首页 <
知识图谱:全部
-
报告Oligochitosan Induces Programmed Cell Death in Tobacco Cell Suspension
出版时间:2007The term"programmed cell death"(PCD)is used to describe cell death that results from the activation of a cell suicide pathway that is encoded by the genome of the dying cell[1].So PCD is an important physiological mechanism for selective cell elimination during development or following damage in multicellular organisms[2].Characteristic morphological changes associated with PCD include cytoplasmic shrinking,chromatin condensation and nuclear DNA fragmentation[3].In plants,PCD is also an indispensable facet of development,defence response and architecture,which shares some characteristic features with animal apoptosis[4].Plant PCD is involved in anther,megagametophyte and vascular tissue development as well as in senescene,pollination,and sex determination[5].It is also employed as a controlled response to different biotic and abiotic stimuli[6,7].The hypersensitive response(HR)during the incompatible plant-pathogen interaction may be the most typical defence-related PCD process in plants[8].The PCD can be induced at the site of pathogen invasion as an attempt to isolate the pathogen and prevent it spreading to non-infected parts of the plant.Besides HR,plant also respond to a variety of externally added inducer by initiating PCD.These include elicitors(N-acetylchitooligosaccharides,chitosan)[9,10],signaling moleculars(hydrogen oxide, nitric oxide)[11,12] and environmental extremes(temperature stress,UV radition)[13,14].Chitosan and its fragments,the natural component of the fungi cell wall,have been shown to act as potent elicitor signals in several plant system.These include the induction of jasmonate synthesis[15],enhancement of cell wall lignification and phytoalexin production as well as to induce salicylic acid and PR proteins[16,17].In the present study,the events leading to the death of cultured tobacco cells treated with various doses of oligochitosan have been investigated.It is thus shown that oligochitosan can induce programmed cell death features in cultured tobacco cells including cell shrinkage,chromatin condensation,suggest the death process may be programmed.Oligochitosan with 85%N-deacetylation and polymerization degree from 2 to 10 was self-prepared by enzymatic hydrolysis method,solubilized(50mg/ml)in deionized water.Suspension cultures of tobacco(Samsun NN)were grown in Murashige and Skoog(MS)medium supplemented with 3%sucrose,0.5μg/ml 2,4-D.The culture were incubated with rotation(120rpm)at 25℃ with 16-hour photoperiod,on a 14 day growth cycle(10%v/v inoculum).After 12 days in culture,the cells were harvested,resuspended in fresh culture medium.All procedures were done under aseptic conditions.Oligochitosan used were sterilized by filtration through a millpore filter(0.22μm).Intracellular H2O2production was measured using 2′,7′-dichlorofluorescin diacetate( DCFH-DA) as a probe.The cells were stained for 5 min with 2.5uM and then viewed under a fluorescence microscope with an excitation wavelength of 480nm.Cell viability was evaluated as described elsewhere[18],Briefly,cells in suspension culture were deprived of culture medium and incubated for 15min with 0.05%trypan blue.After several washings with deionized water to remove the excess of the dye,dye bound to dead cells was solubilized in 50%methanol/ 1%SDS and quantified spectrophotometrically by measuring the absorbance at 595nm.Hoechst 33342(HO)and Propidium Iodide(PI)was used to detect cellular change.After different times of treatment,the cells were incubated in the dark with 5μg/ml HO and 5μg/ml PI at room temperature for 30min and 15min respectively,then observed under fluorescent microscopy by using an excitation wavelength of 350nm and 570nm.Oligochitosan dose-dependently inhibited the growth of suspension-cultured cells of tobacco(Figure 1).Growth inhibition was estimated by determining the fresh weight of the cultures after 7 days of exposured to increasing concentrations of oligochitosan.In order to determine whether the antiproliferation effect of oligochitosan in tobacco suspension cultures was due to growth arrest or cell death,we analysed cell viability.Administration of 5~200μg/ml oligochitosan to tobacco cells for 6h and 24h caused cell death,as measured by trypan blue staining.The degree of cell death rose with the increase in elicitor concentration and length of treatment.The highest value was observed with 200μg/ml oligochitosan for 24h(about 55.6%),where as 50μg/ml caused about 30.6%cell death after the same time of elicitor incubation.5μg/ml is similar to control tobacco cell cultures exhibited about 5.3%of trypan blue stained cells(Fig-ure 2).Figure 1 Oligochitosan inhibits tobacco cells proliferation.Tobacco suspension(1g/100ml liquid medium),were treated with the indicated concentrations of oligochitosan, after 7 days of treatment, cell proliferation was determined by measuring the fresh weight.Figure 2 Effect of oligochitosan on viability of tobacco cells. Exponential growing cells(1g/100ml liquid medium),were treated with the indicated concentrations of oligochitosan, after 6h (closed bar) and 24h (open bar) treatment.The 100% value corresponds to heat treatment (30min 100℃).Data are means ±SD of three independent experiments.To further determine the nature of the cell death induced by oligochitosan,we analyzed the occurrence of the main PCD hallmarks recognized for plant cells such as morphological changes,nuclear morphology,and DNA fragmentation,focusing our attention on the concentration of 50μg/ml.Under light microscopy control cells showed a well defined structure with round nuclei, while oligochitosan-treated cells were found to undergo various progressive morphological changes.Cells treated for 24h with 50μg/ml,oligochitosan showed a cell disorganization with a gradual condensation of the cytoplasm and a consequent detaching of the plasma membrane from the cell wall(Figure 3 E).Different degrees of cell disorganization were found coexist,indicating a different sensitivityto the elicitor molecule in an asynchronized cell population.Treatment with 200μg/ml led to highly collapsed cells after 24h.Figure 3 Chromatin condensation and cytoplasm shrinkage induced by oligochitosan for 24h in tobacco cells. Aliquiots of both control (A,C) and oligochitosan-induced(B,D,E) cells were collected ,stained with Hoechst 33342(A,B) and Propidium Iodide(B,D),analyzed by fluorescence microscopy, or stained with trypan blue(E), and visualized under light microscopy. Pictures represent typical examples.To further investigate the cellular changes induced by oligochitosan a double staining of cells with HO/PI dyes were carried out.This staining allows the simultaneous detection of the early stages of apoptotic cells(HO+ and PI- nuclei)and of late apoptotic(HO+ and PI+ nuclei)or necrotic cells(mainly HO- and PI+ nuclei).As showen in Figure 3, Nuclei of tobacco control cells exhibited a large central nucleolus surrounded by uniformly stained chromatin,whereas the chromatin had a granular appearance with lobated nuclei in cells after oligochitosan treatment,resembling those observed during apoptosis in animals cells.Taken together the present data are suggestive of the induction by 50μg/ml oligochitosan of a cell death pathway showing some PCD-like features recognized for animal apoptosis.In the light of the crucial role played by ROS in PCD,we investigated production of ROS in oligochitosan-induced suspension-cultured tobacco cells by monitoring H2O2 production.Generation of H2O2,measured by following the fluorescence of the dye 2′,7′-dichlorofluorescin produced from the cell-permeable non-fluorescent probe 2′,7′-dichlorofluorescin diacetate( DCFH-DA)in the presence of H2O2.Fluorescence occurred in the majority of cells immediately after oligochitosan treatment,as shown in Figure 4,whereas production of ROS in control cells was negligible.Figure 4 Production of H2O2 in tobacco cells induced by oligochitosan. The cells were stained with DCFH-DA.and H2O2 production was visualized by fluorescent microscopy as described in "Materials and Methods." Pictures represent typical examples.Plant cells can activate their intrinsically programmed cell death when respond to a variety of extracellular stimulus.This process may be related with plant resistance[1].Oligochitosan has been shown to be a potent elicitor,in this paper tobacco suspension cell cultures treated with exogenous oligochitosan showed some programmed cell death features including cell shrinkage,chromatin condensation,suggest the death process may be programmed.By contrast to the degradation of DNA to nucleosomal fragments observed in several plant PCD process,no detectable DNA ladder was observed in tobacco cells undergoing cell death in the considered time interval.Anna and his coworkers found that chitosan can induce programmed cell death in soybeans,and they do not observe DNA ladder either[10].Nevertheless,the lack of apoptotic bodies in plants is not surprising,if their fuction is to facilitate phagocytosis of their contents by neighboring cells.There is no way for typical apoptotic bodies to pass through the cell wall[19].Plants have an arsenal against the invasion of a broad array of environmental microorganisms.These include preexisting structure and chemical barriers as well as induced-defenses.Plants can combined different kinds of weapons to deal with enemies.Although PCD is a kind of death,it is still an active defense-related process which under plants control.Tobacco cells treated by oligochitosan produce ROS.This phenomenon has been reported already for cells subject both to pathogen attack or to abiotic stress[21,22].Oligochitosan may trigger the death program,which involve the alter of cellular redox homeostasis.It should be noted that in the cascade of events leading to cell death,the cellular level of ROS is critical.A threshold level of ROS is required to activate the signal transduction pathway that result in PCD,but at high doses,the process is subverted and death occurs rapidly by necrosis[23].These data are suggestive of the induction of PCD pathway depending on the amounts of ROS accumulated in given cells.On the whole our data suggest that tobacco cell suspension can trigger cell death program shared features with animal apoptosis when responded to oligochitosan,and it may be a kind of plant defense mechanism. -
报告Primary Study of Oligochitosan Inducing Resistance to Sclerotinia sclerotiorum on Brassica napus
出版时间:2007菌核病为我国油菜三大病害之首,严重影响油菜的产量和品质,目前通过使用化学农药等措施对其进行防治,但是效果不很明显,且长期使用化学农药会造成对环境的严重污染。所以利用植物自身诱导抗病性对菌核病进行防治是现在农业生产中的新趋势。植物诱导抗病性是植物抵御病害侵袭的重要机制之一,具有作用效果明显,广谱性及环境友好等优点,作为一种经济有效的抗病策略,在农业可持续病害防治中具有广阔的应用前景,日益受到人们的关注。我们实验室开发研制的生物农药中科六号(壳寡糖)在田间及温室实验中被证实可诱导烟草等作物对相应的病害产生防治作用[1];田间使用中科六号可减轻油菜菌核病对油菜的影响,故本文中利用植物生理生化方法进行温室实验及生化实验,初步探讨壳寡糖诱导油菜抗菌核病的作用机制。1.1.1 供试药剂 壳寡糖(oligochitosan、COS),脱乙酰度>95%,聚合度为3-10,由中国科学院大连化学物理研究所研制;配制成50μg/ml使用。1.1.2 供试植物 甘蓝型油菜沪油15(Brassica napus L.)温室中培养至4~6片叶期。1.1.3 供试病原菌 油菜菌核病病原菌 核盘菌(Sclerotinia sclerotiorum)本实验室保存。1.2.1 实验设计 为考察接菌前不同时间壳寡糖预处理对诱抗作用的影响,分别在接菌前0~4天处理油菜植株。新鲜配置的50μg/ml壳寡糖溶液喷雾油菜植株,每株取两片叶子,确保其正反面均润湿,确保其他叶片未被喷上壳寡糖溶液。1.2.2 油菜菌核病接种方法 保存的菌核用70%乙醇浸泡30s,1%的升汞消毒10min,无菌水冲洗3次后,接种于PDA(potato dextrose agar)培养基中。在25℃下暗培养3~5天,待菌丝长满培养皿后即可进行接种。接种试验之前,先将4~6片叶期油菜植株喷上雾状水珠,用打孔器将菌丝截成直径为0.15cm大小的菌丝琼脂块,将有菌丝的一面与壳寡糖预处理的油菜叶片接触,每株取一片叶子,每片叶子上放一块菌丝琼脂块,然后用保鲜膜盖上,再喷一次雾状水珠,保持温度20℃左右,接种后每天喷一次水。1.2.3 病情指数调查方法 在接菌后第五天根据病斑占叶片面积比例调查病情指数,分级标准为:0=没有病斑;1=病斑面积占叶面积11%以下;2=病斑面积占叶面积11%~30%;3=病斑面积占叶面积31%~50%;4=病斑面积占叶面积51%以上。1.3.1 粗酶提取 取提前三天壳寡糖预处理植株进行试验,以正常、壳寡糖处理不接核盘菌和未经壳寡糖预处理接核盘菌的植株为对照。每个试验点选取4株植株,每株取系统叶和处理叶各一片,迅速放入液氮中保存。取样叶1.4g,10.0ml含5mmol/L巯基乙醇的硼酸缓冲液(0.05M,pH 8.8),加入0.5g PVP和石英砂在研钵中研磨,在冰水中研磨成浆。10000r/min 4℃离心10min,上清液即为酶液。考马斯亮蓝法测定总蛋白含量。1.3.2 脂氧合酶(LOX)活性测定 0.1ml粗酶液与3ml 0.20mM亚麻酸溶液混匀后放入30℃水浴中反应,监测5min后OD234变化值,酶活由以下公式计算:(A234末-A234初)/0.001/总蛋白含量(mg)。用滤纸片法在PDA培养基平板上进行抑菌试验,在培养基平板正中央接0.15cm大小的核盘菌菌丝琼脂块,打孔器取直径5~6mm的滤纸片,在无菌条件下浸泡壳寡糖溶液均匀后放置平板上,每皿放置5点,其中一点为对照即浸无菌水,另设不放滤纸片的培养皿平板为阴性对照,观察不同浓度处理滤纸片后其周围病菌生长状况,与对照相比,经72h恒温培养后,根据抑菌圈大小判断抑菌效果。壳寡糖溶液浓度50mg/kg,200mg/kg,500mg/kg,1000mg/kg。依据田间试验诱抗效果取最佳浓度50μg/ml进行温室试验,试图寻找防效最好的预处理时间点。对照植株在12h时就发病明显,96h后叶片枯萎。而经壳寡糖预处理者接核盘菌后12h内症状不明显,24h时产生病症,120h后叶片出现枯萎现象(图1),说明壳寡糖处理能延缓菌核病发病,壳寡糖预处理的植株都表现出一定的抗菌核病的能力接菌(表1),提前三天(72h)预处理有最佳效果,在120h时防效为54.60%,试验结果显示防效可达120h以上。图1 壳寡糖提前三天预处理后油菜接菌核病后表型变化(0h,12h,24h,48h,120h)Figure 1 Appearance of 72h before COS pretreated B.napus leaves challenged with S.sclerotiorum.(0h,12h,24h,48h,120h)预处理时间病情指数(%)防效(%)022.91—提前24h15.6231.8提前48h14.5836.35提前72h10.4154.60提前96h12.5045.44表1 不同时间壳寡糖预处理对油菜菌核病的影响Table 1 The resistance of COS pretreated B.napus to S.sclerotiorum不同处理后油菜植株LOX的活性变化如图2所示。处理叶在只接菌和COS预处理后接菌情况下,72h小后活力提高,而COS处理的植株96h后活力才提高,且COS处理后的植株LOX活力高于只接菌者。在系统叶中获利变化更明显,在48时有一个峰值,96h水平又明显提高一个途径使SOD酶活升高。这些复杂现象说明在油菜中COS可通过多种途径诱导LOX活力升高。图2 壳寡糖和核盘菌引起的LOX酶活力变化 (A)处理叶 (B)系统叶Figure 2 Effects of oligochitosan and S.sclerotiorum on activities of LOX enzymes in B.napus leafs.(A)Treat leafs (B) System leafs如表2所示,低浓度壳寡糖对核盘菌的直接抑制作用不明显。壳寡糖浓度(mg/kg)抑菌圈直径(cm)壳寡糖浓度(mg/kg)抑菌圈直径(cm)0—5000.34±0.0550无抑制10000.75±0.11100无抑制表2 不同浓度壳寡糖对核盘菌的抑菌圈直径Table 2 The inhibitory diameter of S.sclerotiorum by different concentration COS壳寡糖作为近几年研究较多的一种植物诱抗剂,已经被广泛应用于烟草、棉花、油菜等作物生产中。然而其作用机制尚不明了,本文首次进行了壳寡糖对油菜抗菌核病的研究。发现使用50μg/ml的壳寡糖溶液预处理油菜植株,可以提高其抗菌核病能力,其抗性可持续96h以上,防效可达到54.60%。防治效果虽然没有化学药剂作用明显[2],但与其他诱抗剂效果相当[3,4],在环境友好前提下具有良好的防治效果。壳寡糖对核盘菌的生长没有显著抑制作用,于汉寿等人也发现壳聚糖对核盘菌的直接抑制作用也不明显[3,5],说明喷施壳寡糖使油菜对菌核病产生抗性主要是因为壳寡糖诱导油菜产生了系统抗性,而不是来源于壳寡糖对菌核病的直接作用。提前三天预处理的植株有最高防效,说明壳寡糖诱导对菌核病的抗性可能有一个响应和滞后期,Molloy等人[6]报道壳寡糖诱导胡萝卜防治菌核病的最佳处理期也是接菌前三天,说明这种现象是广泛存在的。脂氧合酶(LOX)在植物抗胁迫响应时扮演重要角色[7],脂氧合酶可催化多不饱和脂肪酸转化为氢过氧化物,并最终生成重要的植物抗性反应信号分子茉莉酸(JA)。Kim等人[8]报道LOX酶水平可以被JA诱导升高,我们的实验结果说明壳寡糖可同时诱导油菜处理叶和系统叶中LOX酶活性升高,揭示壳寡糖可能是通过JA酸途径诱导植物产生抗病性的,这与我们之前利用基因芯片得出的结论相吻合[9],但具体的信号转导网络仍有待进一步研究。 -
报告Effects on Resistance to Grey Mould in Tomato after Induced Leaves at Different Positions
出版时间:2007灰霉病是番茄栽培中的重要病害,长期依赖农药防治该病严重污染环境和产品。利用诱导抗性是植物病害可持续控制的一条有效途径。E.A.Achuo和K.Audenaert等用适宜浓度的BTH处理土壤或叶片,显著降低番茄灰霉的发病程度[1]。众多研究表明,诱导植株下位叶片,可增强诱导叶和其上非诱导叶的抗病性[2~4];而诱导上位叶片对诱导叶及其下位非诱导叶的抗病性的影响鲜见报道。本试验比较了5种化学物质诱导不同部位叶片对番茄灰霉病发生程度的影响,为诱抗剂的使用技术提供参考和依据。番茄品种为L402,灰霉菌(Botrytis cinerea)由田间分离所得。供试化学物质分别为:CaCl2(Calcium chloride,Ca),上海化学试剂公司生产;水杨酸(Salicylic acid,SA),沈阳化学试剂厂生产;茉莉酸甲酯(Methyl jasmonate,MJ)、龙胆酸(Gentisic acid,GeA)和β-氨基丁酸(3-Aminobutyric acid,BABA),购自Sigma公司。番茄穴盘育苗,苗期管理与一般生产相同。6叶期用20mmol/L的CaCl2,3mmol/L的SA、MJ、GeA和9mmol/L的BABA涂抹第3叶片(下位叶)或第5叶片(上位叶)。5天后用浓度为106个孢子/ml的灰霉菌孢子悬液接种第4真叶的前5片小叶,接种方法采用微量注射法[7]。接种后第5天调查发病程度并计算病指数。病害分级标准为:0级,无病斑;1级,病斑面积占叶面积5%以下;3级,病斑面积占叶面积5%~15%;5级,病斑面积占叶面积15%~25%;7级,病斑面积占叶面积25%~50%;9级,病斑面积占叶面积50%以上[7]。每处理3次重复,数据均用SPSS软件进行统计分析。无论是诱导第3叶片还是第5叶片,番茄灰霉病发生程度均显著低于对照。其中CaCl2、SA和GeA 诱导第3叶片和诱导第5叶片,番茄灰霉病发生程度之间没有显著差异;而MJ和BABA诱导第3叶片番茄灰霉病发生程度显著低于诱导第5叶片的发病程度(图1)。这一现象说明,CaCl2、SA、GeA、MJ和BABA诱导番茄的抗病信号既可以向上传递,也可以向下传递;而CaCl2、SA和GeA诱导的抗病信号向上和向下传递的能力相同,MJ和BABA诱导番茄的抗病信号向上传递能力高于向下传递能力。Figure 1 Disease index after induced leaves at different positions of tomato试验结果表明,CaCl2、SA、GeA、MJ和BABA均可诱导番茄抗病性增强,而且诱导的抗病信号可以在植株中进行双向传递,但诱导的抗病信号向植株下部传递能力不高于向上传递能力。蔡新忠等用叶霉菌非亲和小种4诱发接种番茄第3叶片,5天后用其亲和小种5挑战接种第3叶和第4叶,结果表明,诱导植株的第3叶和第4叶发病程度均显著低于对照,发病面积下降率分别为90%和85%[2]。童蕴慧等发现,用拮抗细菌处理番茄叶片可诱导番茄抗灰霉性增加,处理叶的上一叶位叶片中PAL、POD、PPO、SOD活性均显著高于对照,处理叶和上一叶位叶片中SA含量分别是对照的2.6倍和1.6倍[3]。张穗等用井冈霉素A处理珊西烟,处理叶和其上位叶片中几丁质酶和β-1,3-葡聚糖酶的活性均比对照植株相同叶位叶片显著增加,而这两种酶活性与TMV引起的烟草叶片枯斑数目呈负相关[4]。上述研究结果与本试验结果一致。所以在所用诱抗剂价格昂贵或数量不足时,建议用少量诱抗剂处理植株下位叶片来达到防病目标。 -
报告Evaluation of Rice Stripe Virus Resistance in Japonica and Glutinous Rice Varieties (Breeding Lines)
出版时间:2007水稻条纹叶枯病由灰飞虱传播的发生严重的病毒病,近几年来该病在诸暨市发生面积不断扩大,发病程度越来越重,对水稻安全生产构成重大威胁。抗性品种选育推广是防治条纹叶枯病最经济有效的措施,为此,我们对诸暨市引种试验的晚粳糯新品种(系)和在本市进行的全省联合检验的晚粳糯新品种(系)系,进行了条纹叶枯病田间自然发病的抗性测定,现将结果报告如下:分4组处理。第一组本地引进试种品种,E44、杂2、杂1、杂3、杂4、杂5、浙粳22、E8、F104、加优04-1、加优06-1等11个新品种,以甬优1号作对照品种;第二组12个全省联合检验品种(系)(简称联检),春优59、05G354、浙优2611、春优658、05G361、浙优0630、春优6172、05G227、嘉花一号、A/XR155、05G290、嘉优06-2、八优158、秀水63(对照)等13个品种;第三组作苗情观察,浙糯5号、春江糯2号、浙粳22、春江026、春江026、加优06-1、加优04-1、秀优5号、加优1号、E8、甬优2号、甬优1号等12个本地推广品种;第四组全省展示品种,秀水63、E8、浙粳22、秀水09、秀优5号、春江026、浙优9号、加乐优2号、甬优5号、加优1号等10个品种。由迁入试验小区的灰飞虱自然传毒接种。引种品试和联检在江藻镇陈潘村进行,每个品种重复3次种植,随机区组排列,5月30日播种,6月24日移栽,小区面积13.3m2,株行距品试为23.3cm×20cm,联检为30cm×16.7cm。苗情品种分别在江藻镇陈潘村和浣东街道泰南村种植作两地观察,5月30日播种,6月25日移栽,小区面积陈潘村100m2,种植2352丛,泰南村20m2,种植516丛。展示品种分别在王家井镇楼许村和枫桥镇择墅下村两地种植,每个品种种植667m2以上,择墅下点在5月22~23日播种,6月18~20日移栽,楼许点6月2~3日播种旱地育秧,6月18日左右移栽。所有处理除条纹叶枯病没有进行专门预防外,其他病虫均进行常规防治,每个试验或观察区肥水管理基本一致。8月下旬水稻未抽穗时调查;调查数量为,品试或联检试验及苗情观察的品种全小区调查,展示品种每块田调查500丛,记载发病丛数、株数和5丛的苗数。计算丛发病率和株发病率,并作统计分析。引种试验品种和联检品种的条纹叶枯病发生况调查结果见表1和表2。引种试验品种中的E44、E8、F104、杂5等没有条纹叶枯病的发生,与其他品种相比达显著或极显著差异,而杂1、加优06-1、浙粳22、杂4和加优04-1等品种的丛发病率和株发病率分别在1%和0.2%以上,浙粳22和加优04-1发病程度最重,对照品种甬优1号发病最轻。联检品种中代号1、2、3号和8号没有条纹叶枯病发病,代号9、10、11、12号丛发病率和株发病率分别在1%和0.2%以上;另外,丛发病率在1%、株发病率在0.2%以上的还有代号4号和7号。联检品种中除代号10发病程度重,与其他品种比较有显著性差异外,其他品种间差异不显著。苗情点品种条纹叶枯病抗性测定结果见表3。在两地种植都没有发生条纹叶枯病的有E8,而丛发病率和株发病率分别在1%、0.2%以上的品种有浙糯5号、春江糯2号、加优06-1、加优04-1和加优1号,其中春江糯2号发病最重,与E8比较有显著差异,但与其他品种间无显著差异;秀优5号丛发病率1%、株发病率0.2%。品种平均发病丛发病率(%)株发病率(%)E440.00cB0.000cD杂20.86bAB0.210bBCD杂11.05abA0.257bABC加优06-11.05abA0.140bcCD浙粳221.63aA0.407aABE80.00cB0.000cD杂30.09cB0.009cD甬优1号0.09cB0.018cD杂41.21abA0.257bABCF1040.00cB0.000cD杂50.00cB0.000cD加优04-11.48abA0.427aA表1 引种试验品种条纹叶枯病发生情况表(浙江诸暨,2005~2006)品种代号平均发病丛发病率(%)株发病率(%)10.00bA0.000bB20.00bA0.000bB30.00bA0.000bB40.79abA0.340bAB50.00bA0.000bB60.32bA0.097bB70.95abA0.207bAB80.00bA0.000bB91.27abA0.510bAB101.90abA1.227aA111.11abA0.207bAB121.43abA0.253bAB130.48abA0.050bB表2 联检品种条纹叶枯病发生情况表 (浙江诸暨,2005~2006)品种丛发病率(%)株发病率(%)陈泮点泰南点平均陈泮点泰南点平均浙糯5号0.461.931.195aA0.080.410.245abA春江糯2号0.565.232.895aA0.150.780.465aA浙粳220.38—0.380.075—0.075春江026选0.04—0.040.007—0.007春江0260.17—0.170.016—0.016加优06-10.173.41.785aA0.0240.520.272abA加优04-10.531.871.2aA0.430.340.385abA秀优5号1.020.940.98aA0.240.160.20abA加优1号0.852.641.745aA0.130.420.275abAE8000.00aA000.00bA甬优2号0.510.340.425aA0.0760.030.053abA甬优1号0.170.0850.128aA0.0180.0290.024abA表3 苗情点品种条纹叶枯病发病情况(浙江诸暨,2005~2006)展示点品种抗条纹叶枯病测定结果见表4。在展示的10个品种中,E8在两地都没有发现病苗,丛发病率1%、株发病率0.2%以上的品种有浙粳22、秀水09、春江026和加优1号,这4个品种在两地都有发病,择墅下点重于楼许点;而秀优5号、浙优9号、加乐优2号和甬优2号在枫桥择墅下点均有发病,分析发病程度差异的原因可能与播种时间和方式不同有关。品种丛发病率(%)株发病率(%)楼许点枫桥点平均楼许点枫桥点平均秀水630.20.60.4aA0.010.060.035aAE8000.0aA000.000aA浙粳2212.81.9aA0.120.630.375aA秀水091.23.22.2aA0.170.560.365aA秀优5号010.5aA00.140.07aA春江02622.22.1aA0.240.490.365aA浙优9号01.20.6aA00.290.145aA加乐优2号00.60.3aA00.070.035aA甬优5号00.20.1aA00.040.02aA加优1号0.63.82.2aA0.121.210.665aA表4 展示品种发病情况调查表(浙江诸暨,2005~2006)从多点试验可以看出,多数晚粳糯品种(系)不抗条纹叶枯病,只是发病程度有轻重而异,而E8在多点调查或试验中都没有发现条纹叶枯病的发生,从种质资源看它是一个籼粳交品种,2006年浙江诸暨市进行较大面积示范种植,显示出产量较高、品质较优、抗病性较好、但耐肥能力较差的特性,具有一定的推广价值。其他如E44、F104、杂5等也有较好抗病表现。调查观察表明,甬优6号和甬优8号没有发生条纹叶枯病,甬优系列的其他品种发病也较轻,如甬优1号、甬优2号、甬优5号,几年调查结果趋势基本一致。但是秀优5号、加优1号和秀水09等品种,对条纹叶枯病比较容易感染,且发病程度较重,对这些品种种植区,条纹叶枯病的防范要采取更加严格的措施。 -
报告来源于梨的苹果茎痘病毒的分离与鉴定?? 基金项目:湖北省自然科学基金资助项目(2006ABA162)。
出版时间:2007苹果茎痘病毒(Apple stem pitting virus,ASPV)主要侵染苹果和梨,且分布范围十分广泛,可导致其产量明显下降和品质改变。本研究从湖北省农业科学院果茶蚕桑研究所国家砂梨资源圃采集砂梨样品52份,采用试管捕捉反转录-聚合酶链式反应(TC-RT-PCR)对这些样品中的苹果茎痘病毒进行了检测,其中33份样品的ASPV检测结果为阳性,带病毒率为63.5%。取RT-PCR检测为阳性的13个样品,在温室汁液摩擦接种草本指示植物西方烟,对该病毒的生物学特性进行了分析,大部分样品的病毒分离物在西方烟叶片上表现褪绿斑点或褪绿斑、坏死斑或坏死线或网状褪绿纹。从上述样品中选取5个分离物,接种不同的草本鉴别寄主植物,以明确其寄主范围。5个分离物在昆诺藜、心叶烟、本氏烟和克利夫兰烟上均产生明显的症状,但分离物间在症状出现时间和症状类型上存在一定的差异。在昆诺藜上症状表现最早,本氏烟和克里夫兰烟次之,心叶烟最晚。5个分离物在昆诺藜上均产生褪绿斑或斑点;在心叶烟主要产生褪绿斑;在本氏烟上主要产生褪绿斑点;在克里夫兰烟上只有个别分离物在叶片上产生边缘浅黄色,中间绿色的环斑;在千日红叶片上有不规则的凹陷的白斑;在苋色藜上没有明显症状。而心叶烟和苋色藜的ASPV检测结果为阴性,其他草本植物的ASPV检测结果为阳性。以上结果表明,ASPV可以侵染昆诺藜、本氏烟、克利夫兰烟和千日红。取症状表现明显的两个分离物进行了致死温度的测定,接种后观察症状表现发现两个分离物在处理55℃时仍表现症状,而在处理58℃和高于58℃的温度时都不表现症状,可以初步推测该病毒的致死温度为58℃。 -
报告Detection of Candidatus Liberibacter Asiaticus from Wampee (Clausena lansium) by Nested-PCR and Cloning and Sequenceing of 16S rDNA?
出版时间:2007黄皮原产于我国华南,在我国至少已有1500年的栽培历史,目前主要分布于广东、广西、福建、海南、台湾、四川、云南等地。越南、印度、泰国、马来西亚以及美国的佛罗里达州等有零星栽种。黄皮属于芸香科黄皮属植物,与柑橘同科,过去一直认为黄皮不会感染黄龙病病原。2006年8月,作者在广东罗定索龙镇柑橘园附近发现有些黄皮的叶片变黄,而且黄化的叶片一般从植株的顶端开始,逐渐向下扩展直至中部,这与柑橘黄龙病的黄化症状及发病规律很相似,那么黄皮的黄化症状是不是由黄龙病病原(Candidatus Liberobacter spp.)所引致的呢?黄皮是芸香科植物,同时也是柑橘木虱的寄主植物,究竟黄皮是否会发生黄龙病?其病原与柑橘黄龙病病原有何异同?值得进一步的探讨和研究。本研究从田间采集叶脉表现黄化症状的黄皮叶片,用CTAB法提取叶脉组织DNA。以α亚纲细菌的通用引物27F/1500R为外套引物,取2μl待测黄皮样品进行第一轮的PCR扩增,用已感染了柑橘黄龙病的病叶材料提取的DNA为阳性对照,健康黄皮材料提取的DNA模板为阴性对照,第一轮的PCR先进行10个循环;再以OI1/OI2c为内嵌引物,取第一轮扩增的2μl PCR为模板,在内嵌引物的引导下进行第二轮Nested-PCR扩增。通过Nested-PCR的扩增,在表现黄化症状的2个黄皮样品中则有1160bp的特异条带扩增,初步证明在表现黄化症状的黄皮样品中含有黄龙病病原。XbalⅠ酶切显示,该片段可被切成大小分别约为640bp和520bp的两个片段,初步证明黄龙病病原为亚洲种(Candidatus Liberobacter asiaticus)。扩增产物经纯化,与pMD18-TVector连接,转化大肠杆菌(Escherichia coli)DH 5α,筛选克隆重组子。对PCR产物进行测序及序列分析,结果表明黄皮黄龙病病原16SrDNA片段序列与柑橘黄龙病亚洲种16SrDNA片段序列的同源率为:98.3%~99.6%;与非洲种16SrDNA片段序列的同源率为96.8%;与美洲种16SrDNA片段序列的同源率为94.1%~94.6%;与非洲种亚种的16SrDNA片段序列的同源率94.5%。而与其他的根瘤菌、难培养菌和另外的α亚纲细菌的同源率都在87%~89%之间。因此,认为黄皮叶脉黄化的症状是由黄龙病病原引致的,称之为黄皮黄龙病,而且该黄皮黄龙病病原属于柑橘黄龙病病原亚洲种中的一个成员。系统进化树分析显示,黄皮黄龙病病原与中国柑橘黄龙病病原亲缘关系最近,推测是直可能来自柑橘黄龙病病原。过去人们对黄皮黄龙病关注较少,本研究从分子水平上证实了黄皮确实会感染黄龙病,建议今后在黄皮生产上应重视黄龙病的问题。但由于黄皮植株内的黄龙病病原含菌量却要比柑橘植株体内的要低得多,而且黄皮也较少表现柑橘黄龙病的典型的斑驳症状,这是否和黄皮的生理特性或者是其体内的某种物质有关,值得深入研究和探讨。 -
报告Analysis of Elongation Factor Gene and Ribosomal Protein Gene Sequence of Mulberry Dwarf Phytoplasma*
出版时间:2007桑叶是家蚕的唯一饲料,桑树是蚕丝产业的物质基础。桑树生长在各种不同气候和地貌的生态环境,桑树萎缩病是蚕桑生产最严重的病害之一,主要有黄化型、萎缩型和花叶型3种类型,分布于中国、日本、韩国、格鲁吉亚、越南等蚕桑生产国,特别是中国和日本受害最为严重。桑树萎缩病在我国主要蚕桑区江浙、湖广及北方的山东、陕西等省均有分布,对蚕桑生产造成严重甚至毁灭性的危害,且防治比较困难。本研究对山东省发生的症状为萎缩型的桑萎缩病,采用PCR技术对其16S rDNA、延伸因子和核糖体蛋白基因片段进行扩增和直接测序,并且与已知的植原体各组中代表的植原体序列进行同源性比较,确定了该分离物的亚组分类地位。现将研究结果报道如下。表现萎缩型症状的发病桑树材料采自山东省宁阳市。克隆载体pMD18-T、PCR产物回收试剂盒、限制性内切酶及其他酶类等分子生物学试剂产品均购自TaKaRa公司。提取方法参照漆艳香等[1]的方法进行,总DNA于-20℃保存备用。植原体16S rDNA基因扩增采用Lee等[2]报道的通用引物R16mF2/R16mR1,植原体延伸因子基因的引物对fTufu/rTufu序列及核糖体蛋白(rp)基因的引物对rpF1/rpR1序列分别根据Schneider等[3]和Lim等[4]文献设计合成(Table 1)。以提取得病组织总DNA为模板进行PCR扩增。NamePrImersequenceTm(℃)ReferencesR16mF25′-CATGCAAGTCGAACGGA-3′60[3]R16mR15′-CTTAACCCCAATCATCGAC-3′60[3]fTufu5′-CCTGAAGAAAGAGAACGTGG-3′50[4]rTufu5′-CGCAAATAGAATTGAGGACG-3′50[4]rpF15′-GGACATAAGTTAGGTGAATTT-3′55[5]rpR15′-ACGATATTTAGTTCTTTTTGG-3′55[5]Table 1 Primers used in this research to amplify three genePCR产物采用1%琼脂糖凝胶电泳检测,并用PCR纯化试剂盒进行纯化回收。PCR产物回收后与pMD18-T连接,连接产物转化大肠杆菌DH5α感受态细胞,挑取筛选平板上的白色菌落培养,提取质粒,经PCR和酶切鉴定为阳性的重组质粒送上海英骏生物技术有限公司测序。将所得DNA 序列输入GenBank进行Blast检索,采用DNAMAN和MEGA3.1软件对所得到的核苷酸序列与GenBank中收录的相应基因的核苷酸序列进行比对分析,并构建系统进化树。以带有桑萎缩病原(Mulberry dwarf-Ningyang,MDNY)的发病桑树病组织总DNA为模板,16S rDNA引物经直接PCR扩增,得到长度为1.5kb的片段,延伸因子基因引物经PCR扩增,得到长度为0.8kb的片段,PCR扩增核糖体蛋白基因,得到长度为1.2kb的片段,与预期的结果一致,表明该病组织中存在植原体。对含有目标外源片断的重组质粒进行序列测定,扩增得到16S rDNA基因片断为1431bp;延伸因子基因片断为842bp,共编码280个氨基酸;核糖体蛋白基因片断为1249bp,DNAMAN软件分析表明该序列包括部分rps19和全部rp122和rps3基因。将MDNY的16S rDNA序列与GenBank中22个植原体分离物16S rDNA的核苷酸序列进行比对和构建系统进化树,该分离物与植原体的16S rI组处于同一个分支,与16S rI-B和16S rI-D亚组同源性最高。该分离物MDNY的延伸因子基因序列与GenBank中植原体16S rI组的7个亚组分离物延伸因子基因的核苷酸序列进行比对和构建系统进化树(Figure 1)。从系统进化树中可以看出,该分离物MDNY与16S rI-B和16S rI-D亚组处于同一分支,同源性最高,与16S rDNA的结果一致。Figure 1 Phylogenetic tree of MDNY based on the elongation factor gene sequences using neighbor-joining in MEGA3.1该分离物MDNY的核糖体蛋白基因(rp)序列与GenBank中植原体16S rI组的6个亚组分离物核糖体蛋白基因的核苷酸序列进行比对并构建系统发育树(Figure 2),从系统进化树中可以看出,该分离物与16S rI-D 的Paulownia witches-broom处于同一分支,同源性最高,确定了该分离物的亚组分类地位。Figure 2 Phylogenetic tree of MDNY based on the rIbosomal protein gene sequences using neighbor-joining in MEGA3.1夏志松等对桑黄化性萎缩病病原体16S rRNA基因序列进行了分析[5],而刘清神等对广州桑萎缩病植原体进行检测时确定所检测的桑树植原体属于16S rI组[6],没有确定桑萎缩植原体的亚组分类地位。本研究对分离物MDNY的16S rDNA和延伸因子基因构建系统发育树,确定该分离物与16S rI-B和16S rI-D的同源性最高。通过核糖体蛋白基因构建系统发育树表明该分离物MDNY属于16S rI-D亚组,进一步明确了其亚组分类地位。20世纪80年代至今,由于分子生物学技术,特别是分子克隆和PCR技术的应用大大加快了包括植原体在内的细菌系统学研究进展。目前植原体的分类16S rDNA是一种非常有效的手段,但对于16S rDNA类群内的进一步划分,用16S rDNA类群作为分类标准显得过于保守,延伸因子和核蛋白基因序列可以作为系统学研究的依据。Schneider等[7]对STOL类群和AY类群的16S rRNA和延伸因子基因进行序列分析,利用延伸因子基因比16SrRNA序列建立的遗传距离要远。Lee等[8]对植原体各亚组的16S rRNA和核糖体蛋白基因进行了分析,证明16S rRNA和核糖体蛋白基因序列分析可以作为植原体鉴定和分类的依据。本试验以16S rDNA基因,延伸因子基因及核糖体蛋白基因作为分类依据,在亚组水平明确了桑树萎缩病的分类地位,为今后研究桑树萎缩病植原体的来源、进化关系及其致病的分子机理提供了理论依据。 -
报告柑橘溃疡病菌单链抗体文库构建及高亲和性特异单链抗体筛选
出版时间:20071.利用柑橘溃疡病菌细胞悬浮液免疫BALB/c小鼠,免疫后小鼠抗血清效价为2500倍左右。提取小鼠脾细胞mRNA,构建的单链抗体文库重链DNA大小为350bp左右,轻链为650bp左右,经linker(Gly3Ser)4连接后单链抗体DNA大小为1.2kb左右。将单链抗体文库DNA克隆到大肠杆菌JM109中,随机挑选了9个克隆子测序表明,9条单链抗体序列都是开放阅读框,其重链分别属于VH1、VH2、VH3基因家簇,轻链属于VKⅠ、VKⅢ、VKⅣ亚基因家簇。每个单链抗体的互补决定区(CDRs)都为不同的CDR,其中氨基酸序列变化多样,说明构建的单链抗体文库多样性好,适合于进一步进行单链抗体的筛选。2.采用核糖体展示技术对构建单链抗体文库进行了进化和富集。结果显示第一轮核糖体展示后回收的mRNA量非常少,分光光度计已测不出其浓度,反转录RCR后,扩增得到的条带非常弱,说明在原始未筛选的抗体文库中,能与柑橘溃疡病菌O-特异性脂多糖作用的单链抗体数量较少。经过三轮筛选后,得到的mRNA量逐渐增多,经RT-PCR后,产生了比较亮的扩增条带。说明在核糖体展示过程中,抗原阳性的单链抗体得到了富集。3.将未经过核糖体展示的原始单链抗体文库DNA和经过三轮展示的单链抗体文库DNA与噬菌体表达载体pCANTAB5E相连接后,转入大肠杆菌TG1中小量表达,表达后用间接ELISA测定单链抗体与抗原的结合活性。结果表明:从未经过筛选的原始单链抗体文库中随机挑取的60个克隆子表达产物与柑橘溃疡病菌O-特异性脂多糖几乎没有结合能力;而从经过三轮展示后的单链抗体文库中挑取的60个克隆子中有30%与柑橘溃疡病菌O-特异性脂多糖有较好的结合能力。从三轮展示后的单链抗体文库中共挑取了180个克隆子,用间接ELISA法初筛到60株抗原阳性的单链抗体;然后用生物分子相互作用技术(biosensor,biacore)对筛选的抗原阳性的单链抗体进行了复筛,筛选了3株高亲和力的单链抗体(GX13、GX44和GX95)以用于下一步的表达鉴定。4.将筛选的高亲和力抗原阳性的克隆子从大肠杆菌TG1中转入高表达菌株HB2151中进行可溶性表达。单链抗体表达后,其表达产物主要集中于细胞周质提取物中,具有抗体活性。将浓缩的周质提取物进行SDS-PAGE电泳,显示在32 kDa处有一蛋白条带产生。将表达产物纯化后进行SDS-PAGE电泳显示,在32 kDa处有单一蛋白条带产生。为了进一步验证表达的蛋白即目的蛋白,将表达产物进行了Western blot 杂交,结果显示,与纯化后的电泳结果一致,在32 kDa处有单一的条带产生,说明表达纯化的蛋白即目的蛋白。5.将筛选的抗原阳性单链抗体进行了特性研究。单链抗体(GX95、GX44、GX13)特异性强、亲和力高。其与柑橘溃疡病菌近源种Xanthomonas oryzae pv.oryzae(Xooc);Xanthomonas campestris pv.campestri(Xcc);Xanthomonas oryzae pv.oryzicola(Xoc);及从柑橘叶片上分离的10种腐生黄单孢菌及Bacillus subtilis;E.coli 都没有交叉反应。Biacore 分析其亲和力表明,单链抗体GX95、GX44和GX13的亲和常数分别为1.98×1010 M-1、1.89×1010 M-1、3.43×1010 M-1。6.对筛选的单链抗体进行了测序。用DNAplot 软件分析单链抗体序列。结果表明:单链抗体 GX44 和GX13重链分别属于VH1基因家簇,GX95 重链属于VH3基因家簇;GX44和GX13轻链属于Vk IV亚基因家簇,GX95轻链属于Vk III亚基因家簇。用Vector NTI软件对筛选的单链抗体的序列同源性进行了分析,表明GX44 和GX13重链有89.67%的同源性,GX95和GX13具有92.53%的同源性。