首页 <
知识图谱:全部
-
报告Comparison of Viruliferous Rate of Rice Stripe Virus in the Small Brown Planthopper Laodelphax striatellus (Homoptera: Delphacidae) by Bioassay and Dot-immuno Binding Assay
出版时间:2007由RSV引起的水稻条纹叶枯病最早于1897年在日本关东发现,后在朝鲜、乌克兰均有发生。1962年我国在江苏、浙江首先发现RSV。目前该病已经在全国16个省、市、自治区发生,在云南、辽宁、北京、河南、山东、江苏、上海十分常见,特别是云南的保山、楚雄、昆明,北京的双桥,河南原阳,山东济宁及江苏北部的姜堰、洪泽等地,发生更为普遍严重。RSV由介体灰飞虱(Laodelphax striatellus Fallen)传播,灰飞虱的带毒虫量是水稻条纹叶枯病发生流行的主要影响因子。因此,建立一种快速灵敏检测灰飞虱带毒率的方法对于预测水稻条纹叶枯病的流行及病害防治十分必要。目前国内外用于检测灰飞虱带毒率的方法主要有ELISA、RT-PCR和Northern杂交等。但RT-PCR和Northern杂交成本高,不适于大批量检测样品。用斑点免疫结合(DIBA)法检测快速灵敏,简单易行,适用于大批量检测,并且适合于基层工作人员直接检测灰飞虱携带的病毒,从而为病害的流行预测提供依据。为此,我们利用斑点免疫结合(DIBA)检测RSV的方法对浙江部分市县的灰飞虱进行了水稻条纹叶枯病毒带毒率测定,并与采用生物法测定的灰飞虱传毒率进行了比较。现将研究结果报道如下:1.1.1 供试虫源、水稻品种 2006年供试虫源为采自浙江长兴和嘉兴两地的灰飞虱虫源,2007年供试虫源为浙江湖州和嘉兴海盐、桐乡、秀洲等县区提供的灰飞虱。供试水稻植株为苗龄15天的嘉991和秀水110两个水稻品种,由嘉兴市农业科学院提供。1.1.2 供试抗体 RSV抗体由江苏省农业科学院植物保护研究所和浙江大学共同研制,效价为1:5000~10000;酶标二抗为辣根过氧化物酶标记的羊抗鼠IgG,由Sigma公司生产(PN为A4416),效价为1:5000~10000。1.2.1 生物法测定灰飞虱传毒率 选用长度15cm、直径2cm、两端开口的玻璃管,首先用纱布罩住管口一端。将事先育好的供试水稻秧苗置于其中,每管一株,然后接入一头供试灰飞虱,再用纱布罩上玻璃管的另一端。将玻璃管竖直放入盛有清水的育苗盘中,保证秧苗根部朝下刚好浸入水中。对每个玻璃管做好标记,记录灰飞虱采集地,并对每株秧苗进行编号。2006年供试水稻秧苗数量和灰飞虱虫量均为257,其中长兴虫源104头供试虫全部接在嘉991品种上,嘉兴市新丰虫源中73头供试虫接于嘉991品种上,80头供试虫接于秀水110品种上。2007年测定了湖州和嘉兴市海盐、桐乡、秀洲共4个不同地区的灰飞虱传毒率。其中湖州和桐乡供试虫口为123头和132头,均接于嘉991秧苗上取食;海盐和秀洲供试虫口分别为159和167头,接于秀水110秧苗上取食。待该批灰飞虱在供试秧苗上取食24h后,将活的灰飞虱按编号回收冷冻备用。同时将已被取食的供试秧苗按编号移栽到观测圃中,观察并记录回收活虫对应的植株发病情况。1.2.2 斑点免疫结合(DIBA)法测定灰飞虱带毒率 将生物测定法中收回的供试灰飞虱单头置于100μl碳酸盐包被缓冲液(0.05mol/L,pH值9.6)中,用木质牙签捣碎,5000r/min离心3min后取上清液作为待测样品备用。在NC膜方格上,每格加入3μl待测样品后在室温下晾干;将干燥的膜正面朝上浸入5%封闭液中,置于37℃水浴锅中30min后,用PBST洗涤3次,浸入用封闭液稀释1000倍的单抗液中置于37℃水浴锅中1.5h;用PBST洗涤3次后,将膜浸入用封闭液稀释5000倍的辣根过氧化物酶标记的二抗中,置于37℃水浴锅中1.5h,洗涤后加入固体显色底物液,置于37℃水浴锅中30min(参见马占鸿等的方法)。随后晾干,统计NC膜上显色格的数量,计算所检测灰飞虱的带毒率。在生物法测定灰飞虱传毒率的试验中,被取食供试苗最早于接虫后13天初见发病症状,首先从水稻叶脉附近出现褪绿的斑点,并且斑点排成和叶脉平行的直线,随后病斑逐渐增多,连成互相平行的多条病斑,最后整个叶片发黄直至卷曲。35天后供试苗不再出现新的发病植株。2006年利用生物法测定传毒率时观察秧苗发病率发现,供试的257株秧苗中有11株发病,发病率为4.28%,其中长兴虫源取食的104株供试苗中有7株发病,即有7头灰飞虱传播病毒,传毒率为6.73%;嘉兴新丰虫源在嘉991和秀水110上取食后的发病植株分别为2株,灰飞虱在嘉991和秀水110上的传毒率分别为2.74%和2.50%。各地平均传毒率为3.99%。2007年利用生物法测定传毒率观察秧苗发病率时发现,所测4个地区供试的581株秧苗中共有25株发病,发病率为4.30%,其中湖州虫源的传毒率最高,为6.50%;海盐、桐乡和秀洲3个地区的灰飞虱传毒率差异不大,分别为3.77%、3.79%和3.59%,各地平均传毒率为4.41%。利用在生物测定法中回收的供试虫源样本,在实验室采用斑点免疫结合(DIBA)法测定灰飞虱带毒率,试验发现采用斑点免疫结合(DIBA)法测定的灰飞虱带毒率要高于在生物测定法中的传毒率(秧苗发病率)。2006年采用斑点免疫结合(DIBA)法测定的供试样本平均带毒率为6.15%,其中取自长兴的104头灰飞虱中,检测发现其中11头呈阳性反应,带毒率为10.58%。采自嘉兴的虫源在取食嘉991和秀水110两个品种中分别回收活虫73头和80头,各有3头在检测中发生呈阳性反应,带毒率分别为4.11%和3.75%。对生物学和快速检测法检测结果比较发现,采用斑点免疫结合(DIBA)法检测的带毒率高于生物法测定的传毒率,两者之比平均为1:0.65,幅度为1:0.64~0.67,见表1。虫源地带毒率测定(DIBA测定)发病率观察(生物法测定)供试虫数反应点带毒率(%)对应检测株反应株传毒率(%)传毒率/带毒率长兴(秀水110)1041110.5810476.730.64嘉兴(嘉991)7334.117322.740.67嘉兴(秀水110)8033.758022.500.67各地平均6.153.990.65表1 2006年生物法测定结果与DIBA法测定结果比较2007年采用斑点免疫结合(DIBA)法测定的供试样本平均带毒率为8.68%,其中湖州和嘉兴秀洲虫源的带毒率最高,分别达到了13.01%和11.38%;海盐和桐乡带毒率也较高,分别为5.03%和5.30%。对生物法和快速检测法测定结果比较发现,采用斑点免疫结合(DIBA)法检测的带毒率高于生物法测定的传毒率,两者之比平均为1:0.57,幅度为1:0.32~0.75,见表2。虫源地带毒率测定(DIBA测定)发病率观察(生物法测定)供试虫数反应点带毒率(%)对应检测株反应株传毒率(%)传毒率/带毒率湖州(嘉991)1231613.0112386.500.50海盐(秀水110)15985.0315963.770.75桐乡(嘉991)13275.3013253.790.72秀洲(秀水110)1671911.3816763.590.32各地平均8.684.410.57表2 2007年生物法测定结果与DIBA法测定结果比较通过对不同地区虫源在两个不同水稻品种上的试验发现,在浙江嘉兴和湖州采集的灰飞虱供试虫源中均有一定数量的灰飞虱携带病毒并有传毒能力。通过2006年、2007年两年利用斑点免疫结合法和生物法对灰飞虱带毒率和传毒率检测试验表明,灰飞虱带毒率高于传毒率,而且传毒率与带毒率之比相对较为稳定,两年平均为0.61,其中2006年灰飞虱传毒率与带毒率之比为0.65,2007年灰飞虱传毒率与带毒率的比值为0.51。以上结论初步明确了浙江嘉兴、湖州两地越冬代灰飞虱体内水稻条纹叶枯病带毒率与传毒率之间的关系,为两种检测方法数值转换和病害预测提供科学依据,但其他世代灰飞虱带毒率与传毒率之比是否与此一致尚有待进一步研究。 -
报告苹果褪绿叶斑病毒干扰性hp-dsRNA基金项目:湖北省自然科学基金资助项目(2006ABA162)。
出版时间:2007RNA介导的病毒抗性主要是基于转录后基因沉默(Post-transcriptional gene silencing,PTGS)作用,在真菌、植物和动物中有PTGS相关的基因存在,这些基因沉默现象可统称为RNA干扰现象(RNA interference,RNAi)。许多证据表明,RNA沉默是由双链RNA(dsRNA)所引发的,且需要细胞内的多种酶参与。基于dsRNA在RNA沉默中的诱导作用,构建能转录后形成dsRNA的载体,转化植物后可有效诱发基因沉默。苹果褪绿叶斑病毒(Apple chlorotic leaf spot virus,ACLSV)是苹果、梨和多种核果类果树上发生普遍的一种病毒,可降低树势和影响果实品质。本研究根据GeneBank上已登陆的ACLSV序列设计合成了一对引物,根据载体pDS1301的限制性内切酶图谱,在引物的两端分别引入了两个不同的限制性内切酶识别位点。以总RNA或dsRNA为模板,通过RT-PCR扩增获得来源于砂梨的2个ACLSV分离物的大小为358bp的片段,该片段位于ACLSV cp基因高度变异区。将扩增片段克隆到载体pMD18-T,筛选阳性克隆后提取质粒,经Kpn I/Bgl II和Spe I/Sac I分别对目标片段及载体pDS1301酶切后,在T4连接酶作用下,将克隆片段以正向和反向方式分别插入植物表达载体pDS1301一内含子两端的多克隆位点,构建了可转录后形成dsRNA的载体pDR358-SMJ和pDR358-HH。将重组质粒转化根癌农杆菌EHA105感受态细胞后,采用叶盘共培养的方法转化5~6叶期的健康西方烟叶片,经潮霉素抗性筛选获得转基因西方烟植株。从获得的转基因西方烟植株提取总DNA,根据载体pDS1301多克隆位点两侧的序列合成特异引物,采用 PCR方法对这些植株进行了鉴定,已得到了转R358-SMJ的西方烟49株、转R358-HH的西方烟12株(图1)。图1 部分转基因西方烟的PCR鉴定 -
报告ASPV cp基因克隆及植物基金项目:湖北省自然科学基金资助项目(2006ABA162)。
出版时间:2007苹果茎痘病毒(Apple stem pitting virus,ASPV)是侵染苹果和梨树的主要病毒之一,可导致苹果和梨的生长势下降,并影响其果实产量和品质。本研究在生物学、血清学和分子生物学鉴定的基础上,筛选出侵染砂梨的APSV毒源材料。参照已报道的ASPV全基因组核苷酸序列设计合成引物,以来源于砂梨(6-1-13)ASPV的 dsRNA为模板,RT-PCR扩增获得大小为1328bp特异性扩增条带,并对扩增产物进行纯化、克隆和序列测定。序列分析结果表明,其核苷酸序列与国外在GenBank上登录的14个ASPV分离株的同源率为82%~88%。将克隆获得的目的基因与pET28c连接得到原核表达载体pET28c-ASPV cp,并在大肠杆菌BL21(DE3)中成功诱导该基因表达,表达蛋白大小约44kDa。将表达正义链和反义链的该病毒分离物cp基因cDNA分别与植物表达载体pCAMBIA1301连接,转化大肠杆菌DH10B的感受态细胞,经过PCR和双酶切鉴定和筛选阳性克隆,成功构建了ASPV cp基因的正义链和反义链植物表达载体pCAMBIA1301-ASPV cp+和pCAMBIA1301-ASPV cp-。将重组质粒转化根癌农杆菌EHA105感受态细胞后,采用叶盘共培养的方法转化5~6叶期的健康西方烟叶片,经潮霉素抗性筛选和PCR鉴定,获得88株西方烟转化植株,其中ASPV cp基因正义链的西方烟植株68株,表达cp基因反义链的西方烟植株20株。 -
报告警惕台湾番茄曲叶病毒病发生为害? 承蒙浙江大学周雪平教授鉴定病原、刘树生教授提供资料和信息,胡丽秋、陈为康、卢启强、夏万青同志协助调查,在此一并致谢!
出版时间:20072006年10月以来,浙江温州市乐清、瑞安、苍南、瓯海、龙湾等地的大棚番茄上相继发生了一种以前从未见过的病毒病。为此,我们立即分别从不同地点采集了较典型的罹病植株样本送浙江大学生物技术研究所鉴定,经该所用超薄切片电镜观察、ELISA和分子水平检测后确认是台湾番茄曲叶病毒(也称烟草曲叶病毒)(TLCV)所致。该病毒病在浙江省系首次发现,经检索国内也鲜有报道。台湾番茄曲叶病毒病是一种毁灭性的蔬菜新病害,是世界许多地区番茄生产上的重要限制因素,该病为害猖獗、蔬菜生产部门及有关方面须高度警惕。据调查,温州地区秋季定植的大棚番茄株发病率一般为3%~30%;严重田块株发病率高达95%以上,当地农民基本放弃管理或拉秧改种。初步统计温州各县(市、区)台湾番茄曲叶病毒病的发生面积约为333.3hm2,其中株发病率在50%的田块约为53.3 hm2以上,给各地番茄生产造成了严重损失。染病番茄植株矮化,生长缓慢或停滞,顶部叶片大多褪绿发黄、叶变小,边缘上卷,叶片增厚、变硬,叶脉呈紫色。生长发育早期染病的植株严重矮缩,不能正常开花结果;中后期染病的植株仅上部叶片和新芽表现症状,结果减少、果实变小,成熟期果实着色不均匀(红不透),商品价值低;生长发育后期,随着气温上升染病植株症状减轻。该病病原为Tomato leaf curl Tanwan virus,属双生病毒组的一种病毒,据资料报道该病毒只能由烟粉虱(Bemisia tabaci)传毒,土壤、种子和土壤均不传毒。近年来烟粉虱在温州地区的发生为害呈暴发态势,现已证实外来入侵生物B型烟粉虱的入侵蔓延并成为优势种是温州地区烟粉虱暴发的主要起因,估计台湾番茄曲叶病毒由B型烟粉虱带入的可能性较大。2006年秋冬,温州地区总体上呈高温干爽天气,对该病虫媒烟粉虱的发生、繁衍十分有利,虫量发生大、加上带毒种群及其携带病毒的多年积累和扩增,为台湾番茄曲叶病毒病的流行提供了病原数量基础,这可能是该病暴发的主要原因。此外,目前温州生产上推广的大多数番茄品种如红梅王、FA-189、516、托马雷斯、合作903等对该病毒病的抗性较差也是不可忽视的重要原因。据报道,该病极有可能在首次暴发后数年内迅速发展并导致大暴发,故须立即采取措施进行应急防控,以便将该病发生为害控制在最小限度内。抓紧引进、筛选抗耐病的优良品种,同时加强培育适合温州市栽培的抗病品种。对重发田实施与非茄科作物轮作,最好是水旱轮作。①育苗床与生产大棚要分开;②清洁消毒苗床;③使用30~40目防虫网隔离育苗,防止烟粉虱入侵;④苗床挂“黏虫色胶板”诱杀烟粉虱;⑤移栽时带药下田。①加强肥水管理,增强植株抗病能力;②地膜覆盖,去除边际杂草;③及时去除植株下部烟粉虱虫、卵枝叶;④收获后及时清洁棚室和周围环境。消灭虫媒,及时防治烟粉虱。可选用99.9%绿颖农用矿物油200~300倍稀释液、20%啶虫脒(兰宁)可溶性液剂3000倍稀释液、25%扑虱灵可湿性粉剂1000~1500倍稀释液、25%阿克泰水分散粒剂2000~3000倍稀释液、2.5%天王星乳油2000~3000倍稀释液、1.8%阿维菌素1500倍稀释液、1%甲胺基阿维菌素2000倍稀释液等进行防治。应在烟粉虱发生初期防治,并交替使用农药。 -
报告Research Advances on the Enterotoxin of the Bacillus cereus
出版时间:2007芽孢杆菌属(Bacillus spp.)是一类好氧或兼性厌氧、产生抗逆性内生孢子的杆状细菌,许多为腐生菌,主要分布于土壤、植物体表面及水体中,其在工业、农业、医学、军事和科学研究中有广泛的应用价值。在《Bergey氏鉴定细菌学手册》第8、第9版中,蜡样芽孢杆菌的分类地位为芽孢杆菌属的第I群,该群有22个种。根据营养型菌细胞的宽度分为两类,蜡样芽孢杆菌、蕈状芽孢杆菌、苏云金芽孢杆菌、炭疽芽孢杆菌和巨大芽孢杆菌属“大细孢菌种”。蜡样芽胞杆菌是一种杆状、产内生芽孢的革兰氏阳性细菌,由于蜡样芽孢杆菌自然界分布甚广,常存在于土壤、灰尘、腐草和空气中,极易在食品加工、运输、贮存、销售过程中,通过苍蝇、蟑螂等昆虫和不卫生的用具和手污染,通常被认为是一种条件致病菌,在临床上可导致脓肿、脑膜炎、骨髓炎、心内膜炎等报道,但最常见的是导致两种不同类型的食物中毒:腹泻型和呕吐型。关于B.c.引起非肠道感染及食物中毒的例子很多,从1898年起,就有B.c.造成泌尿系统感染及肠胃炎的记载,有些感染的病例甚至很严重,以致造成死亡。在微生物发展的早期,好氧芽孢杆菌就被怀疑可造成食物中毒,Lubenau1906年描述了发生在一家医院的严重的食物中毒事件,300名医务人员及病人用餐后出现急性肠胃炎,对剩余的食物进行检测,发现含有大量的好氧芽孢杆菌,该污染菌为B.c.。Seitz 1913 年从一例患肠炎与腹泻的病人分离出B.c.。Brekenfeld 分别于1926年及1959年报道了两起B.c.造成的食物中毒事件。1936~1942年,瑞典卫生部对367例食物中毒事件综合分析,证实117例是由B.c.引起,并且认识到被B.c.污染的食物,储藏温度不当时,可能会造成食物中毒,在1973年Bulyba等人报道了污染蜡样芽孢杆菌的乳制品引起食物中毒。由于Smith、Gorden 及其同事在芽孢杆菌分类学上的进展,Hauge 经过对4起食物中毒事件的调查,于1995年首次确认B.c.是一种引起食物中毒的致病菌。目前大部分国家对各类食品中的蜡样芽孢杆菌数量有所限定,多数情况下,引起食物中毒的食品中蜡样芽孢杆菌的数量在105~108 CFU/g,常因食用肉类、海鲜、乳品和蔬菜等食物引起,潜伏期一般为6~15h,一般持续24h;而致呕吐的毒素是该菌在食物中预先产生的,该毒素非常稳定,进入人体后在胃中与其受体5-HT3 结合,导致呕吐。呕吐型食物中毒的潜伏期一般为0.5~6h,一般限于富含淀粉质的食品,特别是炒饭和米饭。主要症状为恶心、呕吐,有时有腹泻、头晕、发烧和四肢无力等症状,引起这两种食物中毒的食品通常都是经过热加工处理的,但蜡样芽孢杆菌具有耐热的芽孢,能在食品加工及烹饪后残留下来,热处理诱发芽孢的萌发,在没有其他微生物与之竞争的条件下,大量生长繁殖,产生毒素并引起食品的腐败。蜡样芽孢杆菌产生的呕吐毒素(cereulide,1.2kD)是一种小的十二边形的热稳定性环状毒素,分子式为(D-O-Leu-D-Ala-L-O-Val-L-Val)3。其结构、性质和毒理与缬氨霉素很相似,是特异性的钾离子载体,能将K 转入线粒体内,破坏线粒体的氧化还原能力。该毒素非常稳定,目前的各种食品加工方法,包括灭菌,均无法使其失活(能耐受126℃ 90min),而且还耐强酸(pH 2.0)、耐蛋白酶水解。N.Agata等对多种食品中呕吐毒素的产量进行了检测,发现对B.cereus NC7401来说,在煮熟后的米饭中其产毒量很高,在富含淀粉质的食物中的产毒量也足以引起食物中毒;而在肉类、蛋品和密封的液体食品如牛奶和豆奶中虽可以检测到该毒素,但其含量较低。还发现在与醋、蛋黄酱及酱类一起煮的食物中,该菌株的生长和产毒都受到抑制,推测这可能是醋导致pH 降低的缘故。在12~15℃时该毒素的产量却明显高于30℃时的产量,而且该毒素的产生与芽孢的产生没有相关性。还有报道称该毒素只有在有氧条件下才能产生,所以缺氧条件如:充氮包装和真空包装能有效地防止该毒素的产生和积累。因为该毒素的分子量很小,无抗原性,这使其检测比较难,到目前为止尚缺乏一种快速可靠的检测方法。最常用是采用HEp-2 细胞进行细胞培养分析。近年来用分子生物学手段检测产毒菌株的报道也较多,如P F Horwood 等人根据NRPS基因的两个可变区的序列,针对产呕吐毒素的菌株设计了特异性的引物,进行PCR 以检测蜡样芽孢杆菌是否产毒,取得了良好的效果,该法灵敏度高,而且检测速度快。在呕吐食物中毒事件中分离的蜡样芽孢杆菌均产生呕吐毒素,而且有着共同的独特表型特征,对其基因进行分析发现它们同源性很高。B.c.所造成的腹泻型食物中毒的致病因子是肠毒素,目前至少已经发现4 种不同的肠毒素,包括2 个三联体肠毒素:溶血素BL和非溶血素Nhe;2个单一亚基肠毒素:细胞毒素K(cytK)、肠毒素T(bceT)。2.2.1 溶血素BL(HBL)Beecher1991年从B.c.菌株中分离提纯了一种具有活性的三亚基肠毒素,命名为溶血素BL(hemolysinBL),能够引起家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其由一个结合亚基B(37.5kD)、两个溶血亚基L1(38.2kD)及L2(43.5kD)组成,编码3个亚基的基因hblA、hblD、hblC经克隆、测序与分析,表明其在同一个mRNA中受一个操众子调控转录如图1。这些组分的物理化学性质非常相似,等电点(pI)为5.34,5.33和5.33。其中hblA编码结合亚基B,hblD、hblC分别编码溶血亚基L1及L2,hblB编码B’蛋白,hblC和hblD仅隔37bp个碱基,B、L1、L2蛋白分别有31、30、32个氨基酸的信号肽,hblD和hblA之间最少有100bp碱基,hblA和 hblB有381 bp的碱基隔开,B’蛋白与B蛋白开始的158个氨基酸非常相似,但其功能尚未清楚。Douglas J.Beecher等人利用等电聚焦电泳技术和快速蛋白液相层析技术证明单独成分的溶血素亚基并不会在血平板上产生溶血环,只有当3个亚基结合后,才会产生溶血环。图1 芽孢杆菌溶血素BL操纵子图谱2.2.2 非溶血素肠毒素(Nhe)非溶血素肠毒素(Nhe)由45、39和105kD的蛋白组成,其蛋白成分已被分离出来。1999年Granum等给出了nhe操纵子的序列,该操纵子有3个开放式阅读框,相应的3个基因分别是:nheA、nheB和nheC。前两个基因的产物分别为45kD和39kD 蛋白,而nheC 的产物尚未纯化出来,其功能未知。Nhe与Vero细胞相互作用的研究表明105kD蛋白是复合物的结合部位,而其他两个组分是无法单独结合到细胞上去。该105kD 蛋白是一种金属蛋白,具有分解明胶和胶原的活力。与hbl 基因不同,编码该毒素的基因位于质粒上。图2 芽孢杆菌非溶血素Nhe操纵子图谱溶血素BL(HBL)与非溶血素肠毒素(Nhe)同时受到PlcR的调控。2.2.3 肠毒素T(entertoxin T)肠毒素T为单一亚基的蛋白质,由 bceT基因编码,日本学者Agata对其基因克隆、测序和分析表明其由336个氨基酸组成。并认为其有细胞毒性,可导致家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其产物属于肠毒素蛋白。该毒素同溶血素BL无同源性,而且认为肠毒素T 不会导致食物中毒。2.2.4 细胞毒素K 早期在法国报道过食物中毒,其氨基酸序列显示它属于β-桶孔形成毒素,能在磷脂双分子层中形成直径至少为7A°的孔,该孔具有微弱的离子选择性,已证实它对人类肠道Caco-2上皮细胞具有毒性。PlcR是条件性人类病原菌B.cereus和共生病原菌B.thuringiensis细胞外毒性因子的一个多效调节子,它在细胞进入稳定期时诱导生长。受到PlcR调节的基因有:plcA编码一个专一性磷脂酰肌醇磷脂酶C(PI-PLC),Plc编码一个改良的磷脂酰胆碱磷脂酶 C(PC-PLC),nhe编码一个无溶血性的肠毒素,hbl编码一个溶血性的肠毒素 BL(HBL);以及推定为S-层类似表面蛋白的基因,以及一个推定为细胞外RNA酶。通过分析37.1kb的hbl,plcA和plcR周围的DNA序列,推定存在28个ORF。3条新基因推定受到PlcR 的调节并编码一个中性蛋白酶,subtilase家族丝氨酸蛋白酶(Sfp)以及一个推定的细胞壁水解酶(Cwh)得到确认。相应的sfp和cwh 基因定位于plcA的上游调节区域,能同时受到位于逆转录基因之间的PlcR结合位点的调控。Sylvie Salamitou等构建plcR基因缺失的突变菌株,该基因编码一个多效细胞外因子的调节子。幼虫期同时取食亲本菌株产生的106孢子亚致死浓度的Cry1C毒性导致70%死亡率,如果使用plcR突变体的孢子,则只有7%的死亡率。小鼠鼻腔灌入108的孢子,亲本菌株导致了100%的死亡率,而灌入相同数量的突变体孢子,死亡率大大降低,甚至没有死亡。应用营养体细胞代替孢子也可以达到相同的效果。导致死亡的原因未知,不可能是由于小鼠内细菌的实际增长所导致。由于受B.thuringiensis 过量突变体感染的小鼠产生的病变,说明溶血素参与其中,发生了作用。B.thuringiensis和B.cereus具细胞溶解毒性的特性。这种细胞溶解毒性的水平在plcR基因缺失的菌株中剧烈下降。表明 B.thuringiensis407菌株和B.cereusATCC14579的致病性受到PlcR的调控。由于蜡样芽孢杆菌及其芽孢广泛存在于周围的环境中,它极易污染食物而引起食物中毒,因此需要发展一种快速的检测方法来实现对致病性蜡样芽孢杆菌的检测,目前对该类蜡样芽孢杆菌的检测主要采用生化检测方法是一项费时费力的方法,需要长时间的选择性培养过程。现在有两种试剂盒可供选择,但由于价格昂贵且不太灵敏,有些致病菌不能够检测。王利国等人对实验室14株芽孢杆菌溶血素BL的检测结果表明,8株蜡样芽孢杆菌全部检测到溶血素BL的基因且产生溶血环,而其他的蜡样芽孢杆菌只检测到hblA基因以外的基因且不产生溶血环,表明只要检测到hblA基因,证明其为致病性菌株,所以通过设计hblA基因特异引物用PCR或通过血平板培养的方法是既经济又快速的检测方法。对其他毒素的检测目前主要是通过设计特异性引物来检测。所以对蜡样芽孢杆菌毒素的检测还需要进一步对其研究,确定最佳的检测方法。 -
报告Study on the Differentiation in Pathogenicity of Different Isolates of Botrytis cinerea Pers to Tomato
出版时间:2007由灰葡萄孢(Botrytis cinerea Pers.)侵染引起的番茄灰霉病是当前番茄生产上重要病害,尤以设施栽培条件下发生较重,一般引起产量损失20%~30%。灰葡萄孢的寄主很广,已经报道过的寄主至少有235种,能为害多种粮食作物、经济作物、蔬菜、果树和观赏植物[1]。随着高效农业的发展,温室中蔬菜、花卉、果树轮作、间作日渐频繁,使得同种作物间、不同种作物间交互感染成为可能[2~3]。为了明确来自其他寄主植物的灰葡萄孢菌株能否侵染番茄,不同寄主来源的菌株对番茄的致病力是否存在差异,从而为生产上包括番茄灰霉病在内的灰葡萄孢所致植物灰霉病的综合治理提供参考依据,作者对不同寄主来源的灰霉菌株对番茄的致病力及其分化进行了研究。2005~2007年,从合肥市、蚌埠市、长丰县、和县等地区的番茄、辣椒、草莓、葡萄等发病寄主上分离鉴定获得18个灰葡萄孢菌株,采用菌丝块创伤接种法,分别测定了上述不同寄主来源的灰葡萄孢菌对番茄果实和叶片的致病力。结果表明,所有供试菌株接种番茄果实后均可引起发病,但不同菌株所致病斑的平均直径有显著差异,提示灰葡萄孢菌株间对番茄果实的致病力存在明显分化。按照在番茄果实上所致病斑的平均直径大小可将供试菌株划分为致病力较强、致病力中等和致病力较弱3种类型。总体来说,来自番茄的菌株对番茄果实的致病力较强,来自草莓、葡萄和辣椒的菌株对番茄果实的致病力较弱,但来自相同寄主的菌株间致病力也存在差异,菌株致病力差异与菌株地域来源无明显相关。供试灰葡萄孢菌株接种番茄叶片后,除CF1外,均可引起番茄叶片发病,但不同菌株所致番茄叶片病斑的平均直径也有显著差异,但菌株致病力差异与菌株的寄主和地域来源无显著相关。本文关于灰葡萄孢不同菌株致病力存在差异的研究结果与Kersises[4]的报道一致。Lorenz[5]和Kersises[4]认为灰葡萄孢不同菌株致病力分化的原因可能与异核现象有关。作者也曾采用细胞核染色法观察到部分灰葡萄孢菌株菌丝细胞内存在多核现象,但这种多核现象与异核现象乃至致病力分化之间的关系尚不清楚。因此,有关灰葡萄孢不同菌株致病力分化的机制尚需进一步研究。灰葡萄孢菌株对番茄果实和叶片的致病力测定结果比较表明,除FQ外,其余各供试菌株对番茄果实所致病斑直径均比叶片病斑直径大,但各供试菌株接种番茄果实和叶片后所致病斑直径之间没有明显的相关性。作者认为,采用菌丝块创伤接种法测定灰葡萄孢菌对番茄的致病力时,以接种果实为宜;由于不同菌株的致病力差异较大,所以在番茄抗病性测定时,宜选用强菌株或混合菌株。本研究结果指出,来自辣椒、草莓、葡萄等其他寄主植物的灰葡萄孢菌株能够侵染番茄果实和叶片,意味着上述植物上的灰霉病菌(灰葡萄孢)可以成为番茄灰霉病的侵染来源,建议在番茄灰霉病的综合治理中应予以注意。 -
报告Identification of Pathogens Causing Leaf Spot Disease on Zingiber officinale Rosc*
出版时间:2007姜(Zingiber officinale Rosc.)为姜科(Zingiberaceae)、姜属(Zingiber),多年生草本植物,是一种既能作为调味蔬菜,又能入药的重要的经济作物。山东省是我国姜的主要产区,近年来,由于多数品种长期无性繁殖及连年重茬种植,出现了一种严重影响姜产量和质量的病害,该病害主要为害姜叶部,发病初期呈现水浸状小斑点,随后变成黄色,逐渐扩大成为椭圆形、近圆形或不规则形的白色病斑,边缘则为黄褐色,病斑继而彼此融合,导致整叶干枯;在老熟病斑上可见大量黑色小颗粒。目前国内外有关文献报道认为,引起姜叶斑病的病原菌为姜叶点霉(Phyllosticta zingiberiHori)[1],白金铠[2]在《中国真菌志》中描述过Phyllosticta zingiberi的形态特征,而Mathur[3]曾提到Phyllosticta zingiberi T.S.Ramakr.为Phoma zingiberi Khune的基原异名,但关于Phoma zingiberi的产孢细胞等形态特征及ITS序列分析未见报道。由于茎点霉属(Phoma)真菌与叶点霉属(Phyllosticta)真菌有诸多类似的地方,如分生孢子器和分生孢子的形态、颜色、大小等。因此,Phoma和Phyllostica两属间的分类及属下种的分类问题一直存在着许多争议。Saccardo[4]认为,两者的主要区别在于寄生部位的不同,即Phoma寄生于植物叶以外的部位,而Phyllosticta寄生于植物叶片上,这种主观的划分受到许多真菌学家的批评。由于产孢方式是Phyllosticta和Phoma两属共同具有的稳定特征。因此,目前已作为被多数学者所接受的分类标准。对于植物病原真菌,传统的分类方法多以真菌的形态特征为依据,而近年来分子生物学手段的应用为真菌的分类鉴定提供了更多遗传信息方面的依据。核糖体基因内转录间隔区(Internal Transcribed Spacer,简称ITS)在真菌种间存在丰富的差异,已广泛应用于真菌亲缘关系较近分类群的系统发育研究。目前,对于形态学上难以区分的Phoma和Phyllosticta两属真菌,尚未开展ITS序列的比对研究,其ITS序列资源也有待进一步丰富。本文发现的病害症状与已报道的由Phyllosticta zingiberi引起的姜叶斑病症状基本一致。为了正确鉴定分离到的姜叶斑病的致病菌,本文利用传统的形态学观察并结合分子手段对该病原菌的分类归属进行了研究。姜病叶采自山东省生姜主要产地莱芜市姜田。1.2.1 病菌的培养及光镜观察 将发病叶片表面消毒后置于PDA培养基上培养4~5天,从菌落边缘取直径为5mm的菌落圆片进行纯培养,在Olympus光学显微镜下观察并描述分生孢子器、分生孢子、产孢细胞形态特征,用显微测量尺测定分生孢子器及分生孢子的大小。1.2.2 透射电镜样品制备与观察 将新鲜的感病叶片切成小于0.5cm×0.5cm的材料,固定于3%戊二醛中,再用1%锇酸二次固定,乙醇梯度脱水、Epon812树脂浸透、包埋、超薄切片,经醋酸双氧铀、柠檬酸铅双重染色,JEM-1200EX透射电镜观察、拍照。将配制好的孢子悬浮液(低倍镜下每视野约30个孢子)喷洒在4~5叶期健康的姜新叶上,接种后套袋保湿48h。定期观察并记录发病情况和症状特点。取病斑上产生的子实体镜检,并从发病组织中再次分离致病菌,观察并描述病原菌形态特征。菌丝染色体DNA的提取参照何月秋[5]的方法并做适当的修改,质粒提取采用碱裂解法,大肠杆菌Escherichia coli DH5α感受态制备、连接、转化等参考《分子克隆实验指南》(第三版)[6]。以总DNA为模板,以通用引物ITS1:5′-TCC GTA GGT GAA CCT GCG G-3′和ITS2:5′-GCT GCG TTC ATC GAT GC-3′,ITS3:5′-GCA TCG ATG AAG AAC GCA GC-3′和ITS4:5′-TCC TCC GCT TAT TGA TAT GC-3′分别扩增ITSI和ITSII片段。PCR反应程序如下:94 ℃预变性3 min,94 ℃变性1min,50 ℃退火1min,72 ℃延伸30s,30个循环,最后72℃延伸10min。PCR产物连接到pMD18-T(大连宝生物工程有限公司),转化E.coli DH5α,经鉴定的重组质粒送上海英俊生物技术公司测序。该病原菌在PDA培养基上菌丝初为白色,后变为褐色,25 ℃培养20~25天后,逐渐出现分生孢子器。光镜观察分生孢子器为球形、扁球形,暗褐色,直径55~135μm,高75~130μm,器壁褐色,由3~5层细胞组成,壁厚9~13μm,内壁形成产孢细胞,上着生分生孢子;分生孢子椭圆形、卵形,无色,单胞,两端各含有一油球,5~8.5μm×2~4.5μm,其形态与报道的Phyllosticta zingiberi基本一致(Figure 1),但光镜和透射电镜观察其产孢方式为内壁芽生瓶梗式(eb-ph)(Figure 2)。Figure 1 Picnidium(Micro)(×400)Figure 2 Morphology of conidiogenous cell(Micro)(×1 000)用分生孢子悬浮液接种姜嫩叶后,发病症状和病原菌形态特征与自然发病株相同。取病健交界处组织再分离,其培养性状和形态特征与第1次分离结果一致。根据柯赫氏法则,接种菌即为姜叶斑病的致病菌。2.3.1 菌丝染色体DNA的提取与核糖体DNA ITS的PCR扩增 用改进的CTAB法提取该菌染色体DNA,琼脂糖凝胶电泳检测。采用真菌核糖体基因ITS区域通用引物ITS1和ITS2、ITS3和ITS4分别扩增了茎点霉的ITSI和ITSII,1%琼脂糖凝胶电泳检测结果均为单一条带,大小分别为224bp和343bp。2.3.2 核糖体DNA ITS序列分析 将克隆到的ITSI和ITSII测序后进行拼接,确定了ITS片段的核苷酸序列(Genbank登录号为EF408240)。用DNAStar软件对所得序列进行编辑和排序比对,得出该病原菌ITS序列与叶点霉的同源性最高为58.7%,与茎点霉的同源性最高为95.6%。利用MEGA3.1软件分析核苷酸组成并计算种间遗传距离,结果显示该病原菌与茎点霉亲缘性更大。以往报道认为,引起姜叶斑病的病原为Phyllosticta zingiberi Hori,Hara记载并描述了Phyllosticta zingiberi Hori的形态特征:叶上病斑圆形、不规则形,中央灰白色,直径1~3mm;分生孢子器球形、扁球形,暗褐色,直径50~120μm,分生孢子椭圆形、卵形,单胞,无色,两端各含有一油球,5~9μm×2.5~3.5μm。后人Sawada[7]对中国台湾省姜叶上的Phyllosticta zingiberi Hori、戚佩坤等[8]对广东姜叶上的Phyllosticta zingiberi Hori以及本研究对分离菌的描述与上述基本一致,应视为同种。Ramakrishnan[9]描述的印度姜叶上的Phyllosticta zingiberi T.S.Ramakr.的形态特征为,叶上病斑卵圆形,中央灰白色,可形成穿孔,9~10μm×3~4μm;分生孢子器球形,78~150μm,分生孢子无色,椭圆形,3.7~7.4μm×1.2~2.5μm,两端各含有一油球,此形态与Phyllosticta zingiberi Hori基本一致。因此,Phyllosticta zingiberi T.S.Ramakr.应视为Phyllosticta zingiberi Hori的同物异名。Sutton[10]通过对Phoma和Phyllosticta产孢方式的研究,认为Phoma是内壁芽生瓶梗式(eb-ph),Phyllosticta是全壁芽生单生式(hb-sol),这与Dictionary of the fungi第九版[11]对两属产孢方式的描述一致,而吕国忠电镜观察结果显示,两属的产孢方式相同,均为全壁芽生环痕式(hn-ann),同样,王琪[12]对龙眼叶点霉(Phyllosticta dimocarpi)研究结果也是全壁芽生环痕式(hn-ann),周永力[13]则认为Phyllosticta为内壁芽生瓶梗式(eb-ph)。因此,有关两属的产孢方式目前尚有争论。本研究对该病原菌的光镜和电镜观察结果表明,其产孢方式为内壁芽生瓶梗式(eb-ph),符合Kendrick等对Phoma产孢细胞特征的描述,ITS序列分析结果发现,该菌与Phoma ITS序列同源性高达95.6%,远远高于与Phyllosticta ITS序列的同源性(58.7%)。本研究结果支持Mathur的观点,认为Phyllosticta zingiberi T.S.Ramakr.为Phoma zingiberi Khune的基原异名。由于Phyllosticta zingiberi T.S.Ramakr.是Phyllosticta zingiberi Hori的同物异名。因此,引起姜叶斑病的病原菌应为姜茎点霉(Phoma zingiberi Hori)。致谢:山东农业大学张天宇教授、张修国教授对本研究提供了热情帮助,并对论文修改提出了建议。 -
报告观赏海棠轮纹病病原的初步研究
出版时间:2007多数苹果属植物野生种或栽培种的花和果都具有观赏价值,在观赏园艺花卉树木中占有重要地位。20世纪以来,国外植物学家从我国引种并进行了大量杂交选育工作,培育了一系列具观赏用途的海棠品种,统称为观赏海棠(Malus spp.)。近年来,国内学者从国外引进的观赏海棠品种几十个,它们姿态各异,色彩斑斓,大量果实点缀枝头直到深冬,丰富了景观内容。但是,这些观赏海棠不少品种的植株枝干上往往产生大量轮纹状、马鞍形的瘤状突起,严重时,病斑相连,导致树皮粗糙,严重影响树势甚至引起枝干坏死。本研究对其病原进行了初步研究,以期为进一步研究其发生发展规律和防治技术奠定基础。观赏海棠(M.spp.)植株为山东省泰安市区栽植树种。在6月份从病树上采集病斑,显微切片观察其病原形态,并对其大小进行测定。按常规方法,进行分离培养并纯化。观察其培养性状和产孢特征。在6月底,将分离纯化的病原菌分别采用烫伤接种法、针刺接种法、喷雾接种法对健康的海棠枝条进行接种,定期观察其发病情况,确定其致病性。设置不同温度条件(5℃、15℃、25℃、28℃、37℃、40℃)、不同pH值条件(pH值4.0、5.0、6.0、7.0、8.0)、不同培养基条件(琼脂、蛋白胨、LB、BPY、PMA、PSA、PDA),用菌碟法分别测定不同条件下病原菌的菌丝生长状况;并在以上不同温度、不同pH值条件以及不同营养条件(0.5%、1%、2%葡萄糖,0.5%、1%、2%蔗糖)下,采用凹穴法测定病原菌孢子萌发情况。受害海棠枝干从皮孔开始发病,以皮孔为中心形成近圆形斑点,暗褐色,凹陷,边缘稍隆起;随后病斑中央突起,呈瘤状,质地坚硬,成为灰白色;病健交界处发生龟裂,病皮翘起,有点呈马鞍状,或呈轮纹状;病斑表面产生黑色的小粒点。严重时,病斑相连,病皮粗糙,导致部分枝干死亡。对病斑上黑色粒点切片镜检,发现:子座扁球形,其上分生孢子器1~3个,分生孢子器扁圆形或椭圆形,大小为(142~284)μm×(162~289)μm;内壁密生分生孢子梗,分生孢子梗棍棒状,单胞,顶端着生分生孢子;分生孢子单细胞,无色,纺锤形或长椭圆形,一端钝圆,一端截平,大小为(20.1~32.9)μm×(7.6~9.8)μm。从发病枝干上分离培养获得病原菌纯培养,菌落初灰白色,逐渐呈灰黑色,气生菌丝浓密,呈絮状隆起,后期菌落中产生灰黑色子座。对病原菌进行致病性测定,通过不同方法对海棠进行接种试验,发现烫伤接种法和针刺接种法处理的海棠发病率为100%,而喷雾接种法处理的海棠则几乎没有发病。其症状表现为,伤口先凹陷变黑,后形成褐色小突起。同时发现,在山东省泰安市,在6月底接种,该病原菌侵染的潜伏期为7~10天。经鉴定,认为该病害的病原为Botryosphaeria berengeriana,病害为观赏海棠轮纹病。25~28℃、pH值4.0~7.0、BPY和PDA培养基等条件,最适合菌丝生长,菌落生长快,且菌丝白色浓密呈絮状隆起,易产生黑色分生孢子器。28℃、pH值7.0、1%蔗糖条件最适合病原菌分生孢子萌发,12h观察孢子萌发率能达到80%左右,孢子萌发芽管较短、粗,多数两端萌发。观赏海棠轮纹病发病严重,目前对其病原鉴定方面未见报道。本研究初步确定其病原为Botryosphaeria berengeriana,并测定了其部分生物学特性。结果也显示该病原菌从形态和生物学特性上与引起苹果轮纹病的病原菌[1]和梨轮纹病[2,3]的病原菌有一定的差异。该菌的寄主范围、对苹果属、梨属植物的致病性、ITS的序列测定等工作正在开展中,这些信息对于该菌分类地位的进一步确定有重要价值。
