首页 <
知识图谱:全部
-
报告葡萄土壤杆菌E26中chvAE26基因的克隆及序列分析
出版时间:2007葡萄根癌病是一种由葡萄土壤杆菌(Agrobacterium vitis)引起的在生产上造成较大经济损失的世界性病害。无致病性的葡萄土壤杆菌E26(A.vitis E26)是本研究室分离获得的一株对葡萄根癌病具有良好防效的生防菌株。E26菌株的生防机制主要包括产生土壤杆菌素、定殖能力、诱导抗性等方面。据相关报道,chvA是一个编码β-1-2-葡聚糖运输蛋白,参与趋化作用的基因。本研究通过PCR方法克隆了E26菌株的chvA基因,该基因与文献报道的葡萄土壤杆菌F2/5菌株(A.vitis F2/5)中的chvA基因在核苷酸序列水平上同源性为94%,在氨基酸序列水平上同源性为98%,现命名为chvA E26。此外,该基因在A.vitis S4,A.tumefaciens C58,Sinorhizobium meliloti 1021等菌株中均有同源基因,同源性均在70%以上。序列分析表明:chvA E26基因全长1715bp,推测编码产物为β-1,2-葡聚糖运输蛋白,负责将β-1,2-葡聚糖运输至细菌内膜外,参与吸附寄主细胞,属于趋化性相关基因。在chvA E26下游存在一个chvB 同源基因,编码产生β-1,2-葡聚糖,两者的转录方向一致。在chvA E26基因的上游存在一个基因aviR E26,该基因编码一个LuxR类型的转录调控蛋白,两者转录方向相反。在chvA E26基因和chvB同源基因的中间还有hip基因,与chvA E26基因转录方向相反,该基因编码产生马尿酸酶(Hippuricase)。该酶能够降解N-苯甲酰甘氨酸为甘氨酸和安息香酸。此外,该酶还与生长素信号调控相关。与NCBI数据库及土壤杆菌序列数据库的序列信息进行比对分析,结果表明在A.vitis E26菌株中,aviR、chvA、hip和 chvB开放阅读框(ORF)的位置顺序和大小与已经报道的A.vitis F2/5菌株中的同源基因的相对位置和大小高度相似。推测chvA E26基因的功能可能与E26菌株趋化性或者定殖作用相关。目前,已构建了chvA E26的缺失突变体和互补突变体。chvA E26基因的生物学功能还有待于进一步的研究。 -
报告Primary Study on Screening Bacteria to Protect Soybean Seedling From Low Temperature
出版时间:2007低温胁迫是植物栽培中常常遇到的一种灾害,它不仅会导致植物产量降低,严重时还会造成植株死亡[1]。在北方高寒地区,低温常常成为大豆出苗的主要限制因子[2],春播大豆常因早春低温而延迟出苗,降低出苗率,增加感病的机会,降低幼苗的生活力,导致群体出苗不齐[3]。大豆的低温冷害敏感时期为6月和8月,有研究认为,低温年也是大豆低产年,一般减产28.2%~34.8%,减产原因是由于大豆生育期间所需积温不足,特别是6月份气温低导致营养生长期、生理活性减弱而影响苗期正常生育,推迟了分蘖、开花、成熟等发育阶段,回归分析6月份平均气温每增减1℃,每亩单产增减15~20kg[4]。大豆是我国的主要油料作物之一,具有较高的经济价值和食用价值,在国民经济中占有重要地位。但每年因低温冷害和病虫害的侵袭,大豆的产量已受到严重损失。如何解决大豆的低温冷害问题是目前东北地区着力研究课题,虽然人们已从合理耕作施肥和促早熟以及提高大豆抗寒性等多方面进行研究,并取得一些成果,但目前提高大豆抗寒性的方法是使用一些化学物质或者抗寒剂等,这对作物品质和土壤可能会造成一定的影响。而土壤是微生物的大本营,必定会存在一些真菌或细菌能够诱导植株产生抗寒性。本研究旨在从大豆根际土壤中筛选出能够提高大豆抗寒性的细菌菌株,为防御大豆低温冷害、促进增产增收打下基础。沈阳农业大学线虫研究室保存的细菌菌株,主要分离自大豆和黄瓜根际土壤。1.2 供试大豆品种辽豆10号,由辽宁省农业科学院提供。1.3 保护性细菌的筛选1.3.1 大豆种子表面消毒 挑取饱满的大豆种子,先用75%酒精消毒3min,再用无菌水冲洗3遍。1.3.2 细菌菌悬液的配制 细菌纯化后,在培养细菌的培养皿中加入适量无菌水,静置2min,配成109CFU/ml 的菌悬液。1.3.3 将上述消毒后的大豆种子放入不同的细菌菌悬液中浸泡,每皿10粒,约处理5min,使大豆种子表面充分附着细菌。1.3.4 将附着细菌的大豆种子放入灭菌的大培养皿中,内装灭菌土壤,在室温约25℃下使其萌发,并按时浇无菌水。以无菌水浸泡的大豆种子为对照。1.3.5 室内生长7天后,将其放置于冰柜中,控制温度在2℃以下,处理72h。再将其置于室温约25℃下生长。2天后检查,对保护性细菌进行筛选。通过室内筛选,有4株细菌处理过的大豆幼苗经过低温处理后没有表现出低温冷害症状,生长良好,而且须根较多,长出真叶(图1)。说明是这4株细菌能够保护大豆苗免受低温冷害,诱导大豆幼苗产生了明显的抗寒性。Figure 1 The growing status of soybean seedlings treated with low tempetature and comparison不同细菌菌株处理大豆种子对大豆的发芽率有一定的影响。与对照相比,在235株细菌中,促进大豆发芽的细菌菌株有83株,抑制大豆发芽的细菌菌株有152株。不同细菌菌株处理大豆种子对幼苗的生长有一定的影响,与对照相比,在235株细菌中,促进大豆幼苗生长的菌株有45株,抑制大豆幼苗生长的菌株有190株(表1)。发芽率(%)Ratioofburgeon菌株数/strainNumberofstrains茎长(cm)Lengthofstem菌株数/strainNumberofstrains≤4025≤5.04750205.1~6.03660266.1~7.04170367.1~8.04480458.1~9.02790649.1~10.02010019≥10.02080CK8.3CKTable 1 Ratio of burgeon and length of stem treated with different bacterial strains通过室内筛选,有4株细菌能够保护大豆幼苗免受低温冷害,生长良好,展开子叶,长出真叶,而且须根较多。但在这4株细菌中nemab60和nemab69比nemab56和nemab218的效果更好。不同细菌菌株处理大豆种子后,对发芽率有一定的影响。有的细菌有促进发芽作用,有的细菌有抑制发芽作用。而且对幼苗的生长也有一定的影响。有的细菌能够促进大豆幼苗生长,有的细菌能够抑制大豆幼苗生长。多数研究表明,植物的抗冷性与细胞的含糖量呈正相关,但也有少数不相关[5]。有人在研究棉花抗冷性与其可溶性糖含量的变化关系中得出结论,可将低温处理后可溶性糖的提高率作为划分棉花抗冷级别的生化指标之一[6]。冯乃杰等[7]研究表明低温胁迫时化控处理提高了POD和SOD的活性,丙二醛的含量增加的幅度减小,因而可减少膜质过氧化作用对细胞的伤害。可溶性糖含量增加,可为植株在低温时提供更多的能量物质,细胞的渗透势得到调节,降低了结冰点,提高了细胞的抗寒能力。不同细菌菌株处理大豆种子后,低温保护性细菌能够诱导大豆幼苗产生抗寒性。由于本试验仅为初步研究,没有对低温胁迫下保护性细菌处理的大豆幼苗的生理生化变化进行研究。今后,将进一步研究以探究低温保护性细菌诱导大豆幼苗产生抗寒性的机理。 -
报告Preliminary Analysis of Relationship Between Rice Stripe Virus Incidence and Rice Grain Yield Loss
出版时间:2007水稻条纹叶枯病是由灰飞虱传播的发生严重的病毒病,近年来,在浙江北部稻区呈快速蔓延扩大趋势,对水稻安全生产构成极大威胁。为了调查测定水稻条纹叶枯病为害与损失,为制订防治指标提供科学依据,2005~2006年我们在浙江嘉兴对水稻条纹叶枯病为害损失进行较为系统的测定,现将结果综合整理如下:单季晚稻,秀水09。在4月下旬采用生物法测定当地灰飞虱带毒率。自5月15日播种后,每隔3~5天调查秧田期灰飞虱虫口密度;6月15日移栽后,每隔5天调查本田初期灰飞虱密度,于发病后(6月下旬)开始每隔3~5天定点调查水稻丛发病率、株发病率。于病情稳定后(8月15日),根据田间自然发病情况,选取不同发病率(形成发病梯度)的点59个,每个点抽查20丛(200株),调查株发病率,待水稻成熟后单丛考种测产。据生物法测定,灰飞虱带毒率为2.01%。5月中下旬调查,秧田期灰飞虱虫量平均每平方米213头,推算带毒虫量平均每平方米为4.473头。本田期病情稳定期调查,水稻株发病率平均为4.88%,二者之比为1:1.091,见表1、表2。调查日期(月/日)成虫数(头/m2)若虫数(头/m2)合计虫量(头/m2)折合667m2(亩)虫量(万头)5/207070.46675/23193221.46675/26292312.06675/29815865.73346/4145915410.26676/81961721314.20016/121842420813.86676/151653920413.6001表1 秧田期灰飞虱虫量调查(浙江嘉兴,2006)调查日期(月/日)定点丛数调查株数发病丛数发病株数丛病率(%)株病率(%)6/2020062000006/2420086000006/28200136015197.51.46/3020013602429122.17/320018603241162.27/520019003692184.847/720019003692184.847/10200205040100204.887/1720021804310221.54.65/152002180399719.54.45表2 本田期条纹叶枯发病的系统调查(浙江嘉兴,2006)水稻条纹叶枯病株发病与产量损失率关系测定结果,平均株发病率为0.5%~11.5%,产量损失率为0.33%~9.02%。株发病率与产量损失率二者之比为1:0.576~1.01,平均为1:0.792,见表3。随着水稻发病株率(X)上升,产量损失率(Y)加大,两者具密切的相关性,建立的关系式为:Y=0.4768+0.7276X,r=0.8898**。株发病率(%)水稻200穗产量(g)产量损失率(%)株病率与损失率之比0.0(对照)524.20.5522.50.330.661.0518.91.011.011.5518.11.160.7732.0514.71.820.912.5616.61.440.5763.0509.72.760.923.5508.92.910.8314.0507.343.210.8034.5504.63.730.8295.0504.73.730.7465.5501.64.320.7856.0502.04.240.7076.5501.74.290.667.0493.55.870.8397.5490.06.520.8698.0488.66.800.858.5489.26.670.7859.0490.46.460.71810.0483.67.750.77511.5476.99.020.784对照(0.0)524.2表3 水稻条纹叶枯病发病率与水稻产量损失率测定(浙江嘉兴,2005~2006)大田调查测定结果表明,水稻条纹叶枯病发生与灰飞虱虫口密度高低和带毒率具有密切相关性,随着灰飞虱虫口密度提高,为害程度上升,产量损失率加大,建立了为害损失关系式。条纹叶枯病发病株率与产量损失率之比,2年测定结果为1:0.576~1.01,平均为1:0.792。田间调查表明,水稻条纹叶枯病发病后,前期稻苗大多枯死,对产量损失大。该调查结果为条纹叶枯病发病为害损失评估,制订防治指标提供科学依据。 -
报告冀北地区苹果锈病大发生的原因与防治技术研究
出版时间:2007苹果锈病在冀北地区历年来均属零星发生,但近2年来在部分果园突然开始大发生,其中,2007年部分果园发病株率达到100%、病叶率90%以上,苹果产量和质量急剧下降,经济效益损失接近100%。笔者于2007年对冀北地区苹果主产地的宽城、兴隆、承德等县的苹果园进行了系统调查,发现苹果锈病在该地区普遍发生,给当地苹果生产造成了较大损失。苹果锈病又名赤星病、羊胡子,有的地区俗称黄斑病、长毛病。该病可为害叶片、新梢、果实,叶片先出现橙黄色、油亮的小圆点,后扩展,中央色深,并长出许多小黑点(性孢子器),溢出透明液滴(性孢子液),此后液滴干燥,性孢子变黑,病部组织增厚、肿胀(也就是群众所称的叶子上长了黄疙瘩),病斑多呈纺锤形,以后叶背面或果实病斑四周,逐渐长出黄褐色丛毛状物(锈孢子器,即群众所称的长胡子、长毛毛),内含大量褐色粉末(锈孢子);果实发病,多在萼洼附近出现橙黄色圆斑,直径10mm左右,后变褐色,病果生长停滞,病部坚硬,多呈畸形。苹果锈病病原菌(Gymnosporangium yamadai Mouabe)称山田胶锈菌或苹果东方胶锈菌,属担子菌亚门真菌。该菌是转主寄生菌,在苹果、梨树上形成性孢子和冬孢子,在桧柏上形成冬孢子,以后萌发产生担孢子[1]。转主寄主主要是桧柏,其次是括高塔柏、新疆圆柏、欧洲刺柏、翠柏、龙柏等[2]。该病每年只侵染1次,病菌以菌丝体在桧柏类植物上越冬,翌年春天在桧柏上形成冬孢子角,冬孢子角内的胶状物质遇雨吸水膨胀,其中的冬孢子产生大量的担孢子。担孢子不能侵染桧柏,而是随气流传到苹果树上,致使苹果树发病,开始在叶片正面出现性孢子器,以后在叶背面出现锈孢子器,产生的锈孢子再随气流传到桧柏上为害、越冬,从而完成一个侵染循环。从苹果锈病的侵染循环可以看出,如果没有桧柏类植物,苹果锈病就不能完成侵染循环,也就不能发生。据有关资料[3]介绍,桧柏类植物上的担孢子传播距离一般为2.5~5km,最远50 km。因此,苹果锈病的发生与否或发生轻重主要决定于周围5 km有无桧柏等转主寄主的存在。该病作为初侵染源的冬孢子角的萌发和冬孢子、锈孢子的侵染都需要适当降雨和相对湿度大于90%的条件。因此,该病的发生轻重和早晚与春季降雨早晚和雨量大小关系密切,降雨早则发病早,雨量大则发病重。据笔者调查,在冀北地区,一般春季4月下旬至5月上中旬降雨量达到15mm以上时,桧柏类植物上的菌瘿开始迅速吸水膨大,形成花瓣状的冬孢子角,冬孢子随即萌发形成担孢子,随气流传播至苹果树染病,一般从5月下旬叶片正面开始出现病斑,6月上旬大量发病,至8月份叶背面开始出现锈孢子器。冀北地区农村历来有翠柏栽植,但一般都长在较偏僻的陡峭山上,距离苹果园较远,而桧柏只是在城镇有少量栽植,即使偶尔有苹果锈病的担孢子飞散传播,数量也相当少。因此,该地区苹果锈病历年均零星发生或不发生,果农对该病也比较陌生。近3年来,各地大搞文明生态村建设,为了绿化和美化农村环境,开始在农村的路边、房前屋后、群众休闲活动广场等地大量栽植桧柏类植物,这些地点一般距离苹果园较近,给苹果锈病完成侵染循环提供了充分的条件,致使这些地区苹果锈病在2007年偏重发生或大发生。据笔者对冀北地区6个距离桧柏不同远近的果园调查,凡是附近栽植桧柏的果园,苹果锈病就发生重,反之则发生轻。一般建在路边距离桧柏近的果园,苹果锈病发生重,建在山坡上距离桧柏相对较远的果园则发生轻,而发生程度与距离桧柏远近呈明显的正相关。从表1可以看出,与桧柏距离50m以内的苹果树,全部感染苹果锈病,病叶达到90%以上,每个病叶上平均有病斑3.7个;与桧柏距离80~120m的苹果树,全部感染苹果锈病,病叶率略有下降,但仍达到70%左右,每个病叶上平均有病斑2.3个;与桧柏距离180~230m的苹果树,全部感染苹果锈病,病叶率为20%左右,每个病叶上平均有病斑1.6个;与桧柏距离500~630m的苹果树,病株率为58.5%,病叶率10%左右,每个病叶上平均有病斑1.15个;与桧柏距离2100~2250m的苹果树,感染率为20%左右,病叶率仅为1.2%,每个病叶上仅有1个病斑;与桧柏距离5100~5200m的苹果树,感染率急剧下降,仅为4.5%,病叶率仅为0.2%,每个病叶上仅有1个病斑。与桧柏距离(m)50以内80~120180~230500~6302100~22505100~5200病株率(%)100.0100.0100.058.519.64.5病叶率(%)91.571.622.610.51.20.2平均百叶病斑数336.2166.736.512.11.20.2表1 苹果锈病的发生程度与距离桧柏的远近关系调查表(2007年6月14日,河北宽城)苹果锈病虽然不是冀北地区果园新发病害,但是由于其具有需转主寄主才能完成侵染循环的特性,发生极少,不如腐烂病、斑点落叶病、轮纹病等常发病害那样清楚,绝大多数果农根本不认识,因此预防意识淡薄,盲目引进了桧柏类植物,而在春季又没有对其进行防范措施,导致了该病的重发生。切断苹果锈病的侵染循环是防治该病最有效的手段,新建果园时,应当远离桧柏、翠柏、龙柏类植物5km以上,对于5km之内已有桧柏等植物的,有条件的建议彻底清除。对于彻底清除5km之内桧柏等植物有难度的果园,必须采取综合措施控制冬孢子萌发。第一,可以在早春苹果萌芽前,剪除桧柏类植物上的菌瘿并集中烧毁或喷药抑制冬孢子萌发;第二,可以喷药清除菌源。应根据天气情况,在苹果萌芽期至幼果拇指大小时,尤其是4月下旬至5月上中旬遇有15mm以上且持续时间较长的降雨时,必须及时在桧柏类植物上及时喷洒波美3度的石硫合剂或三唑酮等药剂,清除越冬病菌;第三,苹果锈病发生重的果园,还应在秋季喷药保护桧柏类植物,防治锈病侵染。对于附近有桧柏类植物的果园,除了清除转主寄主的菌源以外,还应对果树进行树上喷药保护,一般在苹果花芽露红和落花后各施一次药,发病严重的还应在落花后10~15天施第三次药。常用的药剂有:15%三唑酮可湿性粉剂1500~2000倍液、12%烯唑醇可湿性粉剂2000~2500倍液、43%戊唑醇(好力克)悬浮剂3000~4000倍液、25%戊唑醇(富力库)水乳剂1000~2000倍液、25%丙环唑(敌力脱)乳油1000~4000倍液、40%氟硅唑(杜邦福星)乳油8000倍液等。苹果锈病的担孢子可飞散传播5km以上,但由于冀北地区属山区,自然屏障较多,因此,以200m以内传染为害较重,如菌量充足,可使该范围内绝大多数苹果树发病,对产量影响极大,200~500m之间发生程度中等;距离转主寄主5km以上的苹果树虽然也可以发病,但发病率较低,对产量一般不会造成严重损失。切断侵染循环是防治苹果锈病的根本所在,而喷施药剂是防治该病的重要措施。 -
报告Occurrence and Control of Main Seedling Stage Diseases in Stevia rebaudiana Bertoni
出版时间:2007甜菊(Rebaudiana Bertoni或Rebaudiana Bak)为菊科斯台维亚属多年生半木质草本植物,又名甜叶菊、甜草、糖草,原产于南美的阿根廷、巴拉圭、巴西三国交界处500~1000m的高山草地上。其叶内主要物质——糖苷,具有高糖低热特性(甜度是蔗糖的300倍,热量仅为蔗糖的1/300),自1975年被日本首先投产于食品工业应用以来,现已被世界上许多国家应用到食品、医药、酿造等方面。济宁市于20世纪90年代初开始引种栽培,到目前已发展到1.5hm2左右,成为全国最大的甜菊种植基地。随着种植时间的延长和种植面积的不断扩大,甜菊病害不断加重,特别是苗期病害,由于甜叶多采用弓棚育苗,春栽种育苗时间一般在2月下旬,常常遭遇低温,棚内温湿度不宜控制,病害容易发生,经常因防治不当,苗床大量死苗或移栽后造成大量死亡。几年来笔者针对为害较大的甜菊苗期病害的发生及防治进行了试验研究,现总结如下:该病是甜菊苗期最重要的一种病害。据笔者几年调查,新苗床30%以上,老苗床50%以上可发现该病害。特别是老苗床,如不注意温湿度管理和及时防治,整个苗床可在几天基本死光,为害很大。是所有甜菊种植区均能形成为害的一种病害。1.1.1 症状 主要症状是在茎基部靠近地表处产生椭圆形暗褐色病斑,随病情发展,病斑扩大后可绕茎一周,凹陷收缩,干枯,导致幼苗整株死亡。1.1.2 病原 甜菊立枯病菌为丝核菌(Rhizoctonia solani Kuhn),属半知菌类,丝核菌属(有性世代,一般情况下很少出现),以菌丝体繁殖,初生菌丝无色有气泡,后期呈黄褐色,较粗大,菌丝直径5~14μm,分枝处稍细,有一横隔,呈直角分枝。该病菌生存能力较强,在0~40℃均能生长,以15~26℃为最适发育温度。1.1.3 侵染循环 立枯病菌以菌丝体和菌核在土壤中和病残体上越冬,是病菌的主要侵染来源,遇到合适的寄主和适宜的环境条件即可侵入为害。病菌可通过人、畜、农具携带,以及借肥料、流水、风、雨等进行传播。1.1.4 发病条件 立枯病的流行,首先是土壤中存在大量的病原菌。湿度大、湿度适宜则发病重。凡地势低洼、排水不良的土壤发病重,重茬地、旧苗床残菌多、发病重。1.2.1 症状 该病可从种子发芽时侵染或从茎基部侵入,使幼苗呈褐色水渍状死亡或在茎基部始出现淡黄色水渍状斑,在条件适宜的情况下病斑逐渐扩大,受害茎部变细,水浸状烂断,导致整株死亡。1.2.2 病原菌 该病原菌为镰刀菌(Fusarium spp.)属半知菌类,丛梗孢目,镰刀菌属。菌丝无色,多分枝,分生孢子有两种:小孢子圆形或椭圆形,单胞;大分生孢子镰刀状,两端弯曲,尖端细,由5个左右的细胞组成。1.2.3 侵染循环 该病菌是一种腐生性较强的兼性寄生菌,能在土壤中腐生,是侵染的主要来源。当遇到适宜的条件即可侵入为害。农事操作、流水、风、雨等可以造成传播。1.2.4 发病条件 在幼苗出土不久,如遇低温、多雨、苗床积水、土壤黏重、透气性差可造成该病的流行,重茬地、旧苗床发病重。据资料记载,该病只在长江以南地区为害甜菊。但据笔者近几年的调查、分离,证明济宁不少县区均有该病发生,且能在甜菊整个生育期为害。1.3.1 症状 发病部位是接近地面的茎基部,受害后表皮上出现暗褐色至黑色水渍状斑,湿度大时,经5~7天,病处可出现灰白色的霉状物,取病部组织在保湿条件下培养,可见到洁白色的菌丝体。病菌向下发展,为害根部,破坏根系,使植株基部叶片变黄,顶部叶片枯萎死亡;病斑向茎周发展破坏皮层组织,使水分、养分不能正常运输,植株失水、叶片发黄而逐渐死亡。1.3.2 病原菌 甜菊白绢病原菌(Sclerotium rolfsii Sacc)属半知菌类,小类菌属。菌丝白色、线性,能形成菌丝束和球形菌核。病菌有时可产生有性世代的担孢子。该病原菌寄主范围广,可侵染60余科210多种植物,主要有烟草、番茄、马铃薯、茄子、棉花、甘蔗、大豆、西瓜等。1.3.3 侵染循环 该病菌以菌核或菌丝体在土壤中及病残体上越冬,成为侵染的主要来源。在条件适宜时,病菌可从茎基部的表皮直接侵入或从伤口侵入,使病部组织腐烂,造成死苗。农事操作、流水、昆虫可传播病害,种子也能带菌传染。1.3.4 发病条件 该病害的发生流行与土壤温湿度关系密切。据试验,14~26℃是病菌发育的最佳温度范围。湿度大、排水不良、低洼地发病重,干旱年份发病轻。连作地发病重,施未腐熟的有机肥易发病。2.1 由于以上3种病害均是以菌丝体等在土壤中越冬,故进行土壤消毒是有效的防治方法。用50%的多菌灵或托布津可湿性粉剂,每平方米10g左右,加干细土15kg左右拌匀,一半在播种前作为垫土,一半盖在种子上,或用70%五氯硝基苯可湿性粉剂和50%福美双可湿性粉剂每平方米8~10g 按1:1混合,同上法处理。2.2 选择地势稍高、排水好、疏松的土壤为育苗地,施用腐熟的有机肥或生物肥。2.3 合理轮作,避免重茬育苗和使用旧苗床。2.4 苗床避免大水漫灌。发现病株及时拔除,并在病株周围撒石灰进行消毒,同时应及时喷药,防止病害蔓延。可用药剂为75%百菌清可湿性粉剂500~600倍液或50%甲基托布津可湿性粉剂800倍液,或20%甲基立枯磷乳油700倍液、70%敌克松 1000倍液、50%福美双可湿粉500倍液、64%的杀毒矾可湿性粉剂500倍液,间隔7~10天连用2次。若每平方米用50%五氯硝基苯可湿性粉剂和50%代森锌可湿性粉剂各3~5g,对水1500ml,喷洒苗床周围土壤,控制病菌蔓延;在菊苗移栽定植前选择广谱性杀菌剂如百菌清、杀毒矾、多菌灵等再喷雾一次,带药移栽定植,效果更好。2.5 培育和选育抗病品种(系)。 -
报告Identification for Resistance of Maize Germplasm to the Two Virus Disseases
出版时间:2007玉米矮花叶病(Maize Dwarf Mosaic)和玉米粗缩病(Maize Rough Dwarf)是近十几年来为害我国玉米生产的两种主要病毒病害[1]。自20世纪90年代以来,玉米矮花叶病、粗缩病在山西流行严重[1,2,5],给玉米生产带来很大损失,特别是1994~2000年连续严重发生的玉米矮花叶病和粗缩病,使山西省运城、临汾等地的晚播玉米颗粒无收,夏玉米因病害减产30%以上[2]。1998年全省发病面积45万hm2,占玉米种植面积的52%,全省损失粮食5亿多kg[3]。大面积种植感病品种是病害流行的重要原因。改良山西省常用玉米自交系和杂交种对病毒病的抗性,已成为玉米生产和育种单位急待解决的问题[3,7]。国内外研究表明:不同的玉米自交系和杂交种对玉米病毒病的抗性有明显差异[4]。选育和种植抗病品种是防治玉米矮花叶病和粗缩病最经济有效的措施[3,6,7]。本研究皆在通过田间自然发病初选,人工接种,病圃重复鉴定,筛选出对两种玉米病毒病具有抗性的种质资源。为有效地开展玉米抗病毒病育种提供参考依据。供试玉米种质资源材料共915份,其中常用玉米自交系276份,杂交种及新组合181份,热带改良新选系458份。热带改良新选系由本所种质改良课题组提供,其余的玉米资源由省内有关育种单位和种子公司提供。1.2.1 田间自然发病鉴定初选 田间自然发病鉴定初选:2001年和2002年对全部材料分2年在山西省玉米病毒病发生严重的地区运城、临汾和太谷3个点同时进行。每份材料种植2行,每行50株,行长15m,株行距0.3m×0.65m。以自然发病为主,授粉1~2周后调查病株率,发病率在15%以上的视为不抗病。对这批材料将不进行抗病复选。1.2.2 人工接种重复鉴定复选 2003~2004年,对经过田间初选的抗病材料同时进行矮花叶病人工接种和粗缩病自然重复鉴定。病圃设在山西省农业科学院小麦研究所实验场(临汾市区),历年发病较重的固定地块。供试材料田间顺序排列,每份材料种植2行,每行25株,行长7.5m,株行距0.3m×0.6m。玉米矮花叶病人工接种方法:采用蚜虫接种法,设自交系黄早4(R),Mo17(S)为抗、感对照种。玉米粗缩病重复鉴定方法:采用田间自然接种法,鉴定圃四周全部种植冬麦,利用灰飞虱发生规律,调节玉米播期(5月中旬)使幼苗与成虫羽化高峰期吻合,以达到传毒最佳效果,设自交系沈137(R),478(S)为抗、感对照品种。玉米授粉半个月后调查病情。玉米矮花叶病病株分级标准参照吴全安的方法[11]。即:0级全株无症状;1级,植株上部叶片1%~3%显症,有褪绿斑花叶;2级,植株中部叶片,1%~30%显症,植株略矮;3级,植株严重发病,2/3的叶片呈现花斑条纹,果穗弯小或不结实。病情指数按以下公式计算:依据病情指数划分抗病类型,0~5.0高抗(HR);5.1~15.0抗病(R);15.1~30.0中抗(MR);30.0以上感病(S)。玉米粗缩病病害分级标准参照陈巽珍分级标准[8],即:0级,健株,全株无症状;1级,比健株矮1/5,雄穗轴稍短;2级,比健株矮1/2,顶部略丛生,果穗长度为健株的1/2;3级,株高为健株的1/3,顶部叶小,上冲,穗小多畸形;4级,苗株死亡或极矮小,顶叶上冲丛生,绝收。病情指数计算公式同前。依据病情指数,划分抗病类型,0~5.0高抗(HR);5.1~20.0抗(R);20.1~40.0感(S);40.1以上高感(HS)。2001~2002年,对915份玉米自交系和杂交种在重病区进了田间自然发病鉴定初选,淘汰了感病材料208份。2002~2004年,对初选的912份材料(自交系537份,杂交种142个),进行了矮花叶病、粗缩病人工接种,病圃重复鉴定。鉴定筛选结果见表1、表2和表3。种质类型Germplasmtype鉴定数量No高抗highResistant抗Resistant感Susceptible高感HighsusceptibleNo%No%No%No%自交系Inbredlines734253.411816.125334.533846.0杂交种Hybrids181168.96938.15832.03821.0合计Total915414.518720.431134.037641.1Table 1 Results of indentification for resistance of maize inbred lines and hybrids to SCMV-MDB种质类型Germplasmtype鉴定数量No高抗highResistant抗Resistant感Susceptible高感HighsusceptibleNo%No%No%No%自交系Inbredlines734334.512917.634547.022730.9杂交种Hybrids1812916.05128.26636.53619.9合计Total915626.817919.641144.926328.7Table 2 Results of indentification for resistance of Maize inbred lines and hybrids to MRDV种质类型Germplasmtype鉴定数量No双高抗双抗DoublehighNoResistant%DoubleNoResistant%自交系Inbredlines73470.967510.2杂交种Hybrids18195.05027.6合计Total915161.7512613.8Table 3 Results of indentification for resistance of Maize inbred lines and hybrids to SCMV-MDB and MRDV表1表明经过人工接病鉴定:筛选出抗矮花叶病自交系118份,占自交系鉴定总数的16.1%,杂交组合69个,占杂交种鉴定总数的38.1%,优良高抗病自交系有25份,占自交系鉴定总数的3.4%,它们是:选9、齐31、93选2、假B734、选78、选7、选141、选127、选301、选145、选151、选250、5081、改84-2、改99-1、改100-1、改113-1、改100-2、改474-1、改418-1、改377、改403、改426、沈137、99-5。表现为高抗病的杂交种有16个,占杂交种鉴定总数的8.9%,它们是:长单39、长单40、忻抗7号、太早单18号、98-1×5081、并单3号、齐319×98-3、并单4号、422×齐35、B734×93选2、H9-21×临京11-2、农大108、忻玉106、忻单108、晋单36、鲁单50。表2结果表明:供鉴定材料中,抗粗缩病自交系有129份,占自交系鉴定总数的17.6%;杂交种50份,占杂交种鉴定总数的27.6%;高抗病自交系有33份,占自交系鉴定总数的4.5%。它们是:选29、选41、选114、选125、选214、齐31、齐35、93选2、假B734、选331、选78、选184、选159、R选3、选50、选59、选2-2、选11-1、选46-2、选121-1、选132-1、选155-1、R10-2、R49-1、选90-3、海选36、改357-1、改474-1、改418、改408、改427、98-2、98-3。高抗病杂交种29个,占杂交种鉴定总数的16.0%,它们是:B734×93选2、422×齐35、并单4号、陕单971、新陕单1号、鉴35、齐31×98-3、并单3号、陕高农5号、临油1号、忻玉106、长单40、屯9902、同单4号、同早5号、春早单3号、运早1号、FL2、晋玉681、早利26、京单958、太早单20、太早单21、早玉2号、早玉4号、LD981、运单14、H9-2×临京11-2、H9-2×临京11-3。通过表3可以看出:被鉴定材料中,对两种病毒病同时都表现为抗病的自交系有75份,占自交系鉴定总数的11.6%,如:选41、选125、选214、齐35、选331选159、选50、选7、选141、选31、选211、选87、选14、选217、选301、选186、选102、选145、选151、选153、选250、改2-2、改11-1、改132-1、改155-1、R49-1、选90-3、海选36、改15-2、改16-2、改29-2、改50-2、改99-1、改100-1、改102-2、改111-2、改113-1、改116-1、改125-1、改134-2、改170-2、改357-1、改474-1、改418、改408、改427、改377、改403、改426、改404、改476、改406、改407、改416、改419-1、改420、改422、改430、改432、改433、改440等。双抗杂交种51个,占杂交种鉴定总数的29.8%,如:陕单971、新陕资1号、鉴35、陕单931、98-1×5081、4-18、临油1号、忻玉106、选66×308-2、忻5344、忻玉105、长单39、屯单9901、屯9902、屯9906、京玉8号、春早单1号、春早3号、太单早18、太单23、太单32、早利26、协玉2号、运单13号、晋玉681、晋玉751、科试7号、沈单10号、早玉3号、早玉2号、并单1号、太早单20、高油115、忻玉9704、忻抗13、LD981、DH3801、强盛17、并单2号、同单36号等。对两种病毒病同时都表现为高抗的材料共16份,占鉴定总数的1.96%,其中双高抗自交系有选29、齐31、93选2、假B734、选78、改474-1、改418,共7份,占自交系鉴定总数的1.1%。双高抗病杂交种有B734×93选2、422×齐35、并单4号、齐31×98-3、并单3号、陕高农5号、长单40号、H9-21×临京11-2、忻玉106,共计9个,占杂交种鉴定总数的5.3%。杂交种抗矮花叶病的比例为38.1%,自交系的为16.1%;杂交种抗粗缩病的比例为28.2%,自交系的为17.6%;杂交种同时抗这两种病毒病的比例为27.6%,自交系的为10.2%;杂交种同时高抗这两种病毒病的比例为5.0%,自交系的为0.96%;通过对杂交种和自交系材料抗病性比较,可以看出杂交种抗病的比例远高于自交系的。从表4看出被鉴定热带亚热带玉米改良自交系中,对两种病毒病同时都表现为抗病的有59份,占热带改良系鉴定总数的12.9%;对两种病毒病同时都表现为高抗的有5份,占热带改良系鉴定总数的1.1%。而国内温带自交系对两种病毒病同时都表现为抗病的有16份,占国内温带自交系鉴定总数的5.8%;对两种病毒病同时都表现为高抗的仅2份,占国内温带自交系鉴定总数的0.7%。从而可以看出热带亚热带玉米改良自交系抗病比例远远大于国内温带系。种质类型Germplasmtype鉴定数量No双高抗双抗DoublehighNoResistant%DoubleNoResistant%自交系Inbredlines73470.967510.2热带改良系Tropicalinbredlines45851.15912.9国内温带系Chinatemperate'sinbredlines27620.7165.8Table 4 Results of indentification for resistance of Tropical and China temperate's inbred lines to SCMV-MDB and MRDV采用蚜虫接种法,重病区病圃自然发病重复鉴定法,4年来,对816份不同类型玉米种质资源进行了玉米矮花叶病、粗缩病的抗病性鉴定。筛选出同时抗两种病毒病的自交材料75份,杂交种51个;双高抗病优良自交系7份;双高抗病杂交种9个;为玉米抗病毒病育种提供了一批抗病材料,为玉米生产上应用抗病品种提供了科学依据。在鉴定材料中双抗病材料所占比例较小,同时高抗两种病毒病的材料所占比例更小,鉴定材料的抗病性与其来源关系密切,不同的种质材料对两种玉米病毒病的抗病性有明显差异,杂交种和杂交组合的抗病性比例明显优于自交系;不同来源自交系的抗病性差异更大。利用热带、亚热带玉米种质改良的新选自交系,抗病比例远远高于没有热带血缘的常规系,这说明热带、亚热带玉米种质资源中有优良的抗病毒病基因,是改良我国温带玉米种质病毒病抗性的很有利用前景的抗源种质。本研究采用的矮花叶病蚜虫接种法,是我国多年来传统接种的方法,虽然由于养蚜、饲毒等工作量较大,但不失为一种可靠性强的接种方法。粗缩病的抗性鉴定方法国内现在一直采用田间自然发病鉴定方法,试验选择了利于病毒病发生的试验环境,把鉴定点设在山西省发病严重的地块进行,并进行了重复鉴定,使鉴定结果有了更强的可靠性。 -
报告Discrepancy of Transmission Rate of the Rice Stripe Virus by Nymphs and Adults of the Small Brown Planthopper Laodelphax striatellus Fallen(Homoptera: Delphacidae)? Corresponding authors:E-mail:wanghd61@126.com;zrzhu@zju.edu.cn
出版时间:2007The small brown planthopper,Laodelphax striatellus Fallen(Homoptera:Delphacidae)is a widely geographical distributed planthopper in the Euro-Asian continents(Zhu et al.2005).It is the vector of the rice stripe disease caused by the rice stripe virus(RSV).RSV has been a destructive rice disease in the Eastern Asian countries(Hibino,1996;Cheng et al.2002;Zhu et al.2005;Zhu et al.2007).The transmission process and efficiency of a plant virus by their vectors was influenced by many factors(Gray&Banejee,1999),for instance,environmental temperature,plant species(Jin et al.1985),plant age(Wang et al.2007),but no information was documented on the role of the planthopper vector's age on the rice stripe virus.In the year 2006 and 2007,we collected nymphs and adults of the vector planthoppers from overwintering habits and biologically tested their transmission rates.In 2006,the small planthoppers in growth stages of large nymphs and macropterous and brachypterous adults were collected from overwintering habits such wheat,barley,rye fields and grasses in bank fields of 5 sites,e.g.Haiyan,Haining,Jiashan,Huzhou and Changxin,Northern Zhejiang Province.In 2007,the vectors were collected from 7 sites,e.g.Haiyan,Haining,Xiuzhou,Jiashan,Tongxiang and Changxin.More than 100 planthoppers were collected from each site each year.2.2 Rice seedlingThe most widely grown rice cultivar Xiushui 110,a Japonica type bred by Jiaxing Academy of Agricultural Sciences,was sown and maintained in greenhouse plots and the seedlings at age of 15 days were used for the bioassay.After they were collected and transported in healthy rice seedlings to the laboratory,the planthoppers were separated into groups of larger nymphs,macropterous and brachypterous adults as described in Sun et al.(2007).One rice seedling was set in a glass tube in size of 15cm×2cm and enclosed in one end with nylon mesh.After one planthopper of either nymph or adult was put into each glass tube,the second end was enclosed as for other the end and the glass tubes were marked for the vector's site etc.All the tubes and plants with planthoppers were sitting vertically on trays with still water to maintain the plants alive.The trays were kept in a greenhouse of RH75%,25~28℃ with 14L:10D.After 24 hours after infection,the seedlings were transplanted into plots in a screen house and covered by net cages in size of 30 cm in height×10cm in diameter individually.The seedlings were monitored and recorded daily for the incidence of the rice stripe disease till 30 days.Since all the incidence data of percentages of infected rice plants were lying within the range of 0 to 30%,the square-root transformation was used before analysis of variance.The Generic linear model(GLM)was applied to separate the factors and their interactions on the variance.Thereafter,the least significant difference(LSD)was used to compare the difference among the transmission rates of different status of vectors.The data analysis was performed in the DPS program(Tang and Feng 2006).The age and site of the vector had significant effect on the transmission rate(ANOVA,F(2,32)=82.85,P=0.0001;and F(6,32)=8.54,P=0.0098,Table 1),but the factor of year and the two-paired interactions among all the three factors were not significant(P>0.05,Table 1).This indicates that transmission competencies of the vectors collected from different sites were consistent over these two years.In both the years of 2006 and 2007 for each site,the transmission rate of large nymph was higher than those of brachypter and macropter,respectively,and the mean of the former was significantly higher than those of later(Table 2).The ratio of such transmission rates was nymph:macropter:brachypter=1:0.69:0.35 in 2006 and 1:0.68:0.45 in 2007.SourceofvarianceSSDegreeoffreedomdfMeansquaresMSFProbabilitylevel,PAge223.02572111.512982.84770.0001Site68.9879611.49808.54230.0098Year7.041717.04175.23160.0622Year×Age2.320621.16030.86200.4687Year×Site17.451335.81714.32180.0604Site×Age44.6304123.71922.76320.1107Error8.076061.3460Total335.229532Table 1 Analysis of variance of factors affecting the transmission rate of overwintering Laodelphax striatellus FallenSBPHoriginationsAgeofsmallbrownplanthopper(SBPH)20062007MacropterBrachypterLargenymphMacropterBrachypterLargenymphHaiyan3.36.258.233.525.026.12Haining3.855.136.992.143.035.81Jiashang2.783.836.222.594.216.25Tongxiang3.547.6913.64Xiuzhou3.595.267.13Changxin2.604.228.505.636.487.69Huzhou1.829.0911.29Mean±SE2.87±0.345.7±0.948.25±0.873.5±0.495.28±0.677.77±0.215%cbababa1%BAABABATable 2 Comparison of transmission rate (%) of the rice stripe virus by different age of the small brown planthopper (SBPH), Laodelphax striatellus FallenThe experiment presented in the paper showed that the large nymphs of the planthopper vector had higher transmission efficiency than their adults.Such discrepancy between adults and younger stages are found in many plant virus vectors.For both sexes of Frankliniella occidentalis(Pergande)(Thysanoptera:Thripidae),the vector of the tomato spotted wilt virus,the transmission efficiency dropped with age,simultaneously with the consumption rate(van de Wetering et al.1999).The transmission of Tomato spotted wilt virus by Thrips tabaci adults decreased with the age too at which the virus was acquired by larvae(Chatzivassiliou et al.,2002).In aphid vector of the persistent transmission of plant viruses,transmission efficiency decline with age though they remain infectivefor a long time,possibly over their whole life.Infectivity is not affected by molting,important because of existence of the virus as aphids mature.Foregut and hind gut is lined with cuticle that is shed with the molt;viruses transmitted in a persistent fashion must be either in midgut or within the body.But Ling(1975)noted that adult green leafhopper(Nephotettix virescens)is three times more efficient vector than nymphs in rice tungro transmission.The acquisition access period(AAP)and inoculation access feeding periods(IAP)are two of the important factors determining the transmission efficiency.The proportion of aster leafhoppers,Macrosteles quadrilineatus Forbes,that became vectors was significantly higher for bolt strain of aster yellows phytoplasma when leafhoppers acquired aster yellows phytoplasma as nymphs than as adults.Once leafhoppers became inoculative,the rate of transmission remained constant over their life spans(Murral et al.1996).Acquisition only occurs in the first and early second nymphal stages of the life-cycle and adult thrips cannot acquire the virus(Moritz et al.,2004).Due to the lack of strong evidence to elucidate the mechanism undergoing the different transmission ability between the ages and wing-morphs of the small brown planthopper,more experiments are necessary to carried out to draw the clear pictures.When winter crops such wheat,ryegrass are spatially connected with or temporally followed by rice seedling nursery or transplanted rice,viruliferous planthopper nymphs remained in the nearby winter crops or grasses will move by jumping to the newly-planted rice plants and transmit the virus to rice resulting in severer RSV incidence than viruliferous adults.Such event should be prevent through spatially and temporally isolation.Postpone of sowing date of rice has been tested experimentally as one of the effective approach to avoid RSV disease outbreak in rice(Zhu,et al.2007,in review).Additionally,the data can be used in a rice stripe disease epidemiological model to evaluate strategies for the disease management.The research presented in the paper is part of the Zhejiang Provincial Key Projects(2005C32033,2004E60055),China National High-Tech(863)Program(2007AA10Z220).