首页 <
知识图谱:全部
-
报告Cloning and Identification of a Conidiation Associated to Gene CMPEX2-like of Coniothyrium minitans
出版时间:2007盾壳霉(Coniothyrium minitans)是核盘菌(Sclerotinia sclerotiorum)的重要寄生真菌,在世界范围内广泛存在,是菌核病的一种重要生防菌。本研究自盾壳霉ZS-1菌株的T-DNA标记插入突变体库中筛选到一株产孢缺陷型突变体ZS-1T16229,以之为材料进行研究。突变体ZS-1T16229与出发菌株ZS-1相比,偏向于培养基质中生长,不产孢,或产生少量的分生孢子(3.4×102个孢子/cm2),在与核盘菌对峙培养时,于两菌落融合处,突变体产生大量的分生孢子。突变体ZS-1T16229的生物产量大幅下降,在PDA培养基上培养6天、9天和12天,其生物学产量分别为8.2mg、24.2mg和58.7mg,而野生菌株ZS-1的生物学产量分别为17.4mg、39.3mg和78.8mg。突变体ZS-1T6229同时丧失了产生抗细菌物质的能力。另外,突变体ZS-1T6229的寄生致腐菌核的能力有显著的下降,用突变体的菌丝片段处理核盘菌的菌核,在沙粒上于20℃保湿培养30天,菌核腐烂指数为22%,而用野生菌株ZS-1进行相同处理,菌核腐烂指数为86%。Southern杂交证实T-DNA标记在突变体ZS-1T16229中为单拷贝插入;以ZS-1T16229为材料,采用TAIL-PCR和RT-PCR技术对T-DNA标记插入位点的基因组DNA进行了克隆,获得了大小为1527bp的DNA片段;对该基因组DNA片段进行了序列分析,并利用GenScan软件进行了阅读框(ORF)预测,结果表明该DNA片段含有一个完整的阅读框:编码508aa。对推定蛋白的氨基酸序列进行功能预测,发现该序列中含有一个保守区域,即Pex2-Pex12结构域,与其他真菌的过氧化物酶体蛋白PEX2具有极高的同源性,如与烟曲霉(Aspergillus fumigatus)的PEX2相同部位等同的氨基酸为54%,类似的氨基酸达68%。故命名该基因为CMPEX2。通过RT-PCR结果表明CMPEX2基因在突变体ZS-1T16229基因组中不表达,在出发菌株ZS-1的基因组中表达。构建了CMPEX2基因敲除载体,利用农杆菌介导转化的方法,获得了3个CMPEX2基因敲除转化子,通过PCR证实这3个转化子确实为CMPEX2基因敲除转化子。这3个转化子的表型与突变体ZS-1T16229相同。初步认为CMPEX2基因与盾壳霉产孢相关,起正调控作用。 -
报告Influence of the Rice Sowing Time on the Quantity of Laodelphax striatellus and the Occurence of Rice Stripe Virus
出版时间:2007水稻条纹叶枯病(RSV)是由灰飞虱(Laodelphax cstriatellus Fallen)传播的一种病毒病,严重发生时可造成大面积减产,甚至绝收。近几年来浙江省北部水稻条纹叶枯病发生面积逐年扩大,发病程度明显加重。目前,该病已成为嘉兴市水稻生产上的主要病害,并成为制约水稻生产的关键因素之一。水稻条纹叶枯病的发生程度与介体灰飞虱的虫量高低密切相关,而秧田期是条纹叶枯病感染的敏感期,秧田期灰飞虱虫量的高低与发病关系密切。为探明水稻播种迟早对灰飞虱发生量、条纹叶枯病发生流行的影响,我们于2006年、2007年对水稻不同播种时期灰飞虱发生量与条纹叶枯病发病程度的关系进行了研究,分析了水稻播种期、灰飞虱虫量及条纹叶枯病病情之间的相关性,现将结果报道如下:试验在嘉兴市农业科学院试验园区内进行。试验田前茬为水稻,土壤为青紫泥土,水肥条件良好。供试水稻品种为嘉991,种子由嘉兴市农业科学院提供。1.2.1 种子处理 每期播种前均对种子进行药剂处理,浸种时将供试水稻种子用2000倍液的402浸72h,然后将其从药液中取出,用流水冲洗以除去多余的药液,再置于37℃的恒温箱中催芽2天后播种。1.2.2 试验设计 2006年分3期播种,每隔15天播种一期,播种日期分别为:5月10日、5月25日和6月9日;2007年分4期播种,每隔10天播种一期,播种日期分别为5月10日、5月20日、5月30日和6月9日。每期播种时田间分3个小区,每小区面积3m2。各期秧田水肥等田间管理相同,除最后一期在25天秧龄移栽,其他各期均在30天秧龄时移栽。1.2.3 秧田灰飞虱虫量与条纹叶枯病发病率调查 各期播种后,从水稻出苗开始定期调查秧田灰飞虱虫量和条纹叶枯病发病情况。每期每小区调查3个点,每点0.11m2,记录每个样点上的灰飞虱虫量。将移栽前最后一次调查的灰飞虱虫量作为秧田虫量结果,并换算成每667m2虫量;同时统计每期调查的秧苗总数和发病株数,计算发病率。分析比较各播期处理区灰飞虱虫量与条纹叶枯病发病率的关系。1.2.4 大田发病率调查 各播期的秧苗在移栽后,每周调查一次田间条纹叶枯病发病率,直至不再出现病株为止。每次调查分别记录调查株数和发病株数,统计发病率,并将病情稳定时的发病率作为大田发病率,比较各期发病率差异。2006年调查结果表明,播期不同,田间灰飞虱虫量与条纹叶枯病发病率存在很大差异。5月10日、5月25日和6月9日3个时期播种的水稻秧田灰飞虱虫量分别为114.4万头/667m2、56.6万头/667m2和6.82万头/667m2;秧田发病率分别为3.13%、1.2%和0.23%,大田发病率分别为8.63%、4.19%和2.80%。比较各播种期处理区田间虫量和发病率关系,随着播种时间的推迟,灰飞虱虫量和条纹叶枯病发病率均明显下降。水稻播种期从5月10日推迟至5月25日,秧田灰飞虱每667m2虫量减少为57.8万头,秧田和大田发病率也分别下降了1.93%和4.44%;播期从5月25日推迟至6月9日,田间虫量继续减少,每667m2虫量减少为49.78万头,秧田和大田发病率下降为0.23%和2.80%,见表1。播种期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1053761683.13114.401054918.635/254992601.2056.601121474.196/95265120.236.821072302.80表1 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2006)从图1看出,秧田灰飞虱虫量与条纹叶枯病发病率存在密切关系,随着播种时间的推迟,田间虫量表现出近乎直线的下降趋势,随着虫量的减少,秧田发病率和大田发病率都随之下降。图1 水稻不同播种期田间灰飞虱虫量与条纹叶枯病发病率关系通过对各播期秧田灰飞虱虫量和条纹叶枯病发病率之间的相关回归分析,二者呈密切的相关性,秧田条纹叶枯病发病率(y)与灰飞虱虫量(x)的关系式为y=0.027x-0.088(r=0.989**);大田发病率(y)与灰飞虱虫量(x)的关系式为y=0.055x+1.959,r=0.969**。2007年的试验,田间灰飞虱虫量和条纹叶枯病发病率明显高于2006年。5月10日播种的处理区,秧田虫量高达253.6万头/667m2,秧田发病率达到6.1%,后期大田发病率高达21.47%;5月20日播种的,虫量稍有降低,为203.3万头/667m2,但仍维持很高水平,秧田和大田发病率分别为4.02%和17.66%,发病严重;5月30日播种的,田间虫量下降,为66.6万头/667m2,秧田和大田发病率也随之下降,发病率分别为0.97%和6.33%;6月9日播种,秧田虫量很低,为7.72万头/667m2,条纹叶枯病发病率也低,秧田和大田发病率分别为0.21%和2.12%,见表2。播期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1054633336.10253.60133228621.475/2053732164.02203.30128522717.665/305235510.9766.601311836.336/95655120.217.721367292.12表2 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2007)通过对秧田灰飞虱虫量与秧田发病率、大田发病率作图比较分析,播种期从5月10日推迟至5月20日,秧田灰飞虱虫量开始下降,减为50.3万头/667m2,减少19.83%;而播期从5月20日推迟至5月30日,每667m2虫量下降为136.7万头,减少67.24%;从5月20日推迟至6月9日播种,虫量继续大幅下降,减少为7.72万头/667m2。在播期逐渐推迟的过程中,随着虫量的大幅减少,条纹叶枯病发病率也表现出了明显的下降趋势,见图2。图2 水稻不同播种期田间灰飞虱虫量和条纹叶枯病发病率比较通过对2007年调查的灰飞虱虫量与秧田和大田发病率的相关性分析,两者呈密切的相关性,秧田发病率(y)与灰飞虱虫量(x)之间关系式为y=0.023x-0.294,r=0.987**;大田发病率(y)与灰飞虱虫量(x)关系式为y=0.080x+1.314,r=0.999**。综合分析2006年、2007年试验结果可以看出,5月上中旬播种,秧田期灰飞虱虫量保持在一个很高的水平,导致秧田和大田条纹叶枯病发生相当严重;而在5月下旬以后播种的,则田间虫量明显减少,随之条纹叶枯病发生也明显减轻。两年试验结果表明,水稻播种期对秧田灰飞虱虫量、条纹叶枯病发病率有明显影响。5月上中旬播种,田间灰飞虱虫量大,导致秧田和大田条纹叶枯病发病严重。水稻播期推迟至5月下旬至6月上旬播种,秧田灰飞虱数量明显减少,条纹叶枯病发病明显减轻。分析其原因,主要是由于播种早的田块,杂草及大、小麦田中的灰飞虱集中迁入水稻秧田,从而导致秧田虫口基数大。适当推迟播期,则避开了灰飞虱迁移和传毒高峰,发病减轻。通过两年试验和大田调查结果,认为在嘉兴地区将水稻播种期适当推迟至5月下旬或6月上旬,使一代灰飞虱成虫传毒高峰与水稻大田秧苗感病期错开,可有效控制条纹叶枯病的发生为害。 -
报告Study on Epidemic Pattern of Rice Stripe Virus and Its Control
出版时间:2007Rice stripe virus(RSV)is a kind of virus disease which spread through vector of planthoppers L.striatellus.It is hard to prevent and control once rice is infected with RSV,and suffer a great loss of rice yields.In recent years,the incidence rate of RSV in north Zhejiang province is speeding up because of altering of cropping system and fitness of climate.Such as in Jiaxing city,disaster area reached to 17600 hectare in 2007 and became one of the cities which were heavily infectious with RSV.Therefore,the epidemic pattern of RSV and its control countermeasures had been investigated for several years.An integrated control of RSV was established on the basis of optimizing single control method and extended application for other paddy fields,which efficiently prevent and control incidence and spreading of RSV.The results of investigation and research were summarized as bellows.1.1.1 Continuous enlargement of disaster region and area It can be concluded from research on disaster region of RSV in Jiaxing,Zhejiang province that RSV was only infected in few paddy fields of Haiyan county and Xiouzhou district in 2002,and incidence rate of small towns was just 8.3%;but incidence rate increased quickly,and increased to 65%in 2004 and about thirty-nine towns were invaded by RSV;and till 2006,the rice of all the small towns were infected by RSV and incidence rate increased to 100%.And today,RSV has been spreading to each town in Jiaxing,Zhejiang province.In terms of disaster area,only few places were infected in 2002;but raised greatly in 2004 and reached to 12600 hectare in 2005,which was about 9.94%of late rice field;andreached to 17600 hectare in 2007,which was about 13.9%of total rice area.1.1.2 Peak period of diseases incidence in field It was observed that initial period of RSV incidence was mid June,and about twenty to twenty five days after rice sowing,and had two incidence peaks in single cropping rice:the first peak was in mid July and another was in mid August.The two incidence peaks were resulted from RSV transmitted by the first and second generation of L.striatellus respectively,and the first peak was higher than the second,and disaster incidence became stable after mid August.According to investigation on early rice fields in 2006,the diseased-hill and diseased-tiller rates of first incidence peak reached 18.5%and 3.77%respectively,and became 4.23%and 1.58%at the second incidence peak,which was resulted from different numbers of L.striatellus of two peaks.Because of fitness of temperature and host(such as wheat field and weeds),number of first generation L.striatellus was larger and easily transmitted RSV,which caused higher disaster incidence.However,because of higher temperature,number of second generation L.striatellus was smaller and uneasily transmitted RSV,which resulted lower disaster incidence.1.1.3 Early rice field heavier than late rice field Damage intensity extent of RSV was closely related with the sowing period,earlier sowing usually caused heavier disaster incidence.From investigation of different sowing time in 2006,the average diseased-hill and diseased-tiller rates of rice fields sowing in 15th May was 16.3%and 4.05%respectively,which increased about 65.8%and 59.4%over that in 20th May(9.89%and 2.54%),about 81.59%and 94.8%over that in 29th May(3%and 0.81%),and about 94.9%and 94.81%over that in 6th June(0.83%and 0.21%).According to investigation in 2007,the diseased-tiller rate of rice fields sowing in 16th May,23rd May,30th May and 6th June was 5.18%,7.31%,7.90%and 0.70%respectively.There existed significant difference of disaster incidence of different sowing time.The heavily disease infected rice fields usually concentrated in sowing in mid May,which was higher than that sowing in late May and mid June,and nearly had no infection of RSV in rice fields sowing after mid June.1.1.4 Transplant rice field heavier than direct seeded rice field RSV incidence in transplant rice field was obviously heavier than direct seeded rice field based on general investigation of Jiaxing city,which resulted from rice field was apt to suffering of L.striatellus and spreading RSV because of early sowing time,such as in Xiuzhou distinct,the average diseased-tiller rate of transplant rice fields sowing in mid May was 3.86%,but direct seeded rice field sowing in late May was only 0.71%.From 2005 to 2007,we investigated disease incidence after inoculation of RSV to planthoppers with no control of planthoppers in Xiuzhou distinct,Jiaxing.The result was that there was no viruliferous planthopper,disease incidence was lower,the diseased-tiller rate of early and mid sowing rice fields was 3.1%and 1.2%respectively,and there was no disease incidence in late sowing rice fields in 2005.In 2006,rate of viruliferous planthopper was 2.01%,and the diseased-tiller rate of early,mid and late sowing rice fields was 18.5%,10.1%and 1.16%respectively.In 2007,rate of viruliferous planthopper was 3.68%,and the diseased-tiller rate of early,mid and late sowing rice fields was 21.5%,19.5%and 2.7%respectively.It was concluded from the above investigation that rate of viruliferous planthopper was closely related with disease incidence,and the formeracted an important role to the latter.Based on general investigation on disaster incidence of major rice varieties planted in Jiaxing,Xiuyu5 was the most infective,the average diseased-tiller rate was about 3.78%,about 90%rice fields were infected and the highest diseased-tiller reached 11.2%.The other major rice varieties,such as Jia991,Xiushui110 and Xiushui09 were also heavily infective,and the average diseased-tiller rate was over 1%,but Jiahua1 and Jialeyou2 were slightly infective and the average diseased-tiller rate was about 0.89%and 0.31%respectively.The incidence of RSV was mainly determined the number of viruliferous planthopper,fitness of peak of viruliferous planthopper with rice sowing,climate and different disease-resistance of rice species,which were also the main parameters of disease monitoring.From analysis of RSV rising,spreading and extending in north Zhejiang,we can conclude the below reasons.First was the large number of viruliferous planthopper.In recent years,population quantity of L.striatellus was keeping on rising,which increased the incidence of RSV.One of the reasons was high population density of planthopper during late rice heading period.Based on investigation of Jiaxing Station of Disease and Pest Monitoring in min October from 2005 to 2007,most L.striatellus concentrate and did harm to the rice heading,and there was about four million planthoppers per 667m2 rice fields and the heavily infected rice fields reached over five million per 667m2.Another reason was high population density of spring wheat field.From investigation on numbers of planthoppers in wheat fields before harvesting,there was about 2981000 planthoppers per 667m2 wheat fields and the heavily infected wheat fields reached over 10000000 per 667m2.Many hibernacles were also the reasons of the large number of viruliferous planthopper.L.striatellus can hibernate in many places,such as Gramineae seeds in side of agriculture lands and ditches,and there was about 5454000 planthoppers per 667m2 seed fields according to investigation in mid May,2007.Second was high rate of viruliferous planthopper.It was resulted from bio-assay of RSV in Jiaxing Academy of Agricultural Sciences from 2005 to 2007 that viruliferous planthoppers were widely distributed and rate of viruliferous planthopper was high.Among the detected samples from seven counties in Jiaxing from 2006 to 2007,all of the samples were infected with RSV,but just two of four countries samples in 2005 detected RSV.Rate of viruliferous planthopper in 2005,2006 and 2007 was about 1.47%,3.25%and 2.86%respectively.Based on research of Japanese scientist,RSV can be prevalent when rate of viruliferous planthopper was over 3%,RSV will be much prevalent if rate of viruliferous planthopper reached 12%.Third was weakness of rice disease-resistance.Based on investigation,major late rice varieties in keng rice region of north Zhejiang were absent of disease-resistance,such as Xiushui09,Xiushui110,Jia991 and Xiuyou5,which increased prevalence of RSV.county200520062007Haiyan3.462.272.62Nanhu2.432.400.67Xiuzhou0.02.013.68Jiashan0.02.032.03Pinghu—6.730.99Haining—3.372.22Tongxiang—3.933.79average1.473.252.86Table 1 Bio-assay result of rate of viruliferous hibernating planthoppers from 2005 to 2007 in Jiaxing, ZhejiangFour was fitness of variety and cultivation condition.The expanding areas of wheat,the rising areas of winter-fallow paddyfields and wasteland were apt to hibernating and propagation of L.striatellus.The earlier sowing in some single cropping rice fields,especially rice fields sowing in mid and late May,when rice seedling was in coincidence with peak rate of viruliferous planthopper,easily caused concentrated transmission of RSV and caused heavier disaster incidence.Control of RSV should be based on prevention,take measures of"kill pests and control disease,cut the chain of spread,and adopt integrated control of RSV"with a thought"control wheat field and protect rice field,control prophase and protect anaphase,control this year and protect next year",and integrate"resisting,avoiding,cutting,controlling,supplying,altering"into management countermesures.Resisting:introduction and extension of disease-resistance rice species.Main rice species planted in Jiaxing were disease-sensitive species,such as Xiushui09,Jiahe128,Jiahua1,Jia991 and Xiushui110.In order to better control disaster incidence,we should decrease the sowing areas of disease-sensitive species,and introduce and extend disease-resistance rice species,such as Jialeyou2,which had good resistance to RSV.Avoiding:delaying sowing time and avoiding peak rate of viruliferous planthopper.The top number of the first generation of L.striatellus occurred in mid and late May,which was in accordance with high rate of viruliferous planthopper and caused rice to be heavily infected.Therefore,delaying sowing time and homochronous sowing were advocated on agricultural production.Such as,the sowing areas were diminished to 25700 hectare in Jiaxing before June,which was about 20.3%of the total rice fields in 2007.But sowing during first twenty days in June reached 97600 hectare,which was about 77.1%of the total rice fields in 2007.Cutting:worsening the condition of L.striatellus.One was to cut weeds and clean fields.Weeds in agricultural lands,field ridge,pitch ridge and side of road were the important breeding place of planthoppers.Therefore,we should try our utmost to clear weeds and cut the chain of host.Another was plowing five days before sowing or transplanting.Controlling:carrying out chemical control during proper period.(1)Control of L.striatellus inspring wheat field and seeds.RSV is a kind of virus disease which spread through vector of planthoppers L.striatellus.RSV can be prevented by the control of planthoppers.The planthopper population in spring wheat field and seeds will directly affect RSV incidence of the whole year.Therefore,to diminish the planthopper population and gain the active control,planthoppers of wheat field and seeds should be completely controlled one time in mid April.The method was to spray 100~120ml of 40%durshan per 667m2.(2)Treatment of rice seeds.Seed treatment is a better way to control disease transmission of early rice seedling.The method is to immerse dry rice seeds into 10%imidacloprid or 5%fipronil for 48 hours and then accelerate germination.(3)Strengthen control of planthopper during rice seedling(early time of direct seeded rice field).After rice seed sprouting,adult planthoppers immigrate to rice fields,which meet the peak period of RSV transmission and will increase the rate of disaster incidence.The method was to spray 100~120ml of 40%durshan per 667m2 and repeated spraying after eight days.(4)Control of planthoppers during the growth period.Growing period in paddy field was the key point of control,the top population of planthopper nymph of second generation occured from mid and late June to early July,and these period was the best time to control planthopper.After mid July,L.striatellus of third and forth generation can be controlled along with Nilaparvata lugens and Sogatella furcifera.The biggest population of L.striatellus occurred from late September to mid October,and could be controlled in main spike and decreased the hibernation number of planthoppers and lessened the control pressure of next year.Supplying:In rice fields where rice had been infected with RSV the disease plant was to pull out in time and break the chain of disease,and prevent transmission of RSV again.To improve ability of disease-resistance and lessen rate of disaster incidence,2%ningnamycin can be integrated into control.Altering:For the rice field where the diseased-tiller rate was over 70%,we should plough and alter planting in according to the principle of fitness of planting rice or vegetable and reasonably arrange the shifts of rotation.Adjust planting structure of crop was also adopted to control disaster incidence and increase income of farmer. -
-
报告Cloning and Analysis of 3′-terminal Genomic Sequence of a Beet Mosaic Virus Isolate from Lettuce*
出版时间:2007甜菜花叶病毒(Beet mosaic virus,BtMV)属于马铃薯Y病毒属(Potyvirus)。它是一个世界性的病原,主要由蚜虫以非持久方式传播,并可以通过机械接种和嫁接方式传播,但不能通过种子以及花粉传播。20世纪50年代末德国首次报道了BtMV在甜菜上的发生[1]。1981年Liu等报道了BtMV在北京地区菠菜上的发生,是我国对BtMV的首次报道[2]。BtMV寄主主要是藜科植物,可系统侵染甜菜(Beta vulgaris),局部侵染菠菜(Spinacia oleracea)、苋色藜(Chenopodium amaranticolor)、昆诺藜(C.quinoa)等。目前仅有美国华盛顿分离物、德国分离物、中国新疆以及内蒙古分离物的全序列以及英国和斯洛伐克少数几个分离物3′端部分序列被报道,这些分离物均来源于甜菜[3,4]。莴苣(Lactuca sativa)属于菊科莴苣属,一年或两年生草本植物。莴苣是我国常见蔬菜之一,在我国大部分地区均有种植。2007年,我们在泰安郊区蔬菜种植区调查病毒病时,发现莴苣上发生病毒病较为严重。感病植株叶片呈黄绿相间的花叶症状,植株严重矮缩。初步的血清学试验表明,该分离物是马铃薯Y病毒属病毒。用针对该属病毒的兼并引物进行RT-PCR扩增,获得此病毒基因组3′端片段,经序列分析表明为BtMV。1.1.1 供试毒源 莴苣病叶样品采自山东泰安郊区菜田,经枯斑寄主昆诺藜(C.quinoa)单斑分离3次后繁殖保存于本生烟(Nicotiana benthamiana)上,并取发病叶用硅胶保存。1.1.2 载体、试剂与菌株 大肠杆菌DH5α由本实验室提供;Trizol购自invitrogen公司;PCR产物回收试剂盒购自博大泰克公司;M-MLV反转录酶、RNase抑制剂(HPRΙ)购自Promega公司;无RNase的水,克隆载体pMD18-T、Taq DNA 聚合酶购自TaKaRa公司;硝酸纤维素膜购自Pall Gelman公司产品;碱性磷酸酯酶标记的A蛋白购自Sigma公司;其他化学试剂均为国产分析纯;BtMV的血清由中国农业大学韩成贵教授提供,其余抗血清由本实验室制备。1.2.1 SDS-琼脂免疫双扩散试验 以常规琼脂双扩散法进行,1g病叶样品加1ml PB缓冲液再加1ml 3%SDS研磨,将汁液6000r/min离心5min。取上清液适量加到琼脂糖凝胶中,与黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tobacco mosaic virus,TMV)、芜菁花叶病毒(Turnip mosaic virus,TuMV)、马铃薯X病毒(Potato virus X,PVX)、马铃薯Y病毒(Potato virus Y,PVY)的抗血清反应,加样后在37 ℃下放置,12h后观察结果。1.2.2 RNA提取 采用 Trizol法(Invitrogen)提取总RNA。取0.2g具典型症状病叶于干热灭菌的研钵中,液氮研磨至粉末,迅速转移至1.5ml离心管中,加1ml Trizol剧烈振荡,静置10min;加200μl氯仿后充分振荡15s,静置5min,于4℃、12000r/min离心15min;将上清转移至另一1.5ml离心管中,加入等体积冰冷的异丙醇混匀,室温放置10min,4℃、12000r/min离心10min,沉淀用DEPC处理灭菌水配制的75%乙醇洗涤;室温干燥,加入适量无RNase的水溶解RNA,-80℃保存备用。1.2.3 RT-PCR扩增 以提取的总RNA为模板,在Oligo d(T)引物引导下利用M-MLV反转录酶合成第一链cDNA。用针对马铃薯Y病毒属病毒3′端序列设计的简并引物Sprimer和K11465(表1),扩增病毒RNA基因组的3′端序列。扩增条件如下:94℃预变性3min;94℃变性30s,60℃退火30s,72℃延伸2min,30个循环;72℃延伸10min。扩增产物经1%琼脂糖凝胶电泳检测。1.2.4 PCR产物的克隆与测序 PCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,提取质粒,经PCR扩增和酶切鉴定为阳性的重组质粒送北京英俊有限公司测序。NamePrimersequenceTmReferencesOligod(T)5′-GGTCGACTGCAGGATCCAAGC(T)15-3′[5]K114655′-GGTCGACTGCAGGATCCAAGC-3′68[5]Sprimer?5′-ATAGGATCCCTGCAGGGBAAYAAYAGYGGDCARCC-3′69~78[6]Table 1 Primers used for cDNA synthesis, PCR amplification and DNA sequencing1.2.5 Western blotting分析 参考文献中[7,8]的方法,用Western blotting验证采集的莴苣样品、单斑分离后保存在本生烟上的样品与BtMV血清的关系。第一抗体为原核表达制备的抗血清,第二抗体为碱性磷酸酯酶标记的A蛋白,用BCIP/NBT显色。1.2.6 DNA序列比较与分析 将所得DNA序列输入GenBank进行BLAST检索,采用DNAStar和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的BtMV分离物的相应序列进行比较和分析,构建系统进化树。感病莴苣植株表现明显的矮缩症状,叶片呈黄绿相间的花叶症状,叶片变小并伴有明显的皱缩(图1)。Figure 1 Symptoms of lettuce infected by BtMV-SDSDS-琼脂扩散试验结果显示样品与TuMV抗血清和PVY抗血清均有沉淀反应,说明样品中含有马铃薯Y病毒属的病毒。以提取的病叶样品总RNA为模板,经RT-PCR扩增,得到长度约为1.7kb的目的片段(图2),与预期的大小相一致。扩增产物经纯化后克隆到pMD18-T载体上。经蓝白斑筛选和酶切鉴定,得到含有目的片段的重组子。Figure 2 RT-PCR amplification of 3′-cDNA of BtMV-SD通过测定2个PCR反应克隆到的片段序列,确定了插入片段的核苷酸序列长度1629bp。序列已登录GenBank,登录号为EF633501。扩增产物包含630bp NIb编码序列、831bp CP编码序列及168bp非编码区序列(3′-UTR)。在由此推导其氨基酸序列中,NIb与CP的切割位点为VTYQ/G,符合多数马铃薯Y病毒属病毒NIb与CP切割位点的保守基序为VXXQ的特征[9]。NIb氨基酸序列中存在依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)保守氨基酸序列GDD。CP序列中含有蚜虫传播马铃薯Y病毒属病毒所必需的DAG基序。分离物BtMV-SD 3′ 端序列与GenBank中已登录的斯洛伐克(BtMV-SL,AF363639)、美国华盛顿(BtMV-Wa,AF206394)、中国内蒙古(BtMV-IM,DQ674263)、中国新疆(BtMV-XJ,DQ674264)、英国(BtMV-UK,AF203540)、中国新疆2(BtMV-XJ2,DQ345522)以及未登录的德国(BtMV-G)[10] 6个BtMV分离物的核苷酸序列同源性分别为98.8%、91.1%、98.6%、97.7%、98.5%、97.5%、98.8%,氨基酸序列同源性分别为99.2%、94.3%、99.5%、98.4%、99.4%、98.9%、99.5%。除了BtMV之外,马铃薯Y病毒属中的落葵皱缩花叶病毒(Basella rugose mosaic virus,BaRMV)(DQ394891)与BtMV-SD的核苷酸同源性最高,为63.5%。据CP编码序列构建的系统进化树表明,8个分离物可以分为两组:欧亚大陆组(Euroasia group)与美洲组(America group),结果与Xiang等[4]的相一致。其中美国华盛顿分离物BtMV-Wa位于美洲组,包括BtMV-SD在内的其他分离物位于欧亚大陆组(图3)。BtMV-SD与BtMV-SL位于同一分支,两者在进化关系上最为接近。Figure 3 Phylogenetic tree based on CP-coding sequence of 8 BtMV isolatesWestern blotting分析表明,自然发病的莴苣样品以及接种发病的本生烟样品均与BtMV血清有较强的特异性反应,而本生烟健康植株则无反应。Figure 4 Western blotting analysis of BtMV-SD在用有些病毒的多克隆抗体检测样品时,经常会出现交叉反应,这在马铃薯Y病毒属病毒中也非常普遍[11]。本研究的样品在SDS-琼脂免疫双扩散试验中与TuMV和PVY的抗血清均有沉淀反应,表明该分离物可能有马铃薯Y病毒属的病毒。通过比较病毒基因组3′端约1.7kb的序列,证明该病毒分离物为BtMV。Western blotting进一步证实了该结果。病毒病是莴苣生产中的主要病害之一。病毒的复合侵染在田间也非常普遍。已报道侵染莴苣的病毒有莴苣花叶病毒(Lettuce mosaic virus,LMV)、蒲公英黄花叶病毒(Dandelion yellow mosaic virus,DYMV)和CMV。先前报道BtMV寄主主要是甜菜、菠菜等藜科植物,而不易侵染莴苣。本文首次报道BtMV在自然条件下能够侵染莴苣并造成危害。 -
报告警惕台湾番茄曲叶病毒病发生为害? 承蒙浙江大学周雪平教授鉴定病原、刘树生教授提供资料和信息,胡丽秋、陈为康、卢启强、夏万青同志协助调查,在此一并致谢!
出版时间:20072006年10月以来,浙江温州市乐清、瑞安、苍南、瓯海、龙湾等地的大棚番茄上相继发生了一种以前从未见过的病毒病。为此,我们立即分别从不同地点采集了较典型的罹病植株样本送浙江大学生物技术研究所鉴定,经该所用超薄切片电镜观察、ELISA和分子水平检测后确认是台湾番茄曲叶病毒(也称烟草曲叶病毒)(TLCV)所致。该病毒病在浙江省系首次发现,经检索国内也鲜有报道。台湾番茄曲叶病毒病是一种毁灭性的蔬菜新病害,是世界许多地区番茄生产上的重要限制因素,该病为害猖獗、蔬菜生产部门及有关方面须高度警惕。据调查,温州地区秋季定植的大棚番茄株发病率一般为3%~30%;严重田块株发病率高达95%以上,当地农民基本放弃管理或拉秧改种。初步统计温州各县(市、区)台湾番茄曲叶病毒病的发生面积约为333.3hm2,其中株发病率在50%的田块约为53.3 hm2以上,给各地番茄生产造成了严重损失。染病番茄植株矮化,生长缓慢或停滞,顶部叶片大多褪绿发黄、叶变小,边缘上卷,叶片增厚、变硬,叶脉呈紫色。生长发育早期染病的植株严重矮缩,不能正常开花结果;中后期染病的植株仅上部叶片和新芽表现症状,结果减少、果实变小,成熟期果实着色不均匀(红不透),商品价值低;生长发育后期,随着气温上升染病植株症状减轻。该病病原为Tomato leaf curl Tanwan virus,属双生病毒组的一种病毒,据资料报道该病毒只能由烟粉虱(Bemisia tabaci)传毒,土壤、种子和土壤均不传毒。近年来烟粉虱在温州地区的发生为害呈暴发态势,现已证实外来入侵生物B型烟粉虱的入侵蔓延并成为优势种是温州地区烟粉虱暴发的主要起因,估计台湾番茄曲叶病毒由B型烟粉虱带入的可能性较大。2006年秋冬,温州地区总体上呈高温干爽天气,对该病虫媒烟粉虱的发生、繁衍十分有利,虫量发生大、加上带毒种群及其携带病毒的多年积累和扩增,为台湾番茄曲叶病毒病的流行提供了病原数量基础,这可能是该病暴发的主要原因。此外,目前温州生产上推广的大多数番茄品种如红梅王、FA-189、516、托马雷斯、合作903等对该病毒病的抗性较差也是不可忽视的重要原因。据报道,该病极有可能在首次暴发后数年内迅速发展并导致大暴发,故须立即采取措施进行应急防控,以便将该病发生为害控制在最小限度内。抓紧引进、筛选抗耐病的优良品种,同时加强培育适合温州市栽培的抗病品种。对重发田实施与非茄科作物轮作,最好是水旱轮作。①育苗床与生产大棚要分开;②清洁消毒苗床;③使用30~40目防虫网隔离育苗,防止烟粉虱入侵;④苗床挂“黏虫色胶板”诱杀烟粉虱;⑤移栽时带药下田。①加强肥水管理,增强植株抗病能力;②地膜覆盖,去除边际杂草;③及时去除植株下部烟粉虱虫、卵枝叶;④收获后及时清洁棚室和周围环境。消灭虫媒,及时防治烟粉虱。可选用99.9%绿颖农用矿物油200~300倍稀释液、20%啶虫脒(兰宁)可溶性液剂3000倍稀释液、25%扑虱灵可湿性粉剂1000~1500倍稀释液、25%阿克泰水分散粒剂2000~3000倍稀释液、2.5%天王星乳油2000~3000倍稀释液、1.8%阿维菌素1500倍稀释液、1%甲胺基阿维菌素2000倍稀释液等进行防治。应在烟粉虱发生初期防治,并交替使用农药。 -
报告Research Advances on the Enterotoxin of the Bacillus cereus
出版时间:2007芽孢杆菌属(Bacillus spp.)是一类好氧或兼性厌氧、产生抗逆性内生孢子的杆状细菌,许多为腐生菌,主要分布于土壤、植物体表面及水体中,其在工业、农业、医学、军事和科学研究中有广泛的应用价值。在《Bergey氏鉴定细菌学手册》第8、第9版中,蜡样芽孢杆菌的分类地位为芽孢杆菌属的第I群,该群有22个种。根据营养型菌细胞的宽度分为两类,蜡样芽孢杆菌、蕈状芽孢杆菌、苏云金芽孢杆菌、炭疽芽孢杆菌和巨大芽孢杆菌属“大细孢菌种”。蜡样芽胞杆菌是一种杆状、产内生芽孢的革兰氏阳性细菌,由于蜡样芽孢杆菌自然界分布甚广,常存在于土壤、灰尘、腐草和空气中,极易在食品加工、运输、贮存、销售过程中,通过苍蝇、蟑螂等昆虫和不卫生的用具和手污染,通常被认为是一种条件致病菌,在临床上可导致脓肿、脑膜炎、骨髓炎、心内膜炎等报道,但最常见的是导致两种不同类型的食物中毒:腹泻型和呕吐型。关于B.c.引起非肠道感染及食物中毒的例子很多,从1898年起,就有B.c.造成泌尿系统感染及肠胃炎的记载,有些感染的病例甚至很严重,以致造成死亡。在微生物发展的早期,好氧芽孢杆菌就被怀疑可造成食物中毒,Lubenau1906年描述了发生在一家医院的严重的食物中毒事件,300名医务人员及病人用餐后出现急性肠胃炎,对剩余的食物进行检测,发现含有大量的好氧芽孢杆菌,该污染菌为B.c.。Seitz 1913 年从一例患肠炎与腹泻的病人分离出B.c.。Brekenfeld 分别于1926年及1959年报道了两起B.c.造成的食物中毒事件。1936~1942年,瑞典卫生部对367例食物中毒事件综合分析,证实117例是由B.c.引起,并且认识到被B.c.污染的食物,储藏温度不当时,可能会造成食物中毒,在1973年Bulyba等人报道了污染蜡样芽孢杆菌的乳制品引起食物中毒。由于Smith、Gorden 及其同事在芽孢杆菌分类学上的进展,Hauge 经过对4起食物中毒事件的调查,于1995年首次确认B.c.是一种引起食物中毒的致病菌。目前大部分国家对各类食品中的蜡样芽孢杆菌数量有所限定,多数情况下,引起食物中毒的食品中蜡样芽孢杆菌的数量在105~108 CFU/g,常因食用肉类、海鲜、乳品和蔬菜等食物引起,潜伏期一般为6~15h,一般持续24h;而致呕吐的毒素是该菌在食物中预先产生的,该毒素非常稳定,进入人体后在胃中与其受体5-HT3 结合,导致呕吐。呕吐型食物中毒的潜伏期一般为0.5~6h,一般限于富含淀粉质的食品,特别是炒饭和米饭。主要症状为恶心、呕吐,有时有腹泻、头晕、发烧和四肢无力等症状,引起这两种食物中毒的食品通常都是经过热加工处理的,但蜡样芽孢杆菌具有耐热的芽孢,能在食品加工及烹饪后残留下来,热处理诱发芽孢的萌发,在没有其他微生物与之竞争的条件下,大量生长繁殖,产生毒素并引起食品的腐败。蜡样芽孢杆菌产生的呕吐毒素(cereulide,1.2kD)是一种小的十二边形的热稳定性环状毒素,分子式为(D-O-Leu-D-Ala-L-O-Val-L-Val)3。其结构、性质和毒理与缬氨霉素很相似,是特异性的钾离子载体,能将K 转入线粒体内,破坏线粒体的氧化还原能力。该毒素非常稳定,目前的各种食品加工方法,包括灭菌,均无法使其失活(能耐受126℃ 90min),而且还耐强酸(pH 2.0)、耐蛋白酶水解。N.Agata等对多种食品中呕吐毒素的产量进行了检测,发现对B.cereus NC7401来说,在煮熟后的米饭中其产毒量很高,在富含淀粉质的食物中的产毒量也足以引起食物中毒;而在肉类、蛋品和密封的液体食品如牛奶和豆奶中虽可以检测到该毒素,但其含量较低。还发现在与醋、蛋黄酱及酱类一起煮的食物中,该菌株的生长和产毒都受到抑制,推测这可能是醋导致pH 降低的缘故。在12~15℃时该毒素的产量却明显高于30℃时的产量,而且该毒素的产生与芽孢的产生没有相关性。还有报道称该毒素只有在有氧条件下才能产生,所以缺氧条件如:充氮包装和真空包装能有效地防止该毒素的产生和积累。因为该毒素的分子量很小,无抗原性,这使其检测比较难,到目前为止尚缺乏一种快速可靠的检测方法。最常用是采用HEp-2 细胞进行细胞培养分析。近年来用分子生物学手段检测产毒菌株的报道也较多,如P F Horwood 等人根据NRPS基因的两个可变区的序列,针对产呕吐毒素的菌株设计了特异性的引物,进行PCR 以检测蜡样芽孢杆菌是否产毒,取得了良好的效果,该法灵敏度高,而且检测速度快。在呕吐食物中毒事件中分离的蜡样芽孢杆菌均产生呕吐毒素,而且有着共同的独特表型特征,对其基因进行分析发现它们同源性很高。B.c.所造成的腹泻型食物中毒的致病因子是肠毒素,目前至少已经发现4 种不同的肠毒素,包括2 个三联体肠毒素:溶血素BL和非溶血素Nhe;2个单一亚基肠毒素:细胞毒素K(cytK)、肠毒素T(bceT)。2.2.1 溶血素BL(HBL)Beecher1991年从B.c.菌株中分离提纯了一种具有活性的三亚基肠毒素,命名为溶血素BL(hemolysinBL),能够引起家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其由一个结合亚基B(37.5kD)、两个溶血亚基L1(38.2kD)及L2(43.5kD)组成,编码3个亚基的基因hblA、hblD、hblC经克隆、测序与分析,表明其在同一个mRNA中受一个操众子调控转录如图1。这些组分的物理化学性质非常相似,等电点(pI)为5.34,5.33和5.33。其中hblA编码结合亚基B,hblD、hblC分别编码溶血亚基L1及L2,hblB编码B’蛋白,hblC和hblD仅隔37bp个碱基,B、L1、L2蛋白分别有31、30、32个氨基酸的信号肽,hblD和hblA之间最少有100bp碱基,hblA和 hblB有381 bp的碱基隔开,B’蛋白与B蛋白开始的158个氨基酸非常相似,但其功能尚未清楚。Douglas J.Beecher等人利用等电聚焦电泳技术和快速蛋白液相层析技术证明单独成分的溶血素亚基并不会在血平板上产生溶血环,只有当3个亚基结合后,才会产生溶血环。图1 芽孢杆菌溶血素BL操纵子图谱2.2.2 非溶血素肠毒素(Nhe)非溶血素肠毒素(Nhe)由45、39和105kD的蛋白组成,其蛋白成分已被分离出来。1999年Granum等给出了nhe操纵子的序列,该操纵子有3个开放式阅读框,相应的3个基因分别是:nheA、nheB和nheC。前两个基因的产物分别为45kD和39kD 蛋白,而nheC 的产物尚未纯化出来,其功能未知。Nhe与Vero细胞相互作用的研究表明105kD蛋白是复合物的结合部位,而其他两个组分是无法单独结合到细胞上去。该105kD 蛋白是一种金属蛋白,具有分解明胶和胶原的活力。与hbl 基因不同,编码该毒素的基因位于质粒上。图2 芽孢杆菌非溶血素Nhe操纵子图谱溶血素BL(HBL)与非溶血素肠毒素(Nhe)同时受到PlcR的调控。2.2.3 肠毒素T(entertoxin T)肠毒素T为单一亚基的蛋白质,由 bceT基因编码,日本学者Agata对其基因克隆、测序和分析表明其由336个氨基酸组成。并认为其有细胞毒性,可导致家兔肠段的液体积累,可以改变豚鼠皮肤血管的通透性,具有对vero细胞的溶细胞毒性。其产物属于肠毒素蛋白。该毒素同溶血素BL无同源性,而且认为肠毒素T 不会导致食物中毒。2.2.4 细胞毒素K 早期在法国报道过食物中毒,其氨基酸序列显示它属于β-桶孔形成毒素,能在磷脂双分子层中形成直径至少为7A°的孔,该孔具有微弱的离子选择性,已证实它对人类肠道Caco-2上皮细胞具有毒性。PlcR是条件性人类病原菌B.cereus和共生病原菌B.thuringiensis细胞外毒性因子的一个多效调节子,它在细胞进入稳定期时诱导生长。受到PlcR调节的基因有:plcA编码一个专一性磷脂酰肌醇磷脂酶C(PI-PLC),Plc编码一个改良的磷脂酰胆碱磷脂酶 C(PC-PLC),nhe编码一个无溶血性的肠毒素,hbl编码一个溶血性的肠毒素 BL(HBL);以及推定为S-层类似表面蛋白的基因,以及一个推定为细胞外RNA酶。通过分析37.1kb的hbl,plcA和plcR周围的DNA序列,推定存在28个ORF。3条新基因推定受到PlcR 的调节并编码一个中性蛋白酶,subtilase家族丝氨酸蛋白酶(Sfp)以及一个推定的细胞壁水解酶(Cwh)得到确认。相应的sfp和cwh 基因定位于plcA的上游调节区域,能同时受到位于逆转录基因之间的PlcR结合位点的调控。Sylvie Salamitou等构建plcR基因缺失的突变菌株,该基因编码一个多效细胞外因子的调节子。幼虫期同时取食亲本菌株产生的106孢子亚致死浓度的Cry1C毒性导致70%死亡率,如果使用plcR突变体的孢子,则只有7%的死亡率。小鼠鼻腔灌入108的孢子,亲本菌株导致了100%的死亡率,而灌入相同数量的突变体孢子,死亡率大大降低,甚至没有死亡。应用营养体细胞代替孢子也可以达到相同的效果。导致死亡的原因未知,不可能是由于小鼠内细菌的实际增长所导致。由于受B.thuringiensis 过量突变体感染的小鼠产生的病变,说明溶血素参与其中,发生了作用。B.thuringiensis和B.cereus具细胞溶解毒性的特性。这种细胞溶解毒性的水平在plcR基因缺失的菌株中剧烈下降。表明 B.thuringiensis407菌株和B.cereusATCC14579的致病性受到PlcR的调控。由于蜡样芽孢杆菌及其芽孢广泛存在于周围的环境中,它极易污染食物而引起食物中毒,因此需要发展一种快速的检测方法来实现对致病性蜡样芽孢杆菌的检测,目前对该类蜡样芽孢杆菌的检测主要采用生化检测方法是一项费时费力的方法,需要长时间的选择性培养过程。现在有两种试剂盒可供选择,但由于价格昂贵且不太灵敏,有些致病菌不能够检测。王利国等人对实验室14株芽孢杆菌溶血素BL的检测结果表明,8株蜡样芽孢杆菌全部检测到溶血素BL的基因且产生溶血环,而其他的蜡样芽孢杆菌只检测到hblA基因以外的基因且不产生溶血环,表明只要检测到hblA基因,证明其为致病性菌株,所以通过设计hblA基因特异引物用PCR或通过血平板培养的方法是既经济又快速的检测方法。对其他毒素的检测目前主要是通过设计特异性引物来检测。所以对蜡样芽孢杆菌毒素的检测还需要进一步对其研究,确定最佳的检测方法。 -
报告Study on the Differentiation in Pathogenicity of Different Isolates of Botrytis cinerea Pers to Tomato
出版时间:2007由灰葡萄孢(Botrytis cinerea Pers.)侵染引起的番茄灰霉病是当前番茄生产上重要病害,尤以设施栽培条件下发生较重,一般引起产量损失20%~30%。灰葡萄孢的寄主很广,已经报道过的寄主至少有235种,能为害多种粮食作物、经济作物、蔬菜、果树和观赏植物[1]。随着高效农业的发展,温室中蔬菜、花卉、果树轮作、间作日渐频繁,使得同种作物间、不同种作物间交互感染成为可能[2~3]。为了明确来自其他寄主植物的灰葡萄孢菌株能否侵染番茄,不同寄主来源的菌株对番茄的致病力是否存在差异,从而为生产上包括番茄灰霉病在内的灰葡萄孢所致植物灰霉病的综合治理提供参考依据,作者对不同寄主来源的灰霉菌株对番茄的致病力及其分化进行了研究。2005~2007年,从合肥市、蚌埠市、长丰县、和县等地区的番茄、辣椒、草莓、葡萄等发病寄主上分离鉴定获得18个灰葡萄孢菌株,采用菌丝块创伤接种法,分别测定了上述不同寄主来源的灰葡萄孢菌对番茄果实和叶片的致病力。结果表明,所有供试菌株接种番茄果实后均可引起发病,但不同菌株所致病斑的平均直径有显著差异,提示灰葡萄孢菌株间对番茄果实的致病力存在明显分化。按照在番茄果实上所致病斑的平均直径大小可将供试菌株划分为致病力较强、致病力中等和致病力较弱3种类型。总体来说,来自番茄的菌株对番茄果实的致病力较强,来自草莓、葡萄和辣椒的菌株对番茄果实的致病力较弱,但来自相同寄主的菌株间致病力也存在差异,菌株致病力差异与菌株地域来源无明显相关。供试灰葡萄孢菌株接种番茄叶片后,除CF1外,均可引起番茄叶片发病,但不同菌株所致番茄叶片病斑的平均直径也有显著差异,但菌株致病力差异与菌株的寄主和地域来源无显著相关。本文关于灰葡萄孢不同菌株致病力存在差异的研究结果与Kersises[4]的报道一致。Lorenz[5]和Kersises[4]认为灰葡萄孢不同菌株致病力分化的原因可能与异核现象有关。作者也曾采用细胞核染色法观察到部分灰葡萄孢菌株菌丝细胞内存在多核现象,但这种多核现象与异核现象乃至致病力分化之间的关系尚不清楚。因此,有关灰葡萄孢不同菌株致病力分化的机制尚需进一步研究。灰葡萄孢菌株对番茄果实和叶片的致病力测定结果比较表明,除FQ外,其余各供试菌株对番茄果实所致病斑直径均比叶片病斑直径大,但各供试菌株接种番茄果实和叶片后所致病斑直径之间没有明显的相关性。作者认为,采用菌丝块创伤接种法测定灰葡萄孢菌对番茄的致病力时,以接种果实为宜;由于不同菌株的致病力差异较大,所以在番茄抗病性测定时,宜选用强菌株或混合菌株。本研究结果指出,来自辣椒、草莓、葡萄等其他寄主植物的灰葡萄孢菌株能够侵染番茄果实和叶片,意味着上述植物上的灰霉病菌(灰葡萄孢)可以成为番茄灰霉病的侵染来源,建议在番茄灰霉病的综合治理中应予以注意。