropping system and fitness of climate.Such as in Jiaxing city,disaster area reached to 17600 hectare in 2007 and became one of the cities which were heavily infectious with RSV.Therefore,the epidemic pattern of RSV and its control countermeasures had been investigated for several years.An integrated control of RSV was established on the basis of optimizing single control method and extended application for other paddy fields,which efficiently prevent and control incidence and spreading of RSV.The results of investigation and research were summarized as bellows.1.1.1 Continuous enlargement of disaster region and area It can be concluded from research on disaster region of RSV in Jiaxing,Zhejiang province that RSV was only infected in few paddy fields of Haiyan county and Xiouzhou district in 2002,and incidence rate of small towns was just 8.3%;but incidence rate increased quickly,and increased to 65%in 2004 and about thirty-nine towns were invaded by RSV;and till 2006,the rice of all the small towns were infected by RSV and incidence rate increased to 100%.And today,RSV has been spreading to each town in Jiaxing,Zhejiang province.In terms of disaster area,only few places were infected in 2002;but raised greatly in 2004 and reached to 12600 hectare in 2005,which was about 9.94%of late rice field;andreached to 17600 hectare in 2007,which was about 13.9%of total rice area.1.1.2 Peak period of diseases incidence in field It was observed that initial period of RSV incidence was mid June,and about twenty to twenty five days after rice sowing,and had two incidence peaks in single cropping rice:the first peak was in mid July and another was in mid August.The two incidence peaks were resulted from RSV transmitted by the first and second generation of L.striatellus respectively,and the first peak was higher than the second,and disaster incidence became stable after mid August.According to investigation on early rice fields in 2006,the diseased-hill and diseased-tiller rates of first incidence peak reached 18.5%and 3.77%respectively,and became 4.23%and 1.58%at the second incidence peak,which was resulted from different numbers of L.striatellus of two peaks.Because of fitness of temperature and host(such as wheat field and weeds),number of first generation L.striatellus was larger and easily transmitted RSV,which caused higher disaster incidence.However,because of higher temperature,number of second generation L.striatellus was smaller and uneasily transmitted RSV,which resulted lower disaster incidence.1.1.3 Early rice field heavier than late rice field Damage intensity extent of RSV was closely related with the sowing period,earlier sowing usually caused heavier disaster incidence.From investigation of different sowing time in 2006,the average diseased-hill and diseased-tiller rates of rice fields sowing in 15th May was 16.3%and 4.05%respectively,which increased about 65.8%and 59.4%over that in 20th May(9.89%and 2.54%),about 81.59%and 94.8%over that in 29th May(3%and 0.81%),and about 94.9%and 94.81%over that in 6th June(0.83%and 0.21%).According to investigation in 2007,the diseased-tiller rate of rice fields sowing in 16th May,23rd May,30th May and 6th June was 5.18%,7.31%,7.90%and 0.70%respectively.There existed significant difference of disaster incidence of different sowing time.The heavily disease infected rice fields usually concentrated in sowing in mid May,which was higher than that sowing in late May and mid June,and nearly had no infection of RSV in rice fields sowing after mid June.1.1.4 Transplant rice field heavier than direct seeded rice field RSV incidence in transplant rice field was obviously heavier than direct seeded rice field based on general investigation of Jiaxing city,which resulted from rice field was apt to suffering of L.striatellus and spreading RSV because of early sowing time,such as in Xiuzhou distinct,the average diseased-tiller rate of transplant rice fields sowing in mid May was 3.86%,but direct seeded rice field sowing in late May was only 0.71%.From 2005 to 2007,we investigated disease incidence after inoculation of RSV to planthoppers with no control of planthoppers in Xiuzhou distinct,Jiaxing.The result was that there was no viruliferous planthopper,disease incidence was lower,the diseased-tiller rate of early and mid sowing rice fields was 3.1%and 1.2%respectively,and there was no disease incidence in late sowing rice fields in 2005.In 2006,rate of viruliferous planthopper was 2.01%,and the diseased-tiller rate of early,mid and late sowing rice fields was 18.5%,10.1%and 1.16%respectively.In 2007,rate of viruliferous planthopper was 3.68%,and the diseased-tiller rate of early,mid and late sowing rice fields was 21.5%,19.5%and 2.7%respectively.It was concluded from the above investigation that rate of viruliferous planthopper was closely related with disease incidence,and the formeracted an important role to the latter.Based on general investigation on disaster incidence of major rice varieties planted in Jiaxing,Xiuyu5 was the most infective,the average diseased-tiller rate was about 3.78%,about 90%rice fields were infected and the highest diseased-tiller reached 11.2%.The other major rice varieties,such as Jia991,Xiushui110 and Xiushui09 were also heavily infective,and the average diseased-tiller rate was over 1%,but Jiahua1 and Jialeyou2 were slightly infective and the average diseased-tiller rate was about 0.89%and 0.31%respectively.The incidence of RSV was mainly determined the number of viruliferous planthopper,fitness of peak of viruliferous planthopper with rice sowing,climate and different disease-resistance of rice species,which were also the main parameters of disease monitoring.From analysis of RSV rising,spreading and extending in north Zhejiang,we can conclude the below reasons.First was the large number of viruliferous planthopper.In recent years,population quantity of L.striatellus was keeping on rising,which increased the incidence of RSV.One of the reasons was high population density of planthopper during late rice heading period.Based on investigation of Jiaxing Station of Disease and Pest Monitoring in min October from 2005 to 2007,most L.striatellus concentrate and did harm to the rice heading,and there was about four million planthoppers per 667m2 rice fields and the heavily infected rice fields reached over five million per 667m2.Another reason was high population density of spring wheat field.From investigation on numbers of planthoppers in wheat fields before harvesting,there was about 2981000 planthoppers per 667m2 wheat fields and the heavily infected wheat fields reached over 10000000 per 667m2.Many hibernacles were also the reasons of the large number of viruliferous planthopper.L.striatellus can hibernate in many places,such as Gramineae seeds in side of agriculture lands and ditches,and there was about 5454000 planthoppers per 667m2 seed fields according to investigation in mid May,2007.Second was high rate of viruliferous planthopper.It was resulted from bio-assay of RSV in Jiaxing Academy of Agricultural Sciences from 2005 to 2007 that viruliferous planthoppers were widely distributed and rate of viruliferous planthopper was high.Among the detected samples from seven counties in Jiaxing from 2006 to 2007,all of the samples were infected with RSV,but just two of four countries samples in 2005 detected RSV.Rate of viruliferous planthopper in 2005,2006 and 2007 was about 1.47%,3.25%and 2.86%respectively.Based on research of Japanese scientist,RSV can be prevalent when rate of viruliferous planthopper was over 3%,RSV will be much prevalent if rate of viruliferous planthopper reached 12%.Third was weakness of rice disease-resistance.Based on investigation,major late rice varieties in keng rice region of north Zhejiang were absent of disease-resistance,such as Xiushui09,Xiushui110,Jia991 and Xiuyou5,which increased prevalence of RSV.county200520062007Haiyan3.462.272.62Nanhu2.432.400.67Xiuzhou0.02.013.68Jiashan0.02.032.03Pinghu—6.730.99Haining—3.372.22Tongxiang—3.933.79average1.473.252.86Table 1 Bio-assay result of rate of viruliferous hibernating planthoppers from 2005 to 2007 in Jiaxing, ZhejiangFour was fitness of variety and cultivation condition.The expanding areas of wheat,the rising areas of winter-fallow paddyfields and wasteland were apt to hibernating and propagation of L.striatellus.The earlier sowing in some single cropping rice fields,especially rice fields sowing in mid and late May,when rice seedling was in coincidence with peak rate of viruliferous planthopper,easily caused concentrated transmission of RSV and caused heavier disaster incidence.Control of RSV should be based on prevention,take measures of"kill pests and control disease,cut the chain of spread,and adopt integrated control of RSV"with a thought"control wheat field and protect rice field,control prophase and protect anaphase,control this year and protect next year",and integrate"resisting,avoiding,cutting,controlling,supplying,altering"into management countermesures.Resisting:introduction and extension of disease-resistance rice species.Main rice species planted in Jiaxing were disease-sensitive species,such as Xiushui09,Jiahe128,Jiahua1,Jia991 and Xiushui110.In order to better control disaster incidence,we should decrease the sowing areas of disease-sensitive species,and introduce and extend disease-resistance rice species,such as Jialeyou2,which had good resistance to RSV.Avoiding:delaying sowing time and avoiding peak rate of viruliferous planthopper.The top number of the first generation of L.striatellus occurred in mid and late May,which was in accordance with high rate of viruliferous planthopper and caused rice to be heavily infected.Therefore,delaying sowing time and homochronous sowing were advocated on agricultural production.Such as,the sowing areas were diminished to 25700 hectare in Jiaxing before June,which was about 20.3%of the total rice fields in 2007.But sowing during first twenty days in June reached 97600 hectare,which was about 77.1%of the total rice fields in 2007.Cutting:worsening the condition of L.striatellus.One was to cut weeds and clean fields.Weeds in agricultural lands,field ridge,pitch ridge and side of road were the important breeding place of planthoppers.Therefore,we should try our utmost to clear weeds and cut the chain of host.Another was plowing five days before sowing or transplanting.Controlling:carrying out chemical control during proper period.(1)Control of L.striatellus inspring wheat field and seeds.RSV is a kind of virus disease which spread through vector of planthoppers L.striatellus.RSV can be prevented by the control of planthoppers.The planthopper population in spring wheat field and seeds will directly affect RSV incidence of the whole year.Therefore,to diminish the planthopper population and gain the active control,planthoppers of wheat field and seeds should be completely controlled one time in mid April.The method was to spray 100~120ml of 40%durshan per 667m2.(2)Treatment of rice seeds.Seed treatment is a better way to control disease transmission of early rice seedling.The method is to immerse dry rice seeds into 10%imidacloprid or 5%fipronil for 48 hours and then accelerate germination.(3)Strengthen control of planthopper during rice seedling(early time of direct seeded rice field).After rice seed sprouting,adult planthoppers immigrate to rice fields,which meet the peak period of RSV transmission and will increase the rate of disaster incidence.The method was to spray 100~120ml of 40%durshan per 667m2 and repeated spraying after eight days.(4)Control of planthoppers during the growth period.Growing period in paddy field was the key point of control,the top population of planthopper nymph of second generation occured from mid and late June to early July,and these period was the best time to control planthopper.After mid July,L.striatellus of third and forth generation can be controlled along with Nilaparvata lugens and Sogatella furcifera.The biggest population of L.striatellus occurred from late September to mid October,and could be controlled in main spike and decreased the hibernation number of planthoppers and lessened the control pressure of next year.Supplying:In rice fields where rice had been infected with RSV the disease plant was to pull out in time and break the chain of disease,and prevent transmission of RSV again.To improve ability of disease-resistance and lessen rate of disaster incidence,2%ningnamycin can be integrated into control.Altering:For the rice field where the diseased-tiller rate was over 70%,we should plough and alter planting in according to the principle of fitness of planting rice or vegetable and reasonably arrange the shifts of rotation.Adjust planting structure of crop was also adopted to control disaster incidence and increase income of farmer. -
报告Primary Study of Oligogalacturonides Inducing Resistance to Tobacco Mosaic Virus
出版时间:2007烟草病毒病有“烟草癌症”之称,一旦发生和蔓延,就难以控制,严重制约烟草的正常生长。目前发生最普遍、危害最严重的是烟草花叶病毒(TMV),其发生范围遍及各烟区,不仅造成烟草产量的损失,而且使烟草品质严重下降,降低烟草的烟叶等级,严重影响烟叶的经济性状。化学药剂所造成的病原物抗性和环保问题,使其应用受到较多限制;由于植物病毒系活体寄生物,侵入寄主细胞后的增殖需借助寄主的代谢,因此至今尚无安全、有效的治疗药剂。而诱导抗性作为对植物病害的诱导应答减少了植物在抗病方面所付出的种种代价,因此是较为经济有效的抗病策略,并在作物可持续病害防治中具有十分广阔的应用前景。本文着重研究寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒的能力,以期为寡聚半乳糖醛酸用于农业生产提供科学依据。1.1.1 供试药剂 寡聚半乳糖醛酸以及壳寡糖,由中国科学院大连化学物理研究所研制。20%病毒A可湿性粉剂(黑龙江省齐齐哈尔四友化工实业有限公司,市购)。1.1.2 供试植物 枯斑三生烟(Nicotiana tobacum L.SamSun NN)。1.1.3 供试毒源 烟草花叶病毒(TMV),本实验室保存于普通烟上。接种病毒汁液为每克含TMV的烟草病叶,加入5倍体积0.05mol/L的磷酸缓冲液(pH7.0),在研钵中研磨后纱布过滤。1.2.1 试验处理 供试药剂寡聚半乳糖醛酸设浓度为50μg/ml喷雾;浓度为75μg/ml喷雾;浓度为100μg/ml喷雾。病毒A稀释700倍喷雾。清水对照。共5个处理。1.2.2 试验实施 试验设在海南试验地中,土壤为红土。试验每个处理15株长势大小一致的6~8叶期的烟草,叶面喷雾施药。24h后汁液摩擦接种TMV病毒。在病毒汁液中加入少量石英砂,用毛笔蘸取汁液摩檫接种。枯斑三生烟苗采用半叶法接种,每株接4片叶。接种后每天观察发病情况。待全面发病后,调查病斑数。1.3.1 试验方法 选取大小一致、6~8叶期的烟草植株,均匀喷洒供试药剂寡聚半乳糖醛酸50μg/ml。处理24~96h不同时间后,进行接毒试验。采用半叶法摩擦接种。接种7天后,统计叶片上的病斑数。试验重复3次计算防效。抑制率(%)=[(对照叶片病斑数-处理叶片病斑数)/对照叶片病斑数]×100%1.4 抗性相关酶的测定1.4.1 超氧化物歧化酶(SOD)活性 取样叶1.4g,10.0ml 含5mmol/L巯基乙醇的硼酸缓冲液(0.05mol/L,pH 8.8),加入0.5g PVP和石英砂在研钵中研磨,在冰水中研磨成浆。10000r/min 4℃离心10min,上清液即为酶液。3ml反应体系中含50mmol/L磷酸缓冲液,13mmol/L甲硫氨酸,75μmol/L氮蓝四唑(NBT),100nM EDTA,4μmol/L核黄素,加入50μl粗酶,在日光下反应,以黑暗终止反应,立即在560nm下比色。以抑制NBT光化还原的50%为一个酶活单位。以不加酶液的光照管为对照。以磷酸缓冲液调零。1.4.2 过氧化氢酶(CAT)活性 3ml反应体系中含50mmol/L pH 7.0 PBS1.9ml,45mmol/L H2O2(2%)1.0ml和0.1ml酶液。连续记录240nm吸光度的变化。以每分钟变化0.01为一个酶活单位。试验结果表明,壳寡糖、寡聚半乳糖醛酸50μg/ml,75μg/ml,100μg/ml,以及病毒A稀释700倍都对烟草花叶病毒侵染烟草产生枯斑有抑制效果。其中寡聚半乳糖醛酸50μg/ml抑制效果最好,抑制率为52.8%,略高于阳性对照壳寡糖(49.7%)以及病毒A(31.8%)。寡聚半乳糖醛酸75μg/ml以及100μg/ml,抑制率分别为49.7%和37.9%,都高于病毒A稀释700倍。寡聚半乳糖醛酸浓度在50~100μg/ml之间是随浓度的增加,抑制率有所降低。取田间试验诱抗效果最好的寡聚半乳糖醛酸浓度50μg/ml进行温室试验,试图寻找诱抗效果最好的时间点。试验结果表明(3次重复),喷施寡聚半乳糖醛酸96h时,随着时间的延长诱抗效果越明显,枯斑产生的抑制率为62.2%,但是差异不显著,说明96h内寡聚半乳糖醛酸诱导效果基本维持稳定。处理斑点数抑制率(%)寡聚半乳糖醛酸50μg/ml92±40?52.875μg/ml98±47?49.7100μg/ml121±4337.9病毒A稀释700倍133±4031.8壳寡糖50μg/ml98±32?49.7CK195±48—表1 寡聚半乳糖醛酸不同浓度喷施对烟草花叶病毒病的防效(P处理斑点数抑制率(%)寡聚半乳糖醛酸24h89±35?37.648h91±61?36.872h80±35?44.396h54±21?64.4CK143±64—表2 寡聚半乳糖醛酸喷施不同时间对烟草花叶病毒病的防效(P2.3.1 超氧化物歧化酶(SOD)活性变化 寡聚半乳糖醛酸处理烟草植株后SOD的活性变化如图1所示。处理烟草15m~12h的时间内,SOD酶活性升高,均高于对照。其中处理1h内就达到一个峰值。8~12h达到第二个峰值。推测寡聚半乳糖醛酸诱导烟草首先能够产生一个快速的SOD活性升高的反应,然后在8~12h时能诱导另外一个途径使SOD酶活升高。图1 寡聚半乳糖醛酸诱导烟草不同时间后SOD酶活2.3.2 过氧化氢酶(CAT)活性变化 寡聚半乳糖醛酸处理烟草植株后,CAT活性明显高于对照,处理15m~2h即达到峰值。在处理后的148h内,CAT均可保持较高的活性。说明寡聚半乳糖醛酸在2h内可以快速诱导CAT的活性,并且可以在较长时间保持诱导烟草植株CAT的活性。图2 寡聚半乳糖醛酸处理烟草不同时间后CAT活性变化目前,对于寡聚半乳糖醛酸作为植物诱导子的研究比较多,但是对于诱导烟草抗烟草花叶病毒的研究较少,本实验室研究了寡聚半乳糖醛酸诱导烟草抗性的最佳浓度为50μg/ml,96h以内的诱导抗性不依赖于诱导时间的长短。本实验室也检测了诱导时间长达25天的诱抗效果,诱导抗性随时间的延长而先增加后降低,在16天达到最高。植物体在抵抗病原菌侵染的过程中,有些保护反应是在酶催化下完成的。许多研究结果表明,植物在逆境条件下,其膜系统的受损与生物氧自由基有关,超氧化物歧化酶SOD被认为是细胞膜的保护酶。酶活性愈高,消除氧自由基的能力越强。植物的抗逆性也愈强[1]。抗病毒剂VA诱导枯斑三生烟后,叶片中SOD活性增加,推测VA诱导枯斑三生烟对TMV的抗性可能与活性氧代谢有关,即可减少活性氧对植物的毒害作用[2]。另外,其他的能够诱导烟草抗TMV的诱导子如VFB[3]以及落葵提取液4],均可诱导烟草中SOD酶活性的增加。本文寡聚半乳糖醛酸能够诱导烟草抗病毒,并且也伴随着SOD酶活性的升高,间接说明SOD酶活性的升高与植物抗病毒有关系。过氧化氢酶(CAT)是植物细胞内重要的活性氧清除剂,其生理作用是将H2O2还原为H2O和O2。CAT活性升高或H2O2含量降低意味着活性氧对植物细胞伤害程度的降低。病原菌侵染烟草后,总体上看,抗病品种CAT活性高于感病品种[5]。孔凡明等通过烟草与TMV不同互作体系的研究表明,接种后CAT活性均升高,在非亲和性互作的早期,CAT活性显著高于亲和性互作[6]。因此,我们推测,寡聚半乳糖醛酸诱导烟草植株CAT活性的升高,有利于提高植物抗病毒的能力。但是对于诱导烟草抗性的具体机理还有待于进一步的研究。 -
报告Cloning and Sequence Analysis of CP Gene of Potato Virus Y Derived from Different Hosts in Anhui Province
出版时间:2007采集安徽不同地区感染马铃薯Y病毒(PVY)的烟草和马铃薯病样,购买美国Agdia公司PVY-N株系试剂盒进行ELISA检测,部分病样检测结果呈阳性,TRIZOL法提取总RNA,根据PVY CP基因两侧的保守序列设计特异性引物CP/F、CP/R,M-MLV酶逆转录得cDNA第一链,RT-PCR扩增,克隆至pGEM-T Easy载体,转化大肠杆菌TG1,筛选阳性克隆并测序。PVY-CP-4(来自烟草病样)和PVY-CP-7(来自马铃薯病样)基因全长均为801bp,编码267个氨基酸。利用DNAStar软件对来自两个不同寄主的PVY-CP基因进行序列比较,PVY-CP-4和PVY-CP-7的核苷酸序列相似性为92.1%,这两个PVY的CP序列与已报道的18个其他PVY CP序列相似性分别为88.5%~99.4%和90.9%~98.3%。构建PVY-CP-4和PVY-CP-7与其他18个PVY CP序列的系统关系树,可以看出PVY-CP-4和PVY-CP-7各自归为一类,两者之间亲缘关系较远。PVY-CP-4基因与PVYO(EF026074)亲缘关系最近,而PVY-CP-7基因与PVYNTN(AJ890347)亲缘关系最近,实际上,PVYNTN株系是PVYN株系的一个变种。病毒的外壳蛋白基因在寄主症状、病毒长距离和细胞间运输、病毒的介体传播等方面起着重要的作用。因此,病毒的外壳蛋白基因的同源性在病毒株系的划分中已成为主要依据之一。根据ELISA检测结果,PVY-CP-4和PVY-CP-7均属于PVYN株系,这与PVY-CP-7的分子鉴定结果相吻合,但与PVY-CP-4的分子鉴定结果不相符。Potyvirus 属是已确定的植物病毒属中成员最多的一个,有103个确定成员和92个暂定成员,传统分类标准如种传效率、交叉保护、蚜虫介体种类、寄主范围和症状学等至今仍被用作种的分类标准(Bvrunt,1992;Shukla 等,1994)。据报道(Bos,1992;Shukla 等,1992),原来最常用的用于区分相关病毒的标准——血清学关系很不可靠,在现今病毒分类上一般仅具参考价值。目前普遍认为,只有病毒的基因组结构和序列才能真实地反映植物病毒种的分类本质(Ward等,1995)。因此,根据本实验所测出的PVY CP的核甘酸序列比对结果,安徽地区烟草寄主上感染的PVY应属于PVYO株系,而马铃薯寄主上感染的PVY应属于PVYNTN株系。 -
报告Cloning and Analysis of 3′-terminal Genomic Sequence of a Beet Mosaic Virus Isolate from Lettuce*
出版时间:2007甜菜花叶病毒(Beet mosaic virus,BtMV)属于马铃薯Y病毒属(Potyvirus)。它是一个世界性的病原,主要由蚜虫以非持久方式传播,并可以通过机械接种和嫁接方式传播,但不能通过种子以及花粉传播。20世纪50年代末德国首次报道了BtMV在甜菜上的发生[1]。1981年Liu等报道了BtMV在北京地区菠菜上的发生,是我国对BtMV的首次报道[2]。BtMV寄主主要是藜科植物,可系统侵染甜菜(Beta vulgaris),局部侵染菠菜(Spinacia oleracea)、苋色藜(Chenopodium amaranticolor)、昆诺藜(C.quinoa)等。目前仅有美国华盛顿分离物、德国分离物、中国新疆以及内蒙古分离物的全序列以及英国和斯洛伐克少数几个分离物3′端部分序列被报道,这些分离物均来源于甜菜[3,4]。莴苣(Lactuca sativa)属于菊科莴苣属,一年或两年生草本植物。莴苣是我国常见蔬菜之一,在我国大部分地区均有种植。2007年,我们在泰安郊区蔬菜种植区调查病毒病时,发现莴苣上发生病毒病较为严重。感病植株叶片呈黄绿相间的花叶症状,植株严重矮缩。初步的血清学试验表明,该分离物是马铃薯Y病毒属病毒。用针对该属病毒的兼并引物进行RT-PCR扩增,获得此病毒基因组3′端片段,经序列分析表明为BtMV。1.1.1 供试毒源 莴苣病叶样品采自山东泰安郊区菜田,经枯斑寄主昆诺藜(C.quinoa)单斑分离3次后繁殖保存于本生烟(Nicotiana benthamiana)上,并取发病叶用硅胶保存。1.1.2 载体、试剂与菌株 大肠杆菌DH5α由本实验室提供;Trizol购自invitrogen公司;PCR产物回收试剂盒购自博大泰克公司;M-MLV反转录酶、RNase抑制剂(HPRΙ)购自Promega公司;无RNase的水,克隆载体pMD18-T、Taq DNA 聚合酶购自TaKaRa公司;硝酸纤维素膜购自Pall Gelman公司产品;碱性磷酸酯酶标记的A蛋白购自Sigma公司;其他化学试剂均为国产分析纯;BtMV的血清由中国农业大学韩成贵教授提供,其余抗血清由本实验室制备。1.2.1 SDS-琼脂免疫双扩散试验 以常规琼脂双扩散法进行,1g病叶样品加1ml PB缓冲液再加1ml 3%SDS研磨,将汁液6000r/min离心5min。取上清液适量加到琼脂糖凝胶中,与黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tobacco mosaic virus,TMV)、芜菁花叶病毒(Turnip mosaic virus,TuMV)、马铃薯X病毒(Potato virus X,PVX)、马铃薯Y病毒(Potato virus Y,PVY)的抗血清反应,加样后在37 ℃下放置,12h后观察结果。1.2.2 RNA提取 采用 Trizol法(Invitrogen)提取总RNA。取0.2g具典型症状病叶于干热灭菌的研钵中,液氮研磨至粉末,迅速转移至1.5ml离心管中,加1ml Trizol剧烈振荡,静置10min;加200μl氯仿后充分振荡15s,静置5min,于4℃、12000r/min离心15min;将上清转移至另一1.5ml离心管中,加入等体积冰冷的异丙醇混匀,室温放置10min,4℃、12000r/min离心10min,沉淀用DEPC处理灭菌水配制的75%乙醇洗涤;室温干燥,加入适量无RNase的水溶解RNA,-80℃保存备用。1.2.3 RT-PCR扩增 以提取的总RNA为模板,在Oligo d(T)引物引导下利用M-MLV反转录酶合成第一链cDNA。用针对马铃薯Y病毒属病毒3′端序列设计的简并引物Sprimer和K11465(表1),扩增病毒RNA基因组的3′端序列。扩增条件如下:94℃预变性3min;94℃变性30s,60℃退火30s,72℃延伸2min,30个循环;72℃延伸10min。扩增产物经1%琼脂糖凝胶电泳检测。1.2.4 PCR产物的克隆与测序 PCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,提取质粒,经PCR扩增和酶切鉴定为阳性的重组质粒送北京英俊有限公司测序。NamePrimersequenceTmReferencesOligod(T)5′-GGTCGACTGCAGGATCCAAGC(T)15-3′[5]K114655′-GGTCGACTGCAGGATCCAAGC-3′68[5]Sprimer?5′-ATAGGATCCCTGCAGGGBAAYAAYAGYGGDCARCC-3′69~78[6]Table 1 Primers used for cDNA synthesis, PCR amplification and DNA sequencing1.2.5 Western blotting分析 参考文献中[7,8]的方法,用Western blotting验证采集的莴苣样品、单斑分离后保存在本生烟上的样品与BtMV血清的关系。第一抗体为原核表达制备的抗血清,第二抗体为碱性磷酸酯酶标记的A蛋白,用BCIP/NBT显色。1.2.6 DNA序列比较与分析 将所得DNA序列输入GenBank进行BLAST检索,采用DNAStar和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的BtMV分离物的相应序列进行比较和分析,构建系统进化树。感病莴苣植株表现明显的矮缩症状,叶片呈黄绿相间的花叶症状,叶片变小并伴有明显的皱缩(图1)。Figure 1 Symptoms of lettuce infected by BtMV-SDSDS-琼脂扩散试验结果显示样品与TuMV抗血清和PVY抗血清均有沉淀反应,说明样品中含有马铃薯Y病毒属的病毒。以提取的病叶样品总RNA为模板,经RT-PCR扩增,得到长度约为1.7kb的目的片段(图2),与预期的大小相一致。扩增产物经纯化后克隆到pMD18-T载体上。经蓝白斑筛选和酶切鉴定,得到含有目的片段的重组子。Figure 2 RT-PCR amplification of 3′-cDNA of BtMV-SD通过测定2个PCR反应克隆到的片段序列,确定了插入片段的核苷酸序列长度1629bp。序列已登录GenBank,登录号为EF633501。扩增产物包含630bp NIb编码序列、831bp CP编码序列及168bp非编码区序列(3′-UTR)。在由此推导其氨基酸序列中,NIb与CP的切割位点为VTYQ/G,符合多数马铃薯Y病毒属病毒NIb与CP切割位点的保守基序为VXXQ的特征[9]。NIb氨基酸序列中存在依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)保守氨基酸序列GDD。CP序列中含有蚜虫传播马铃薯Y病毒属病毒所必需的DAG基序。分离物BtMV-SD 3′ 端序列与GenBank中已登录的斯洛伐克(BtMV-SL,AF363639)、美国华盛顿(BtMV-Wa,AF206394)、中国内蒙古(BtMV-IM,DQ674263)、中国新疆(BtMV-XJ,DQ674264)、英国(BtMV-UK,AF203540)、中国新疆2(BtMV-XJ2,DQ345522)以及未登录的德国(BtMV-G)[10] 6个BtMV分离物的核苷酸序列同源性分别为98.8%、91.1%、98.6%、97.7%、98.5%、97.5%、98.8%,氨基酸序列同源性分别为99.2%、94.3%、99.5%、98.4%、99.4%、98.9%、99.5%。除了BtMV之外,马铃薯Y病毒属中的落葵皱缩花叶病毒(Basella rugose mosaic virus,BaRMV)(DQ394891)与BtMV-SD的核苷酸同源性最高,为63.5%。据CP编码序列构建的系统进化树表明,8个分离物可以分为两组:欧亚大陆组(Euroasia group)与美洲组(America group),结果与Xiang等[4]的相一致。其中美国华盛顿分离物BtMV-Wa位于美洲组,包括BtMV-SD在内的其他分离物位于欧亚大陆组(图3)。BtMV-SD与BtMV-SL位于同一分支,两者在进化关系上最为接近。Figure 3 Phylogenetic tree based on CP-coding sequence of 8 BtMV isolatesWestern blotting分析表明,自然发病的莴苣样品以及接种发病的本生烟样品均与BtMV血清有较强的特异性反应,而本生烟健康植株则无反应。Figure 4 Western blotting analysis of BtMV-SD在用有些病毒的多克隆抗体检测样品时,经常会出现交叉反应,这在马铃薯Y病毒属病毒中也非常普遍[11]。本研究的样品在SDS-琼脂免疫双扩散试验中与TuMV和PVY的抗血清均有沉淀反应,表明该分离物可能有马铃薯Y病毒属的病毒。通过比较病毒基因组3′端约1.7kb的序列,证明该病毒分离物为BtMV。Western blotting进一步证实了该结果。病毒病是莴苣生产中的主要病害之一。病毒的复合侵染在田间也非常普遍。已报道侵染莴苣的病毒有莴苣花叶病毒(Lettuce mosaic virus,LMV)、蒲公英黄花叶病毒(Dandelion yellow mosaic virus,DYMV)和CMV。先前报道BtMV寄主主要是甜菜、菠菜等藜科植物,而不易侵染莴苣。本文首次报道BtMV在自然条件下能够侵染莴苣并造成危害。
