首页 <
知识图谱:全部
-
报告Function of Predatory Nematode and Plant-parasites Nematode in Different Tillage Practices*
出版时间:2007土壤线虫具有丰富的生物多样性。多数土壤线虫生态学者将土壤线虫按照取食习性分成植物寄生线虫、食细菌类线虫、食真菌类线虫、捕食类或杂食类线虫、以基质为食的线虫和取食单细胞的线虫等[1]。植物寄生线虫可以通过取食植物根部,直接影响植物的营养状况或通过取食活动造成的伤口,引起与其他植物病原物的复合侵染。植物寄生线虫大多数属于垫刃目、少数是矛线目长针科和膜皮亚目毛刺科;捕食性线虫通常是以捕食土壤中的线虫、菌物、藻类及其他微动物为生,多为单齿目线虫。捕食性线虫属于自由生活线虫,通常生活周期长、繁殖能力低和对环境干扰敏感。一般不是土壤中的优势种群,但能更好地指示土壤状况的较长期变化[2]。捕食性线虫作为植物寄生线虫的捕食者具有较好的生防潜力[3,4]。对于捕食性线虫群体动态变化的研究有限,Azmi和Das&Mukhopadhyay[5,6]报道了捕食性线虫群体随着被捕食线虫的种类和密度变化而变化。Choudhury[7]对泰米尔某地的捕食性线虫Mylonchulus minor在不同深度土壤中的分布和随季节的动态变化做了研究。为了深入了解捕食性线虫对土壤健康状况的指示作用,明确在耕作土壤中捕食性线虫与植物寄生线虫的关系,本试验研究了不同耕作制度大豆田中捕食性线虫种群多样性以及捕食性线虫与植物寄生线虫种群密度动态变化关系做了详细的研究。供试作物:大豆(Glycine max),辽豆11为感染大豆胞囊线虫的品种。1.2.1 田间设计 试验于2006年在辽宁省沈阳市汪家乡养竹村。定点选取连作、轮作、水稻田改旱田和撂荒4种耕作方式下的大豆田进行研究。连作3~4年,轮作方式为水稻―大豆―玉米―大豆,水稻田改旱田前茬为水稻,撂荒地为以前未种过大豆的荒地(但有野生大豆生长)。播前大豆无任何处理,分别在播种期(5月7日)、苗期(6月7日)、开花期(7月10日)、结荚期(8月7日)和成熟期(9月6日)进行取样。1.2.2 土样采集方法 每一种耕作制度采用五点法取样,去掉5cm表土挖取300g根际土壤,封口,记好标签,带回实验室及时分离。1.2.3 线虫的分离、杀死和固定 每个土样称取鲜土200g,采用淘洗—过筛—重糖离心法分离;水浴60℃,10min杀死;采用TAF固定液固定。1.2.4 土壤含水量测定 土壤含水量采用烘干法测定,烘箱设置80℃、12h烘干。1.2.5 线虫的计数 将每份标样摇匀后,用带刻度的吸管吸取1/3,在显微镜和体视解剖镜下进行科属鉴定并计数,然后依据测得的土壤水分将土壤线虫种群折算成100g干土中含有的线虫条数。1.2.6 线虫群落分析方法 根据线虫的取食习性和食道特征确定线虫所属类群(Yeates等,1993)。生态指数和计算方法如下:丰度(Abundance)=100g干土中土壤线虫的数量相对丰度(Relative Abundance)RA=丰度/线虫总数2.1.1 捕食性线虫种群的多样性 从各个时期的土样中,分离鉴定出捕食性线虫共2个目4个属。各属的形态特征如下:(1)孔咽属线虫Aporcelaimus spp.分类地位:矛线目,矛线亚目,矛线总科,矛线科。形态特征:食道前部细长,后部扩大呈圆筒形或梨形,口腔内常有1个轴针或壁齿。虫体大,通常大于4mm。体表由微弱棕纹和交织纹,偶尔也有横环纹。唇区突出,唇片分离。齿针粗,开口大于齿针1/2。侧器由中央支撑。食道在中部扩大。背食道腺与开口间距离大。有贲门盘。雌虫卵巢1对,阴门横裂。雄虫有矛线形交合刺,有侧引带,中腹生殖乳突数个或多个。尾短,圆锥形或半球形,雌雄尾形相似。(2)前矛线属Eudorylaimus spp.分类地位:矛线目,矛线亚目,矛线总科,矛线科。形态特征:口腔内常有一个轴针或壁齿,口腔壁无角质化或肋围绕着轴针,食道前部细小,后部扩大成圆筒形或梨形,食道后部扩大部等于或大于1/3食道长,口针较短,延伸部简单,无凸缘或基部球,咽具有一轴针,口针周围无角化板,食道前部正常肌肉质,唇区不开阔,口针导环明显,无导鞘,内环乳突不在头部外侧,两性尾部皆为丝状。(3)锉齿属线虫Mylonchulus spp.分类地位:单齿目,锉齿科,锉齿属。形态特征:食道呈圆筒形,基部稍宽,口腔壁角化,至少有1个粗大的背齿。背齿位于口腔前部向前指,相对位置上有2列边缘齿。经温和热杀死后向腹面弯曲,唇区分开,口囊腹壁小齿6排,雌虫双卵巢,尾短,圆锥形,在尾近中部突然向腹面弯曲。(4)单齿属线虫Mononchus spp.分类地位:单齿目,单齿科。形态特征:虫体长1~6mm。食道呈圆筒形,基部稍宽,口腔壁角化,至少有1个粗大的背齿。口腔卵圆形。背齿大,位于口腔前部1/3,齿尖向前,无亚腹齿。背齿相对处亚腹侧口腔壁有2道横肋。卵巢1对,偶单个。雄虫常见,交合刺细长。生殖附器10~47个不等。雌雄尾形相似。尾腺和尾腺管明显。在分离鉴定的4个属线虫中,孔咽属在土壤线虫总数中占优势,属于亚优势属。在连作田和撂荒田中仅发现了孔咽属;在水改旱中捕食性线虫的种类最多,4个属的线虫均有出现,其中孔咽属和锉齿属为常见属,前矛线属和单齿属为一般属。轮作中没有发现单齿属线虫,而其他3属线虫均存在,但孔咽属明显少于其他3种耕作方式。不同耕作方式大豆田中,捕食性线虫的种类和数量均有差异(表1)。OrderGeneraContinuouscroppingRotationPaddy-uplandFallowDorylaimidaAporcelaimus9.51%b1.40%c4.48%c6.84%bProdorylaimus0.01%d0.27%dMononchidaMylonchulus0.02%d1.10%cMononchus0.07%dTable 1 The genus, relative abundance and dominance of predatory nematode in four tillage practice2.1.2 植物寄生线虫种群的多样性 本试验共分离鉴定出植物寄生线虫1个目15个属(详见表2)。各耕作方式中植物寄生线虫都是大豆田中线虫的优势种群。不同耕作方式中植物寄生线虫的各属分布情况不同,连作中的种类最多,轮作其次,而撂荒中植物寄生线虫的种类最少。螺旋属在各种耕作方式中均占有优势地位,在轮作中相对丰度高达90.55%。胞囊属在各种耕作土壤中也均有分布,在连作和撂荒中为优势属,在轮作中为常见属,水改旱中则属于一般属。其他各属多为一般属。OrderGeneraContinuouscroppingRotationPaddy-uplandFallowTylenchidaHelicotylenchus30.42%a90.55%a71.45%a41.53%aPararotylenchus0.04%d—0.01%d0.17%dScutellonema0.09%d——Criconemella—0.01%d——Hoplolaimus0.01%d0.01%d——Pratylenchus—0.42%d——Paratylenchus0.06%d0.01%d—0.07%dHeterodera35.47%a1.09%c0.14%d26.34%aXiphinema0.15%d——Neothada—0.01%d—0.01%dTylenchus0.19%d—0.54%d—Filenchus0.37%d0.53%d0.11%d—Psilenchus0.13%d0.43%d0.50%d—Boleodorus0.07%d—1.07%c—Basiria0.19%d0.01%d0.16%d0.30%dTable 2 The genus, relative abundance and dominance of plantparasitic nematodes in four tillage practice试验结果显示,随着大豆生育期的变化,不同耕作方式下大豆田植物寄生线虫变化基本一致,均是在大豆播种期、苗期和开花期线虫的数量变化有逐渐减少的趋势,到结荚期线虫的数量明显增多,成熟期达最大。轮作中植物线虫总量远高于连作、水改旱和撂荒,变化最明显,其次是水改旱和撂荒。在4种耕作方式中,连作的每个时期(除播种期外)植物线虫数量都为最少,到成熟期数量增长也不显著,变化最平稳。大豆田中捕食性线虫数量比植物寄生线虫的数量少近50倍,不是土壤中的优势种群,但对环境变化较为敏感。不同耕作方式下捕食性线虫随大豆生育时期变化的趋向不同。连作和轮作中捕食性线虫变化的曲线大致相同,从播种期到成熟期先减少后增多。水改旱地块中前3个时期捕食性线虫的数量几乎没有变化,结荚期和成熟期急剧增加达到群体数量最大。撂荒地中捕食性线虫的数量在播种期最多,而到苗期、开花期则减少到几乎没有,结荚期时的数量又上升到4种耕作方式中的最高值,到成熟期又有所降低(图1)。不同生育期植物寄生线虫和捕食性线虫的变化曲线基本一致,从播种期到苗期、开花期缓慢减少,从开花期到成熟期逐渐增多,成熟期达到最大(图3)。从图中曲线可看出捕食性线虫的变化较植物寄生线虫有些迟滞,说明捕食性线虫的数量有可能是随着植物寄生线虫数量的增减而变化,这与土壤中线虫食物链有一定的关联性。Figure 1 Changes in numbers of plant-parasitic nematode and predatory nematode during soybean period in different tillage practicesFigure 2Figure 3 Dynamic change of plant-parasitic nematode and predatory nematode in soybean period本研究仅在大豆田发现了4属的捕食性线虫,其中孔咽属为亚优势属,存在于4种耕作方式中,而一般属锉齿属和单齿属仅存在于水改旱和轮作中;植物线虫类群中螺旋属在4种耕作方式中均为优势属,胞囊属在连作和撂荒中为优势属,在轮作和水改旱中则属于一般属;但植物线虫总数在轮作中最多,水改旱其次,撂荒和连作最少。在农田生态系统中,捕食性线虫的生育周期长而且繁殖速度慢,受到人为扰动后群体数量恢复较慢,因此该类线虫中的某些种类可以作为生物指示剂指示土壤的健康情况。本研究同一种作物在不同的耕作方式下,植物线虫和捕食性线虫的种群多样性主要体现在种属分布不同,数量的多寡不同。在水改旱和轮作中的捕食性线虫的种类比连作和撂荒中的丰富,而且胞囊线虫的相对丰度也很低,仅在1%左右。胞囊线虫作为大豆的重要病原物起着指示大豆胞囊线虫病害发生严重度的作用。因此,研究认为,植物线虫类群中的胞囊属和捕食性线虫类群中的锉齿属和单齿属对土壤的扰动较为敏感,能很好地反映土壤发病和健康状况的变化,可作为土壤中重要的指示生物。本文的研究显示在大豆不同生育期,捕食性线虫的种群数量随着植物寄生线虫的增加而增加。植物寄生线虫会追随植物的生长发育而大量繁殖自身,因此在植物生育末期种群数量一般会增殖到最大,而捕食性线虫以土壤中线虫或其他生物为食,因此也会随植物线虫群体数量的增大而增加。Das等人通过对耕作田和草坪土壤中植物寄生线虫、捕食性线虫和自由生活线虫种群密度动态变化的研究中发现捕食性线虫的动态变化依赖于被捕食线虫种群多样性和密度[6]。Azmi和Choudhury分别通过对捕食性线虫Iotonchus monhystera和Mylonchulus minor种群动态的研究得出上述结论[5,7]。因此,植物寄生线虫作为捕食性线虫的一个重要的食物来源,在一定程度上影响其种群密度的变化。 -
报告Influence of the Rice Sowing Time on the Quantity of Laodelphax striatellus and the Occurence of Rice Stripe Virus
出版时间:2007水稻条纹叶枯病(RSV)是由灰飞虱(Laodelphax cstriatellus Fallen)传播的一种病毒病,严重发生时可造成大面积减产,甚至绝收。近几年来浙江省北部水稻条纹叶枯病发生面积逐年扩大,发病程度明显加重。目前,该病已成为嘉兴市水稻生产上的主要病害,并成为制约水稻生产的关键因素之一。水稻条纹叶枯病的发生程度与介体灰飞虱的虫量高低密切相关,而秧田期是条纹叶枯病感染的敏感期,秧田期灰飞虱虫量的高低与发病关系密切。为探明水稻播种迟早对灰飞虱发生量、条纹叶枯病发生流行的影响,我们于2006年、2007年对水稻不同播种时期灰飞虱发生量与条纹叶枯病发病程度的关系进行了研究,分析了水稻播种期、灰飞虱虫量及条纹叶枯病病情之间的相关性,现将结果报道如下:试验在嘉兴市农业科学院试验园区内进行。试验田前茬为水稻,土壤为青紫泥土,水肥条件良好。供试水稻品种为嘉991,种子由嘉兴市农业科学院提供。1.2.1 种子处理 每期播种前均对种子进行药剂处理,浸种时将供试水稻种子用2000倍液的402浸72h,然后将其从药液中取出,用流水冲洗以除去多余的药液,再置于37℃的恒温箱中催芽2天后播种。1.2.2 试验设计 2006年分3期播种,每隔15天播种一期,播种日期分别为:5月10日、5月25日和6月9日;2007年分4期播种,每隔10天播种一期,播种日期分别为5月10日、5月20日、5月30日和6月9日。每期播种时田间分3个小区,每小区面积3m2。各期秧田水肥等田间管理相同,除最后一期在25天秧龄移栽,其他各期均在30天秧龄时移栽。1.2.3 秧田灰飞虱虫量与条纹叶枯病发病率调查 各期播种后,从水稻出苗开始定期调查秧田灰飞虱虫量和条纹叶枯病发病情况。每期每小区调查3个点,每点0.11m2,记录每个样点上的灰飞虱虫量。将移栽前最后一次调查的灰飞虱虫量作为秧田虫量结果,并换算成每667m2虫量;同时统计每期调查的秧苗总数和发病株数,计算发病率。分析比较各播期处理区灰飞虱虫量与条纹叶枯病发病率的关系。1.2.4 大田发病率调查 各播期的秧苗在移栽后,每周调查一次田间条纹叶枯病发病率,直至不再出现病株为止。每次调查分别记录调查株数和发病株数,统计发病率,并将病情稳定时的发病率作为大田发病率,比较各期发病率差异。2006年调查结果表明,播期不同,田间灰飞虱虫量与条纹叶枯病发病率存在很大差异。5月10日、5月25日和6月9日3个时期播种的水稻秧田灰飞虱虫量分别为114.4万头/667m2、56.6万头/667m2和6.82万头/667m2;秧田发病率分别为3.13%、1.2%和0.23%,大田发病率分别为8.63%、4.19%和2.80%。比较各播种期处理区田间虫量和发病率关系,随着播种时间的推迟,灰飞虱虫量和条纹叶枯病发病率均明显下降。水稻播种期从5月10日推迟至5月25日,秧田灰飞虱每667m2虫量减少为57.8万头,秧田和大田发病率也分别下降了1.93%和4.44%;播期从5月25日推迟至6月9日,田间虫量继续减少,每667m2虫量减少为49.78万头,秧田和大田发病率下降为0.23%和2.80%,见表1。播种期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1053761683.13114.401054918.635/254992601.2056.601121474.196/95265120.236.821072302.80表1 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2006)从图1看出,秧田灰飞虱虫量与条纹叶枯病发病率存在密切关系,随着播种时间的推迟,田间虫量表现出近乎直线的下降趋势,随着虫量的减少,秧田发病率和大田发病率都随之下降。图1 水稻不同播种期田间灰飞虱虫量与条纹叶枯病发病率关系通过对各播期秧田灰飞虱虫量和条纹叶枯病发病率之间的相关回归分析,二者呈密切的相关性,秧田条纹叶枯病发病率(y)与灰飞虱虫量(x)的关系式为y=0.027x-0.088(r=0.989**);大田发病率(y)与灰飞虱虫量(x)的关系式为y=0.055x+1.959,r=0.969**。2007年的试验,田间灰飞虱虫量和条纹叶枯病发病率明显高于2006年。5月10日播种的处理区,秧田虫量高达253.6万头/667m2,秧田发病率达到6.1%,后期大田发病率高达21.47%;5月20日播种的,虫量稍有降低,为203.3万头/667m2,但仍维持很高水平,秧田和大田发病率分别为4.02%和17.66%,发病严重;5月30日播种的,田间虫量下降,为66.6万头/667m2,秧田和大田发病率也随之下降,发病率分别为0.97%和6.33%;6月9日播种,秧田虫量很低,为7.72万头/667m2,条纹叶枯病发病率也低,秧田和大田发病率分别为0.21%和2.12%,见表2。播期(月/日)秧田发病率调查总株数病株数发病率(%)田间虫量(万头/亩)大田发病率调查总株数病株数发病率(%)5/1054633336.10253.60133228621.475/2053732164.02203.30128522717.665/305235510.9766.601311836.336/95655120.217.721367292.12表2 水稻不同播种期灰飞虱虫量与条纹叶枯病发病率调查 (浙江嘉兴,2007)通过对秧田灰飞虱虫量与秧田发病率、大田发病率作图比较分析,播种期从5月10日推迟至5月20日,秧田灰飞虱虫量开始下降,减为50.3万头/667m2,减少19.83%;而播期从5月20日推迟至5月30日,每667m2虫量下降为136.7万头,减少67.24%;从5月20日推迟至6月9日播种,虫量继续大幅下降,减少为7.72万头/667m2。在播期逐渐推迟的过程中,随着虫量的大幅减少,条纹叶枯病发病率也表现出了明显的下降趋势,见图2。图2 水稻不同播种期田间灰飞虱虫量和条纹叶枯病发病率比较通过对2007年调查的灰飞虱虫量与秧田和大田发病率的相关性分析,两者呈密切的相关性,秧田发病率(y)与灰飞虱虫量(x)之间关系式为y=0.023x-0.294,r=0.987**;大田发病率(y)与灰飞虱虫量(x)关系式为y=0.080x+1.314,r=0.999**。综合分析2006年、2007年试验结果可以看出,5月上中旬播种,秧田期灰飞虱虫量保持在一个很高的水平,导致秧田和大田条纹叶枯病发生相当严重;而在5月下旬以后播种的,则田间虫量明显减少,随之条纹叶枯病发生也明显减轻。两年试验结果表明,水稻播种期对秧田灰飞虱虫量、条纹叶枯病发病率有明显影响。5月上中旬播种,田间灰飞虱虫量大,导致秧田和大田条纹叶枯病发病严重。水稻播期推迟至5月下旬至6月上旬播种,秧田灰飞虱数量明显减少,条纹叶枯病发病明显减轻。分析其原因,主要是由于播种早的田块,杂草及大、小麦田中的灰飞虱集中迁入水稻秧田,从而导致秧田虫口基数大。适当推迟播期,则避开了灰飞虱迁移和传毒高峰,发病减轻。通过两年试验和大田调查结果,认为在嘉兴地区将水稻播种期适当推迟至5月下旬或6月上旬,使一代灰飞虱成虫传毒高峰与水稻大田秧苗感病期错开,可有效控制条纹叶枯病的发生为害。 -
-
报告Study on Epidemic Pattern of Rice Stripe Virus and Its Control
出版时间:2007Rice stripe virus(RSV)is a kind of virus disease which spread through vector of planthoppers L.striatellus.It is hard to prevent and control once rice is infected with RSV,and suffer a great loss of rice yields.In recent years,the incidence rate of RSV in north Zhejiang province is speeding up because of altering of cropping system and fitness of climate.Such as in Jiaxing city,disaster area reached to 17600 hectare in 2007 and became one of the cities which were heavily infectious with RSV.Therefore,the epidemic pattern of RSV and its control countermeasures had been investigated for several years.An integrated control of RSV was established on the basis of optimizing single control method and extended application for other paddy fields,which efficiently prevent and control incidence and spreading of RSV.The results of investigation and research were summarized as bellows.1.1.1 Continuous enlargement of disaster region and area It can be concluded from research on disaster region of RSV in Jiaxing,Zhejiang province that RSV was only infected in few paddy fields of Haiyan county and Xiouzhou district in 2002,and incidence rate of small towns was just 8.3%;but incidence rate increased quickly,and increased to 65%in 2004 and about thirty-nine towns were invaded by RSV;and till 2006,the rice of all the small towns were infected by RSV and incidence rate increased to 100%.And today,RSV has been spreading to each town in Jiaxing,Zhejiang province.In terms of disaster area,only few places were infected in 2002;but raised greatly in 2004 and reached to 12600 hectare in 2005,which was about 9.94%of late rice field;andreached to 17600 hectare in 2007,which was about 13.9%of total rice area.1.1.2 Peak period of diseases incidence in field It was observed that initial period of RSV incidence was mid June,and about twenty to twenty five days after rice sowing,and had two incidence peaks in single cropping rice:the first peak was in mid July and another was in mid August.The two incidence peaks were resulted from RSV transmitted by the first and second generation of L.striatellus respectively,and the first peak was higher than the second,and disaster incidence became stable after mid August.According to investigation on early rice fields in 2006,the diseased-hill and diseased-tiller rates of first incidence peak reached 18.5%and 3.77%respectively,and became 4.23%and 1.58%at the second incidence peak,which was resulted from different numbers of L.striatellus of two peaks.Because of fitness of temperature and host(such as wheat field and weeds),number of first generation L.striatellus was larger and easily transmitted RSV,which caused higher disaster incidence.However,because of higher temperature,number of second generation L.striatellus was smaller and uneasily transmitted RSV,which resulted lower disaster incidence.1.1.3 Early rice field heavier than late rice field Damage intensity extent of RSV was closely related with the sowing period,earlier sowing usually caused heavier disaster incidence.From investigation of different sowing time in 2006,the average diseased-hill and diseased-tiller rates of rice fields sowing in 15th May was 16.3%and 4.05%respectively,which increased about 65.8%and 59.4%over that in 20th May(9.89%and 2.54%),about 81.59%and 94.8%over that in 29th May(3%and 0.81%),and about 94.9%and 94.81%over that in 6th June(0.83%and 0.21%).According to investigation in 2007,the diseased-tiller rate of rice fields sowing in 16th May,23rd May,30th May and 6th June was 5.18%,7.31%,7.90%and 0.70%respectively.There existed significant difference of disaster incidence of different sowing time.The heavily disease infected rice fields usually concentrated in sowing in mid May,which was higher than that sowing in late May and mid June,and nearly had no infection of RSV in rice fields sowing after mid June.1.1.4 Transplant rice field heavier than direct seeded rice field RSV incidence in transplant rice field was obviously heavier than direct seeded rice field based on general investigation of Jiaxing city,which resulted from rice field was apt to suffering of L.striatellus and spreading RSV because of early sowing time,such as in Xiuzhou distinct,the average diseased-tiller rate of transplant rice fields sowing in mid May was 3.86%,but direct seeded rice field sowing in late May was only 0.71%.From 2005 to 2007,we investigated disease incidence after inoculation of RSV to planthoppers with no control of planthoppers in Xiuzhou distinct,Jiaxing.The result was that there was no viruliferous planthopper,disease incidence was lower,the diseased-tiller rate of early and mid sowing rice fields was 3.1%and 1.2%respectively,and there was no disease incidence in late sowing rice fields in 2005.In 2006,rate of viruliferous planthopper was 2.01%,and the diseased-tiller rate of early,mid and late sowing rice fields was 18.5%,10.1%and 1.16%respectively.In 2007,rate of viruliferous planthopper was 3.68%,and the diseased-tiller rate of early,mid and late sowing rice fields was 21.5%,19.5%and 2.7%respectively.It was concluded from the above investigation that rate of viruliferous planthopper was closely related with disease incidence,and the formeracted an important role to the latter.Based on general investigation on disaster incidence of major rice varieties planted in Jiaxing,Xiuyu5 was the most infective,the average diseased-tiller rate was about 3.78%,about 90%rice fields were infected and the highest diseased-tiller reached 11.2%.The other major rice varieties,such as Jia991,Xiushui110 and Xiushui09 were also heavily infective,and the average diseased-tiller rate was over 1%,but Jiahua1 and Jialeyou2 were slightly infective and the average diseased-tiller rate was about 0.89%and 0.31%respectively.The incidence of RSV was mainly determined the number of viruliferous planthopper,fitness of peak of viruliferous planthopper with rice sowing,climate and different disease-resistance of rice species,which were also the main parameters of disease monitoring.From analysis of RSV rising,spreading and extending in north Zhejiang,we can conclude the below reasons.First was the large number of viruliferous planthopper.In recent years,population quantity of L.striatellus was keeping on rising,which increased the incidence of RSV.One of the reasons was high population density of planthopper during late rice heading period.Based on investigation of Jiaxing Station of Disease and Pest Monitoring in min October from 2005 to 2007,most L.striatellus concentrate and did harm to the rice heading,and there was about four million planthoppers per 667m2 rice fields and the heavily infected rice fields reached over five million per 667m2.Another reason was high population density of spring wheat field.From investigation on numbers of planthoppers in wheat fields before harvesting,there was about 2981000 planthoppers per 667m2 wheat fields and the heavily infected wheat fields reached over 10000000 per 667m2.Many hibernacles were also the reasons of the large number of viruliferous planthopper.L.striatellus can hibernate in many places,such as Gramineae seeds in side of agriculture lands and ditches,and there was about 5454000 planthoppers per 667m2 seed fields according to investigation in mid May,2007.Second was high rate of viruliferous planthopper.It was resulted from bio-assay of RSV in Jiaxing Academy of Agricultural Sciences from 2005 to 2007 that viruliferous planthoppers were widely distributed and rate of viruliferous planthopper was high.Among the detected samples from seven counties in Jiaxing from 2006 to 2007,all of the samples were infected with RSV,but just two of four countries samples in 2005 detected RSV.Rate of viruliferous planthopper in 2005,2006 and 2007 was about 1.47%,3.25%and 2.86%respectively.Based on research of Japanese scientist,RSV can be prevalent when rate of viruliferous planthopper was over 3%,RSV will be much prevalent if rate of viruliferous planthopper reached 12%.Third was weakness of rice disease-resistance.Based on investigation,major late rice varieties in keng rice region of north Zhejiang were absent of disease-resistance,such as Xiushui09,Xiushui110,Jia991 and Xiuyou5,which increased prevalence of RSV.county200520062007Haiyan3.462.272.62Nanhu2.432.400.67Xiuzhou0.02.013.68Jiashan0.02.032.03Pinghu—6.730.99Haining—3.372.22Tongxiang—3.933.79average1.473.252.86Table 1 Bio-assay result of rate of viruliferous hibernating planthoppers from 2005 to 2007 in Jiaxing, ZhejiangFour was fitness of variety and cultivation condition.The expanding areas of wheat,the rising areas of winter-fallow paddyfields and wasteland were apt to hibernating and propagation of L.striatellus.The earlier sowing in some single cropping rice fields,especially rice fields sowing in mid and late May,when rice seedling was in coincidence with peak rate of viruliferous planthopper,easily caused concentrated transmission of RSV and caused heavier disaster incidence.Control of RSV should be based on prevention,take measures of"kill pests and control disease,cut the chain of spread,and adopt integrated control of RSV"with a thought"control wheat field and protect rice field,control prophase and protect anaphase,control this year and protect next year",and integrate"resisting,avoiding,cutting,controlling,supplying,altering"into management countermesures.Resisting:introduction and extension of disease-resistance rice species.Main rice species planted in Jiaxing were disease-sensitive species,such as Xiushui09,Jiahe128,Jiahua1,Jia991 and Xiushui110.In order to better control disaster incidence,we should decrease the sowing areas of disease-sensitive species,and introduce and extend disease-resistance rice species,such as Jialeyou2,which had good resistance to RSV.Avoiding:delaying sowing time and avoiding peak rate of viruliferous planthopper.The top number of the first generation of L.striatellus occurred in mid and late May,which was in accordance with high rate of viruliferous planthopper and caused rice to be heavily infected.Therefore,delaying sowing time and homochronous sowing were advocated on agricultural production.Such as,the sowing areas were diminished to 25700 hectare in Jiaxing before June,which was about 20.3%of the total rice fields in 2007.But sowing during first twenty days in June reached 97600 hectare,which was about 77.1%of the total rice fields in 2007.Cutting:worsening the condition of L.striatellus.One was to cut weeds and clean fields.Weeds in agricultural lands,field ridge,pitch ridge and side of road were the important breeding place of planthoppers.Therefore,we should try our utmost to clear weeds and cut the chain of host.Another was plowing five days before sowing or transplanting.Controlling:carrying out chemical control during proper period.(1)Control of L.striatellus inspring wheat field and seeds.RSV is a kind of virus disease which spread through vector of planthoppers L.striatellus.RSV can be prevented by the control of planthoppers.The planthopper population in spring wheat field and seeds will directly affect RSV incidence of the whole year.Therefore,to diminish the planthopper population and gain the active control,planthoppers of wheat field and seeds should be completely controlled one time in mid April.The method was to spray 100~120ml of 40%durshan per 667m2.(2)Treatment of rice seeds.Seed treatment is a better way to control disease transmission of early rice seedling.The method is to immerse dry rice seeds into 10%imidacloprid or 5%fipronil for 48 hours and then accelerate germination.(3)Strengthen control of planthopper during rice seedling(early time of direct seeded rice field).After rice seed sprouting,adult planthoppers immigrate to rice fields,which meet the peak period of RSV transmission and will increase the rate of disaster incidence.The method was to spray 100~120ml of 40%durshan per 667m2 and repeated spraying after eight days.(4)Control of planthoppers during the growth period.Growing period in paddy field was the key point of control,the top population of planthopper nymph of second generation occured from mid and late June to early July,and these period was the best time to control planthopper.After mid July,L.striatellus of third and forth generation can be controlled along with Nilaparvata lugens and Sogatella furcifera.The biggest population of L.striatellus occurred from late September to mid October,and could be controlled in main spike and decreased the hibernation number of planthoppers and lessened the control pressure of next year.Supplying:In rice fields where rice had been infected with RSV the disease plant was to pull out in time and break the chain of disease,and prevent transmission of RSV again.To improve ability of disease-resistance and lessen rate of disaster incidence,2%ningnamycin can be integrated into control.Altering:For the rice field where the diseased-tiller rate was over 70%,we should plough and alter planting in according to the principle of fitness of planting rice or vegetable and reasonably arrange the shifts of rotation.Adjust planting structure of crop was also adopted to control disaster incidence and increase income of farmer. -
报告Primary Study of Oligogalacturonides Inducing Resistance to Tobacco Mosaic Virus
出版时间:2007烟草病毒病有“烟草癌症”之称,一旦发生和蔓延,就难以控制,严重制约烟草的正常生长。目前发生最普遍、危害最严重的是烟草花叶病毒(TMV),其发生范围遍及各烟区,不仅造成烟草产量的损失,而且使烟草品质严重下降,降低烟草的烟叶等级,严重影响烟叶的经济性状。化学药剂所造成的病原物抗性和环保问题,使其应用受到较多限制;由于植物病毒系活体寄生物,侵入寄主细胞后的增殖需借助寄主的代谢,因此至今尚无安全、有效的治疗药剂。而诱导抗性作为对植物病害的诱导应答减少了植物在抗病方面所付出的种种代价,因此是较为经济有效的抗病策略,并在作物可持续病害防治中具有十分广阔的应用前景。本文着重研究寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒的能力,以期为寡聚半乳糖醛酸用于农业生产提供科学依据。1.1.1 供试药剂 寡聚半乳糖醛酸以及壳寡糖,由中国科学院大连化学物理研究所研制。20%病毒A可湿性粉剂(黑龙江省齐齐哈尔四友化工实业有限公司,市购)。1.1.2 供试植物 枯斑三生烟(Nicotiana tobacum L.SamSun NN)。1.1.3 供试毒源 烟草花叶病毒(TMV),本实验室保存于普通烟上。接种病毒汁液为每克含TMV的烟草病叶,加入5倍体积0.05mol/L的磷酸缓冲液(pH7.0),在研钵中研磨后纱布过滤。1.2.1 试验处理 供试药剂寡聚半乳糖醛酸设浓度为50μg/ml喷雾;浓度为75μg/ml喷雾;浓度为100μg/ml喷雾。病毒A稀释700倍喷雾。清水对照。共5个处理。1.2.2 试验实施 试验设在海南试验地中,土壤为红土。试验每个处理15株长势大小一致的6~8叶期的烟草,叶面喷雾施药。24h后汁液摩擦接种TMV病毒。在病毒汁液中加入少量石英砂,用毛笔蘸取汁液摩檫接种。枯斑三生烟苗采用半叶法接种,每株接4片叶。接种后每天观察发病情况。待全面发病后,调查病斑数。1.3.1 试验方法 选取大小一致、6~8叶期的烟草植株,均匀喷洒供试药剂寡聚半乳糖醛酸50μg/ml。处理24~96h不同时间后,进行接毒试验。采用半叶法摩擦接种。接种7天后,统计叶片上的病斑数。试验重复3次计算防效。抑制率(%)=[(对照叶片病斑数-处理叶片病斑数)/对照叶片病斑数]×100%1.4 抗性相关酶的测定1.4.1 超氧化物歧化酶(SOD)活性 取样叶1.4g,10.0ml 含5mmol/L巯基乙醇的硼酸缓冲液(0.05mol/L,pH 8.8),加入0.5g PVP和石英砂在研钵中研磨,在冰水中研磨成浆。10000r/min 4℃离心10min,上清液即为酶液。3ml反应体系中含50mmol/L磷酸缓冲液,13mmol/L甲硫氨酸,75μmol/L氮蓝四唑(NBT),100nM EDTA,4μmol/L核黄素,加入50μl粗酶,在日光下反应,以黑暗终止反应,立即在560nm下比色。以抑制NBT光化还原的50%为一个酶活单位。以不加酶液的光照管为对照。以磷酸缓冲液调零。1.4.2 过氧化氢酶(CAT)活性 3ml反应体系中含50mmol/L pH 7.0 PBS1.9ml,45mmol/L H2O2(2%)1.0ml和0.1ml酶液。连续记录240nm吸光度的变化。以每分钟变化0.01为一个酶活单位。试验结果表明,壳寡糖、寡聚半乳糖醛酸50μg/ml,75μg/ml,100μg/ml,以及病毒A稀释700倍都对烟草花叶病毒侵染烟草产生枯斑有抑制效果。其中寡聚半乳糖醛酸50μg/ml抑制效果最好,抑制率为52.8%,略高于阳性对照壳寡糖(49.7%)以及病毒A(31.8%)。寡聚半乳糖醛酸75μg/ml以及100μg/ml,抑制率分别为49.7%和37.9%,都高于病毒A稀释700倍。寡聚半乳糖醛酸浓度在50~100μg/ml之间是随浓度的增加,抑制率有所降低。取田间试验诱抗效果最好的寡聚半乳糖醛酸浓度50μg/ml进行温室试验,试图寻找诱抗效果最好的时间点。试验结果表明(3次重复),喷施寡聚半乳糖醛酸96h时,随着时间的延长诱抗效果越明显,枯斑产生的抑制率为62.2%,但是差异不显著,说明96h内寡聚半乳糖醛酸诱导效果基本维持稳定。处理斑点数抑制率(%)寡聚半乳糖醛酸50μg/ml92±40?52.875μg/ml98±47?49.7100μg/ml121±4337.9病毒A稀释700倍133±4031.8壳寡糖50μg/ml98±32?49.7CK195±48—表1 寡聚半乳糖醛酸不同浓度喷施对烟草花叶病毒病的防效(P处理斑点数抑制率(%)寡聚半乳糖醛酸24h89±35?37.648h91±61?36.872h80±35?44.396h54±21?64.4CK143±64—表2 寡聚半乳糖醛酸喷施不同时间对烟草花叶病毒病的防效(P2.3.1 超氧化物歧化酶(SOD)活性变化 寡聚半乳糖醛酸处理烟草植株后SOD的活性变化如图1所示。处理烟草15m~12h的时间内,SOD酶活性升高,均高于对照。其中处理1h内就达到一个峰值。8~12h达到第二个峰值。推测寡聚半乳糖醛酸诱导烟草首先能够产生一个快速的SOD活性升高的反应,然后在8~12h时能诱导另外一个途径使SOD酶活升高。图1 寡聚半乳糖醛酸诱导烟草不同时间后SOD酶活2.3.2 过氧化氢酶(CAT)活性变化 寡聚半乳糖醛酸处理烟草植株后,CAT活性明显高于对照,处理15m~2h即达到峰值。在处理后的148h内,CAT均可保持较高的活性。说明寡聚半乳糖醛酸在2h内可以快速诱导CAT的活性,并且可以在较长时间保持诱导烟草植株CAT的活性。图2 寡聚半乳糖醛酸处理烟草不同时间后CAT活性变化目前,对于寡聚半乳糖醛酸作为植物诱导子的研究比较多,但是对于诱导烟草抗烟草花叶病毒的研究较少,本实验室研究了寡聚半乳糖醛酸诱导烟草抗性的最佳浓度为50μg/ml,96h以内的诱导抗性不依赖于诱导时间的长短。本实验室也检测了诱导时间长达25天的诱抗效果,诱导抗性随时间的延长而先增加后降低,在16天达到最高。植物体在抵抗病原菌侵染的过程中,有些保护反应是在酶催化下完成的。许多研究结果表明,植物在逆境条件下,其膜系统的受损与生物氧自由基有关,超氧化物歧化酶SOD被认为是细胞膜的保护酶。酶活性愈高,消除氧自由基的能力越强。植物的抗逆性也愈强[1]。抗病毒剂VA诱导枯斑三生烟后,叶片中SOD活性增加,推测VA诱导枯斑三生烟对TMV的抗性可能与活性氧代谢有关,即可减少活性氧对植物的毒害作用[2]。另外,其他的能够诱导烟草抗TMV的诱导子如VFB[3]以及落葵提取液4],均可诱导烟草中SOD酶活性的增加。本文寡聚半乳糖醛酸能够诱导烟草抗病毒,并且也伴随着SOD酶活性的升高,间接说明SOD酶活性的升高与植物抗病毒有关系。过氧化氢酶(CAT)是植物细胞内重要的活性氧清除剂,其生理作用是将H2O2还原为H2O和O2。CAT活性升高或H2O2含量降低意味着活性氧对植物细胞伤害程度的降低。病原菌侵染烟草后,总体上看,抗病品种CAT活性高于感病品种[5]。孔凡明等通过烟草与TMV不同互作体系的研究表明,接种后CAT活性均升高,在非亲和性互作的早期,CAT活性显著高于亲和性互作[6]。因此,我们推测,寡聚半乳糖醛酸诱导烟草植株CAT活性的升高,有利于提高植物抗病毒的能力。但是对于诱导烟草抗性的具体机理还有待于进一步的研究。 -
报告Cloning and Sequence Analysis of CP Gene of Potato Virus Y Derived from Different Hosts in Anhui Province
出版时间:2007采集安徽不同地区感染马铃薯Y病毒(PVY)的烟草和马铃薯病样,购买美国Agdia公司PVY-N株系试剂盒进行ELISA检测,部分病样检测结果呈阳性,TRIZOL法提取总RNA,根据PVY CP基因两侧的保守序列设计特异性引物CP/F、CP/R,M-MLV酶逆转录得cDNA第一链,RT-PCR扩增,克隆至pGEM-T Easy载体,转化大肠杆菌TG1,筛选阳性克隆并测序。PVY-CP-4(来自烟草病样)和PVY-CP-7(来自马铃薯病样)基因全长均为801bp,编码267个氨基酸。利用DNAStar软件对来自两个不同寄主的PVY-CP基因进行序列比较,PVY-CP-4和PVY-CP-7的核苷酸序列相似性为92.1%,这两个PVY的CP序列与已报道的18个其他PVY CP序列相似性分别为88.5%~99.4%和90.9%~98.3%。构建PVY-CP-4和PVY-CP-7与其他18个PVY CP序列的系统关系树,可以看出PVY-CP-4和PVY-CP-7各自归为一类,两者之间亲缘关系较远。PVY-CP-4基因与PVYO(EF026074)亲缘关系最近,而PVY-CP-7基因与PVYNTN(AJ890347)亲缘关系最近,实际上,PVYNTN株系是PVYN株系的一个变种。病毒的外壳蛋白基因在寄主症状、病毒长距离和细胞间运输、病毒的介体传播等方面起着重要的作用。因此,病毒的外壳蛋白基因的同源性在病毒株系的划分中已成为主要依据之一。根据ELISA检测结果,PVY-CP-4和PVY-CP-7均属于PVYN株系,这与PVY-CP-7的分子鉴定结果相吻合,但与PVY-CP-4的分子鉴定结果不相符。Potyvirus 属是已确定的植物病毒属中成员最多的一个,有103个确定成员和92个暂定成员,传统分类标准如种传效率、交叉保护、蚜虫介体种类、寄主范围和症状学等至今仍被用作种的分类标准(Bvrunt,1992;Shukla 等,1994)。据报道(Bos,1992;Shukla 等,1992),原来最常用的用于区分相关病毒的标准——血清学关系很不可靠,在现今病毒分类上一般仅具参考价值。目前普遍认为,只有病毒的基因组结构和序列才能真实地反映植物病毒种的分类本质(Ward等,1995)。因此,根据本实验所测出的PVY CP的核甘酸序列比对结果,安徽地区烟草寄主上感染的PVY应属于PVYO株系,而马铃薯寄主上感染的PVY应属于PVYNTN株系。 -
报告Cloning and Analysis of 3′-terminal Genomic Sequence of a Beet Mosaic Virus Isolate from Lettuce*
出版时间:2007甜菜花叶病毒(Beet mosaic virus,BtMV)属于马铃薯Y病毒属(Potyvirus)。它是一个世界性的病原,主要由蚜虫以非持久方式传播,并可以通过机械接种和嫁接方式传播,但不能通过种子以及花粉传播。20世纪50年代末德国首次报道了BtMV在甜菜上的发生[1]。1981年Liu等报道了BtMV在北京地区菠菜上的发生,是我国对BtMV的首次报道[2]。BtMV寄主主要是藜科植物,可系统侵染甜菜(Beta vulgaris),局部侵染菠菜(Spinacia oleracea)、苋色藜(Chenopodium amaranticolor)、昆诺藜(C.quinoa)等。目前仅有美国华盛顿分离物、德国分离物、中国新疆以及内蒙古分离物的全序列以及英国和斯洛伐克少数几个分离物3′端部分序列被报道,这些分离物均来源于甜菜[3,4]。莴苣(Lactuca sativa)属于菊科莴苣属,一年或两年生草本植物。莴苣是我国常见蔬菜之一,在我国大部分地区均有种植。2007年,我们在泰安郊区蔬菜种植区调查病毒病时,发现莴苣上发生病毒病较为严重。感病植株叶片呈黄绿相间的花叶症状,植株严重矮缩。初步的血清学试验表明,该分离物是马铃薯Y病毒属病毒。用针对该属病毒的兼并引物进行RT-PCR扩增,获得此病毒基因组3′端片段,经序列分析表明为BtMV。1.1.1 供试毒源 莴苣病叶样品采自山东泰安郊区菜田,经枯斑寄主昆诺藜(C.quinoa)单斑分离3次后繁殖保存于本生烟(Nicotiana benthamiana)上,并取发病叶用硅胶保存。1.1.2 载体、试剂与菌株 大肠杆菌DH5α由本实验室提供;Trizol购自invitrogen公司;PCR产物回收试剂盒购自博大泰克公司;M-MLV反转录酶、RNase抑制剂(HPRΙ)购自Promega公司;无RNase的水,克隆载体pMD18-T、Taq DNA 聚合酶购自TaKaRa公司;硝酸纤维素膜购自Pall Gelman公司产品;碱性磷酸酯酶标记的A蛋白购自Sigma公司;其他化学试剂均为国产分析纯;BtMV的血清由中国农业大学韩成贵教授提供,其余抗血清由本实验室制备。1.2.1 SDS-琼脂免疫双扩散试验 以常规琼脂双扩散法进行,1g病叶样品加1ml PB缓冲液再加1ml 3%SDS研磨,将汁液6000r/min离心5min。取上清液适量加到琼脂糖凝胶中,与黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tobacco mosaic virus,TMV)、芜菁花叶病毒(Turnip mosaic virus,TuMV)、马铃薯X病毒(Potato virus X,PVX)、马铃薯Y病毒(Potato virus Y,PVY)的抗血清反应,加样后在37 ℃下放置,12h后观察结果。1.2.2 RNA提取 采用 Trizol法(Invitrogen)提取总RNA。取0.2g具典型症状病叶于干热灭菌的研钵中,液氮研磨至粉末,迅速转移至1.5ml离心管中,加1ml Trizol剧烈振荡,静置10min;加200μl氯仿后充分振荡15s,静置5min,于4℃、12000r/min离心15min;将上清转移至另一1.5ml离心管中,加入等体积冰冷的异丙醇混匀,室温放置10min,4℃、12000r/min离心10min,沉淀用DEPC处理灭菌水配制的75%乙醇洗涤;室温干燥,加入适量无RNase的水溶解RNA,-80℃保存备用。1.2.3 RT-PCR扩增 以提取的总RNA为模板,在Oligo d(T)引物引导下利用M-MLV反转录酶合成第一链cDNA。用针对马铃薯Y病毒属病毒3′端序列设计的简并引物Sprimer和K11465(表1),扩增病毒RNA基因组的3′端序列。扩增条件如下:94℃预变性3min;94℃变性30s,60℃退火30s,72℃延伸2min,30个循环;72℃延伸10min。扩增产物经1%琼脂糖凝胶电泳检测。1.2.4 PCR产物的克隆与测序 PCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,提取质粒,经PCR扩增和酶切鉴定为阳性的重组质粒送北京英俊有限公司测序。NamePrimersequenceTmReferencesOligod(T)5′-GGTCGACTGCAGGATCCAAGC(T)15-3′[5]K114655′-GGTCGACTGCAGGATCCAAGC-3′68[5]Sprimer?5′-ATAGGATCCCTGCAGGGBAAYAAYAGYGGDCARCC-3′69~78[6]Table 1 Primers used for cDNA synthesis, PCR amplification and DNA sequencing1.2.5 Western blotting分析 参考文献中[7,8]的方法,用Western blotting验证采集的莴苣样品、单斑分离后保存在本生烟上的样品与BtMV血清的关系。第一抗体为原核表达制备的抗血清,第二抗体为碱性磷酸酯酶标记的A蛋白,用BCIP/NBT显色。1.2.6 DNA序列比较与分析 将所得DNA序列输入GenBank进行BLAST检索,采用DNAStar和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的BtMV分离物的相应序列进行比较和分析,构建系统进化树。感病莴苣植株表现明显的矮缩症状,叶片呈黄绿相间的花叶症状,叶片变小并伴有明显的皱缩(图1)。Figure 1 Symptoms of lettuce infected by BtMV-SDSDS-琼脂扩散试验结果显示样品与TuMV抗血清和PVY抗血清均有沉淀反应,说明样品中含有马铃薯Y病毒属的病毒。以提取的病叶样品总RNA为模板,经RT-PCR扩增,得到长度约为1.7kb的目的片段(图2),与预期的大小相一致。扩增产物经纯化后克隆到pMD18-T载体上。经蓝白斑筛选和酶切鉴定,得到含有目的片段的重组子。Figure 2 RT-PCR amplification of 3′-cDNA of BtMV-SD通过测定2个PCR反应克隆到的片段序列,确定了插入片段的核苷酸序列长度1629bp。序列已登录GenBank,登录号为EF633501。扩增产物包含630bp NIb编码序列、831bp CP编码序列及168bp非编码区序列(3′-UTR)。在由此推导其氨基酸序列中,NIb与CP的切割位点为VTYQ/G,符合多数马铃薯Y病毒属病毒NIb与CP切割位点的保守基序为VXXQ的特征[9]。NIb氨基酸序列中存在依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)保守氨基酸序列GDD。CP序列中含有蚜虫传播马铃薯Y病毒属病毒所必需的DAG基序。分离物BtMV-SD 3′ 端序列与GenBank中已登录的斯洛伐克(BtMV-SL,AF363639)、美国华盛顿(BtMV-Wa,AF206394)、中国内蒙古(BtMV-IM,DQ674263)、中国新疆(BtMV-XJ,DQ674264)、英国(BtMV-UK,AF203540)、中国新疆2(BtMV-XJ2,DQ345522)以及未登录的德国(BtMV-G)[10] 6个BtMV分离物的核苷酸序列同源性分别为98.8%、91.1%、98.6%、97.7%、98.5%、97.5%、98.8%,氨基酸序列同源性分别为99.2%、94.3%、99.5%、98.4%、99.4%、98.9%、99.5%。除了BtMV之外,马铃薯Y病毒属中的落葵皱缩花叶病毒(Basella rugose mosaic virus,BaRMV)(DQ394891)与BtMV-SD的核苷酸同源性最高,为63.5%。据CP编码序列构建的系统进化树表明,8个分离物可以分为两组:欧亚大陆组(Euroasia group)与美洲组(America group),结果与Xiang等[4]的相一致。其中美国华盛顿分离物BtMV-Wa位于美洲组,包括BtMV-SD在内的其他分离物位于欧亚大陆组(图3)。BtMV-SD与BtMV-SL位于同一分支,两者在进化关系上最为接近。Figure 3 Phylogenetic tree based on CP-coding sequence of 8 BtMV isolatesWestern blotting分析表明,自然发病的莴苣样品以及接种发病的本生烟样品均与BtMV血清有较强的特异性反应,而本生烟健康植株则无反应。Figure 4 Western blotting analysis of BtMV-SD在用有些病毒的多克隆抗体检测样品时,经常会出现交叉反应,这在马铃薯Y病毒属病毒中也非常普遍[11]。本研究的样品在SDS-琼脂免疫双扩散试验中与TuMV和PVY的抗血清均有沉淀反应,表明该分离物可能有马铃薯Y病毒属的病毒。通过比较病毒基因组3′端约1.7kb的序列,证明该病毒分离物为BtMV。Western blotting进一步证实了该结果。病毒病是莴苣生产中的主要病害之一。病毒的复合侵染在田间也非常普遍。已报道侵染莴苣的病毒有莴苣花叶病毒(Lettuce mosaic virus,LMV)、蒲公英黄花叶病毒(Dandelion yellow mosaic virus,DYMV)和CMV。先前报道BtMV寄主主要是甜菜、菠菜等藜科植物,而不易侵染莴苣。本文首次报道BtMV在自然条件下能够侵染莴苣并造成危害。 -
报告Detection of Whitefly-transmitted Geminiviruses from Hibiscus Rosa-sinensis Leaf Curl Disease Samples
出版时间:2007朱槿(Hibiscus rosa-sinensis Linn.)又称扶桑、火红花、假牡丹和大红花等,属锦葵科黄槿属常绿灌木,原产于我国云南、广东及南美,也是马来西亚国花和我国南宁市市花。该植物在华南地区几乎可终年开花,是重要的园林花卉植物。但近期广东部分地区的朱槿植株表现曲叶或黄化曲叶症状,该症状与烟粉虱传双生病毒侵染植物引起的症状十分相似。为了明确其病因,作者对其开展了分子检测与鉴定。对广东各地朱槿进行调查,包括朱槿被为害情况、症状表现、介体烟粉虱发生情况等。在各病区随机采集表现为曲叶或黄化曲叶症状的朱槿病样5~10个,带回室内用于检测。用NaOH法提取病样总DNA[1],并做适当改进,即:取待检病叶片100mg,在灭菌的研钵中加液氮速冻研磨成粉末,解冻前加入1ml 0.5N NaOH提取液,并在提取液使用前加入巯基乙醇(0.5%);8000g×离心5min,上清液用0.1 mol/L Tris缓冲液(pH值7.0)稀释100倍,用作PCR模板。应用烟粉虱传双生病毒通用简并引物AV494 [2]和DeP3(也即CoPL[3])对上述采集于各地的朱槿曲叶病样进行PCR检测。PCR扩增结束后,取10μl反应产物进行电泳,以检测PCR扩增结果。调查结果表明,目前仅在广州和佛山发生朱槿曲叶病,其他地方暂时还未发现该病害。病株典型症状为植株明显矮化,全株叶片向上卷曲、叶脉肿大明显、有耳突、叶质脆硬,随着病情的发展,病叶缘开始褪绿黄化,最终叶片大部分甚至整片叶黄化(图1)。植株感病后不再开花,或即使开花,花朵不正常。人工修剪后,病株难以长出新叶,或虽长出新叶,叶数量少、叶小且严重卷曲。自然界朱槿曲叶病扩散速度较快,短时间内会使较大范围内朱槿很快都被传染感病,完全失去园林和绿化价值。另外,朱槿上烟粉虱发生普遍。Figure 1 Symptoms of Hibiscus rosa-sinensis leaf curl disease in Guangdong对广东各地朱槿曲叶病样进行PCR检测,结果显示:从这些病样本中均能扩增出1条570bp特异片段,而健康的朱槿对照未扩增出任何条带,图2是其中1次的检测结果。这些检测结果说明,朱槿曲叶病样中存在烟粉虱传双生病毒。Figure 2 The result of the PCR with AV494 and DeP3对分离物G6 PCR扩增的特异片段进行克隆及序列测定,结果表明,该片段长为570bp;BLAST结果显示,与该片段有较高同源率的均为双生病毒科(Geminiviridae)菜豆金色花叶病毒属(Begomovirus)病毒,与木尔坦棉花曲叶病毒(Cotton leaf curl Multan virus,CLCuMV)各分离物的同源率均大于95%,其中与CLCuMV分离物Okra(Genbank登陆号:AJ002459)序列同源率最高,为97%。刚刚完成的广州朱槿曲叶病毒分离物G6全基因组克隆结果显示,该病毒分离物与CLCuMV分离物62的序列同源率高达96.1%(另文发表),说明G6应该是CLCuMV的一个分离物。朱槿属多年生灌木,由于绿化和观赏需要,在广东省每年都要对其修剪1至多次。目前,在广州、佛山等地均有朱槿曲叶病发生。朱槿感病后,全株叶片即会卷曲,植株生长衰退;人工修剪后,病株难以长出新叶,或虽然长出新叶,叶数量少、叶小且严重卷曲,完全失去绿化价值。因此,该病害对市政园林绿化影响很大。应用先前建立的烟粉虱传双生病毒PCR检测技术[4~5],从广东各地采集的朱槿曲叶病样中均能检测到该类病毒;而新近完成的朱槿曲叶病毒G6分离物基因组序列分析结果表明,其是CLCuMV一个分离物。因此,本研究初步表明,朱槿曲叶病可能是由CLCuMV侵染引起的,但还需要做更进一步深入研究加以验证。CLCuMV最先发现于巴基斯坦为害棉花,由烟粉虱传播,已给该国棉花生产造成了巨大的经济损失。该病毒也是我国的一个外检对象,但目前仅在广东朱槿上发现该病毒,应引起我们的重视。
