首页 <
知识图谱:全部
-
报告Research Advances of the Antimicrobial Activity of Plant Essential Oils
出版时间:2007植物精油(essential oil)是存在于植物体中的一类可随水蒸气蒸馏、且具有一定香味的挥发性油状液体的总称,它是植物体内的次生代谢产物,主要由脂肪族、芳香族、萜类(单萜和倍半萜)、含氮或含硫等易挥发的成分组成。植物精油具有杀(抗)菌、杀(驱)虫、香熏治疗和多种药理作用,在香料、化妆品、食品等工业领域具有广泛的用途,是制作药品、化妆品、食品的原料或添加剂。由于精油具有无毒、无害、纯天然等特点,研究精油作为杀菌剂用于食品或果蔬的防腐保鲜和贮运,以及作为农用或医用杀菌剂,是近年来精油研究与开发的一个重要方面。由于植物精油的研究十分迅速,本文对有关植物精油的抗菌活性、作用机制和应用等方面的研究进展进行简要综述。近年来对精油抗菌活性进行研究的植物主要包括:唇形科、菊科、桃金娘科、伞形科、金丝桃科、樟科、禾本科、芸香科、马鞭草科、姜科等,估计进行过精油抗菌活性研究的植物达250余种。这些精油多分布在植物的花、果、叶、根或根茎、种子等器官中,有的也存在于植物的全草和树胶中。精油中的抗菌成分主要为:香芹酚、丁子香酚、薄荷醇、百里酚、柠檬烯、乙酸牻牛儿酯、乙酸丁子香酚酯、反-肉桂醛、桉树脑、β-月桂烯、香叶醇、对-伞花烃、γ-松树烯、香芹酮等。精油是由多种类型的化合物组成的,它们对微生物可能有多个作用位点(靶标),因此精油的抗菌作用机制比较复杂,目前对精油抗菌作用机制的了解还十分粗浅,精油对细菌作用机制的研究要比对真菌深入。由于细胞膜和线粒体膜特殊的脂质结构,精油的疏水性和分子大小使之极易穿过细胞膜或直接作用于膜结构,已有的研究证明精油对细胞结构的作用有:(1)导致细胞壁结构的降解;(2)细胞膜损伤;(3)膜蛋白损伤;(4)导致细胞内成分的外流;(5)细胞质成分凝固;(6)消耗质子流等。对病原菌有强烈抗菌作用的精油一般含有高含量酚类化合物如香芹酚、丁子香酚和百里酚等,这些酚类化合物破坏了细胞质膜、质子动力(proton motive force,PMF)、电子流、成分的主动传输和胞内成分的凝固,从而使精油具有抗菌活性。精油中的单一成分应该有其准确的作用方式,且有明显的构效关系。如乙酸牻牛儿酯较牻牛儿醇具有更好的抗细菌活性。含烯烃基团的非酚类化合物成分的抗菌活性要强于含烷烃基团的化合物,如柠檬烯的抗菌活性要强于对-伞花烃。精油中的活性成分也会影响镶嵌在细胞质膜中的蛋白质活性,它们可以在脂双分子层之间发生累积,阻止膜蛋白与底物的结合;也可能直接与膜蛋白(如ATP酶)中的疏水部分结合,使之变性。一般精油对革兰氏阳性菌的抑制作用要比对革兰氏阴性菌强,可能与革兰氏阴性菌围绕在细胞壁的外的一层隔膜阻碍了疏水性物质的扩散通过这一特性有关。精油及其成分的抗菌作用机制在许多细节上尚未完全阐明,需要进行深入的研究,为精油的应用奠定理论基础。未来一段时间,植物精油的研究领域将主要集中以下几方面:(1)精油对镶嵌在细胞质膜中的蛋白质的作用以及对膜中的磷脂的作用研究;(2)精油成分对细菌细胞的抗菌作用的研究,尤其是对一些模式细菌的作用机理研究;(3)精油成分对真菌的作用机理研究;(4)精油中抗菌活性成分的构效关系(SAR)研究,为新型杀菌剂的设计与合成提供依据,并对抗菌活性做出预测;(5)精油在抗菌活性方面的稳定性和持久性也需要更好地研究。植物精油作为杀(抗)菌剂在植物病害防治、食品和果蔬防腐保鲜,以及作为医用抗菌药物等方面具有广泛的应用前景。我国具有丰富的精油植物资源,在植物精油的理论研究和应用开发方面还比较薄弱,大多停留在精油的提取和室内的活性测定,研究的植物种类相对来说还比较少。今后可以在以下几个方面更多地开展工作:(1)进行精油植物资源的调查和活性筛选;(2)从精油中筛选高活性的抗菌化合物,为新型杀菌剂的合成提供先导结构;(3)产品的开发研究,即将植物精油加工成合适的剂型(如气雾剂、缓释剂、熏蒸剂),有效地发挥其活性。近年来,许多合成杀菌剂被限制使用,甚至禁用,因此有必要开发新的杀菌剂种类。植物精油作为杀菌剂应用在低毒、高效、维护生态平衡等各方面都是比较理想的。随着人们生活质量的提高,对环境、食品的要求也越来越高,特别是在食品、果蔬的保鲜和贮运过程中,植物精油作为抗菌药剂有着诸多的优势,越来越受到人们的青睐。这样必将加快对精油的研究,以及精油类农药的创制及其工业化的进程。 -
报告Inhibiting Effect of Fungicides on Head Smut, Common Corn Smut and Corn Southern Leaf Blight
出版时间:2007玉米丝黑穗病、瘤黑粉病和玉米小斑病是玉米生产中的重要病害,广泛分布各玉米产区。在我国,自20世纪70、80年代采用种植抗病品种和药剂处理种子的方法后,丝黑穗病和瘤黑粉病得到了控制,但是近些年,由于杂交品种的推广,感病品种的大面积种植和频繁交流,病害又从零星发生恢复到大面积发生的情况,对玉米的田间生产造成了严重的威胁。玉米小斑病在夏玉米产区发生为害也逐年加重,因此筛选有效的杀菌剂,对于防控病菌的传播、为害在生产中有着重要的意义。本研究分别采用3种不同的测定方法,进行了杀菌剂对3种病原菌的室内毒力测定,筛选出对病原菌生长具有明显抑制作用的杀菌剂,为构建用于以上3种病害防治的种衣剂奠定了基础。结果如下:采用菌丝生长速率法测定了7种杀菌剂对玉米小斑病菌的室内毒力测定。结果表明,阿米西达、杀毒矾对小斑病菌的抑制作用比较强,EC50分别为5.09μg/ml和1.72μg/ml;采用孢子萌发法测定了11种药剂对瘤黑粉病菌的室内毒力。试验结果表明,福美双和苯醚甲环唑对病原菌孢子的萌发具有明显的抑制作用,EC50分别为1.69μg/ml和3.97μg/ml;采用酶联板—浑浊度法进行10种药剂对玉米丝黑穗病的室内毒力。戊唑醇和福美双的抑制作用最强,EC50分别为0.038μg/ml和0.15μg/ml。根据室内毒力测定的结果,可以选择这几种对病原菌有良好抑制作用的药剂进行相互配伍,扩大其防治谱,构建出新型种衣剂用以3种病害的田间防治。 -
报告Inhibition Activity of Two Kinds of Plants Extracts on Fusarium oxysporan
出版时间:200721世纪是环保的世纪。随着环境保护呼声的日益高涨,高毒农药的大量使用对农业生态及生态环境造成的负面影响已引起世界范围的广泛关注,以高效,低毒农药逐步替代传统的高毒农药是农药发展的必然趋势。植物源农药可在环境中迅速分解,对环境无任何影响,是符合环境保护,农业持续发展方向的[1]。藜芦(Veratrum nigrum L.),问荆(Equisetum arvense)多年生草本植物,据《神农本草经》和《本草纲目》记载,全草入药,具有清热,止咳,祛痰等功效,在中药学上有广泛的用途[2~3]。黄瓜枯萎病(Fusarium oxysporan)又叫萎蔫病,属世界性病害,在黄瓜的整个生长期都可发病,轻者减产10%~20%,重者达30%以上,是保护地和黄瓜生产的重要病害之一[4]。本实验就问荆和藜芦的甲醇提取物对黄瓜枯萎病的病原菌抑制作用进行了室内测定,旨在为开发出一种经济、安全、有效的新型杀菌剂提供理论依据。1.1.1 供试样品 试验所用问荆、藜芦采自山西省庞泉沟自然保护区,将采集的植物材料洗净后在室内阴干(约25℃),放入恒温箱内(40~45℃)烘干,磨碎,过60目筛,备用。1.1.2 供试菌种 黄瓜枯萎病菌,由山西农业大学农学院植物病理实验室提供。1.2.1 问荆、藜芦提取物的制备 分别准确称取问荆、藜芦全株干粉50g,装入500ml小烧杯内,加入干粉5倍量的有机溶剂甲醇,室温下(30±2)℃浸泡3~5天后,过滤并浓缩至稠膏状,称取一定的量,并依次配成实验所需的浓度。1.2.2 抑菌活性测定 生长速率测定法[5],用打孔器取6mm菌落边缘生长旺盛的菌种,放在加药的PDA平板上培养,以培养基内加等量无菌水作对照,每次重复3次,置25℃下培养。用十字交叉法测每个菌落的直径,以其平均值代表菌落的直径,以下式求出抑制菌丝生长率:抑制菌丝生长率(%)=(对照菌落直径-处理菌落直径)/(对照菌落直径-0.6)×100%将问荆、藜芦甲醇提取物配制成浓度为2mg/kg的溶液进行生物活性测定(所有生物活性测定对照均为1%吐温80溶液)。由表1可以看出,两种植物的甲醇提取物对黄瓜枯萎病的病原菌均有明显的抑制作用,问荆的抑制率达到57.8%,藜芦为59.1%。同时与对照相比,处理的菌丝在培养皿中出现消减,变粗等现象。植物提取物菌落直径(mm)与抑制率(%)ColonyRadiusandInhabitingrate72h抑制率Inhabitingrate96h抑制率Inhabitingrate120h抑制率Inhabitingrate问荆Equisetumarvense2.4756.503.6057.804.2754.00CK4.90—7.70—8.80—藜芦VeratrumnigrumL.1.9859.102.8154.003.8151.00CK3.82—5.4—7.15—表1 问荆、藜芦甲醇提取物对黄瓜枯萎病菌菌丝生长的抑制作用Table 1 Inhabiting of the extracts of Equisetum arvense and Veratrum nigrum L.seeds against Fusarium oxysporum由表1可以看出问荆、藜芦甲醇提取物对病原菌都有明显的抑制作用,为了进一步确定其生物活性,将两种植物甲醇提取物稀释成5个不同浓度(4mg/kg、2mg/kg、1mg/kg、0.5mg/kg、0.25mg/kg),对黄瓜枯萎病的病原菌进行测定,分别求出毒力回归方程及抑制中浓度(EC50),结果见表2、表3。两种植物提取物对黄瓜枯萎病菌的抑制作用都是随着浓度的增大,抑菌活性逐渐增强。且浓度为4mg/kg时问荆和藜芦的抑制率分别达到74.0%和79.2%,具有很强的抑菌作用。同时,随着时间的推移,抑菌效果逐渐降低。植物提取物浓度(mg/kg)Concentration菌落直径(mm)与抑制率(%)ColonyRadiusandInhabitingrate72h抑制率Inhabitingrate96h抑制率Inhabitingrate120h抑制率Inhabitingrate问荆Equisetumarvense藜芦VeratrumnigrumL.4.0001.0274.001.9572.202.6570.12.0001.6257.702.9857.103.8056.81.0002.1244.203.8045.104.8344.90.5002.5732.004.7031.205.6335.70.2502.8324.904.8529.706.5525.1CK3.75—6.87—8.72—4.0001.7279.201.8873.502.4769.702.0001.9059.702.7555.503.4553.901.0002.3246.603.3543.104.3539.300.5002.4343.203.6037.904.7233.300.2502.6037.903.9530.605.0827.50CK3.82—5.43—6.78—表2 不同浓度问荆、藜芦甲醇提取物对枯萎病菌菌丝生长的抑制作用Table 2 Inhabiting of the different concentration of the extracts of Equisetum arvense and Veratrum nigrum L.seeds against Fusarium oxysporan处理Treatment毒力方程RegressiveequationEC??50相关系数r问荆EquisetumarvenseY=1.6167+1.0975X1.2100.9918藜芦VeratrumnigrumL.Y=2.0920+0.9915X0.8750.9644表3 问荆、藜芦甲醇提取物对黄瓜枯萎病菌的毒力Table 3 Virulence of the extracts of Equisetum arvense and Veratrum nigrum L.seeds against Fusarium oxysporan抑菌剂主要是通过抑制微生物细胞膜的膜透性或某些酶作用从而抑制代谢过程发挥作用的。具体来说,是抑制新陈代谢中某些酶或蛋白质的合成或活性发挥,或者抑制核酸的合成,也有的是通过改变细胞透性,如干扰细胞壁的组成物质合成等,也有许多抑菌剂则是作为代谢拮抗物影响代谢的进行而发挥抑菌作用的,一般说来抑菌剂的分子结构特征与生物膜脂分子结构特征愈相似,则愈易进入菌体从而更易发挥抑菌作用[6~7]。许多植物组织具杀菌或抑菌作用的可挥发性物质,如单萜、倍半萜、醛类、酯类、酸类、醇类和一些芳香类物质。它们几种或多种共同作用使得植物组织具有较强抵御病菌侵入能力[8]。本实验研究表明问荆、藜芦甲醇提取物对黄瓜枯萎病菌确实有较好的抑制作用,其抑制中浓度EC50分别为1.21mg/ml,0.857mg/ml。从保护环境的角度出发,问荆、藜芦作为一种生物农药,具有良好的开发前景和应用价值。至于问荆、藜芦粗提物对其他病菌的活性,及其对病原菌的作用方式和作用机制均有待于进一步的探讨。 -
报告枯草芽孢杆菌C27对番茄采后灰霉病的防效初探
出版时间:2007番茄被认为是蔬菜中的一种重要的健康食品。它含有丰富的营养,不仅含有丰富的纤维素,而且不含胆固醇,脂肪的含量也较低。近来培育的鲜食品种之一——樱桃番茄,兼有水果和蔬菜的特点,尤其受到人们的青睐。其风味独特,果汁富含甘汞,对肝病有良好的治疗效果,并有利尿、保肾等功能;果皮茸毛能分泌路丁,可降血压、预防动脉硬化和脑溢血,还有杀菌、美容、解毒等作用。由于自身的生物特性等原因,番茄果实在果实采前,采收期以及在果实采后的贮存和运输过程中容易受到多种病原真菌的侵染,从而导致采后病害的发生。其中灰霉病(Botrytis cinerea)是采后的主要病害,常在贮藏期以及货架期引起果实腐烂,造成较大的经济损失。目前番茄采后病害仍主要采用化学杀菌剂来防治,如使用多菌灵或扑海因浸泡果实,速克灵或农灵利喷洒果实等。化学药剂控制采后病害有良好效果;但是,长期使用化学农药导致病原菌产生抗药性而降低防效;同时,农药在果实上的残留量增加而威胁人类健康,并造成环境污染。生物防治作为一种更加安全有效的防治果实采后病害的新技术已引起人们的广泛关注,并成为研究热点。枯草芽孢杆菌C27(Bacillus subtilis strain C27)是由中国农业大学植物病理学系植物细菌及病害生物防治实验室分离得到的一株生防细菌。前期研究发现,其对番茄苗期和成株期灰霉病有良好的防治效果。本研究探索了C27菌株用于采后番茄果实灰霉病的防治。结果表明,在离体条件下,C27代谢液能明显抑制病原菌Botrytis cinerea的孢子萌发和菌丝生长,在25°C和2°C下对番茄果实灰霉病均有明显的防治效果。与不刺伤和刺伤接种无菌水的对照相比,C27处理在25°C和2°C下均能提高番茄果实内多酚氧化酶(PPO)、过氧化物酶(POD)的活性以及增加果实的总酚含量(TPC)。C27菌株对番茄果实灰霉病具有明显的防治效果,其防效在于对病原菌的直接抑制作用以及对果实抗病防御反应的诱导作用。 -
报告绿色木霉Tr9701人工发酵培养条件的研究
出版时间:2007为了减少化学杀菌剂对环境的污染和在农产品中的残留,对环境友好的生防微生物制剂受到普遍重视。在已经研究的生防菌中,木霉属下的若干种因适应能力强、抗病谱广、拮抗机制多样化而被广泛用于防治植物病害。研究发现木霉对病原菌的作用机制是多种多样的,主要包括抗菌、溶解、竞争、重寄生等,目前还发现木霉制剂除具有直接抑菌功能外,还具有一定的诱导作物产生抗性的作用,这对提高木霉防病的持效性和稳定性具有重要意义。我们从土壤中筛选分离出一株具有很强生长势的木霉,经鉴定为绿色木霉Trichoderma viride,通过体外拮抗试验,证明该菌具有极明显的竞争优势,能快速地占据生长空间、获取营养,对灰葡萄孢霉、立枯丝核菌、瓜果腐霉、茄链格孢等均有强烈的抑制效应,盆栽接种和温室防治试验试验表明对立枯丝核菌所致茄子立枯病和灰葡萄孢霉所致番茄灰霉病均具有明显的防治效果。因此,有可能发展成为一种纯生物的植物病害防治剂。作为一类重要的自然资源,木霉已引起国内外研究者的广泛关注。因此,木霉的培养及发酵条件是工业化大批量生产木霉菌制剂的前提。本文主要对我们筛选出的生防有效菌绿色木霉的放大发酵培养条件进行了研究,其结果对于绿色木霉和多功能生物制剂的工业化生产具有一定的指导意义。绿色木霉Tr9701(Trichoderma viride),由天津植保所病害室筛选、鉴定、保存菌株。1.2.1 不同培养基与绿色木霉生长和孢子形成、萌发的关系 将绿色木霉菌丝块(直径5mm)分别置于MA培养基、小麦粉培养基、豆粉浸出液培养基、PDA培养基、PSA培养基、土壤浸液琼脂培养基、水琼脂培养基、CA培养基等上,在25℃下培养,每处理重复4皿,24h、48h、72h、96h、7天后测量菌落直径,观察菌落生长和孢子着生情况。将木霉菌孢子在1%葡萄糖营养液、1%蔗糖营养液、10%土壤浸出液和蒸馏水中,25℃培养,0h、4h、6h、24h后调查孢子萌发情况。1.2.2 温度与绿色木霉菌丝生长及孢子形成的关系 将菌块移入PSA平板培养基上(定量为12ml),置于10~35℃共6个温度梯度内培养,分别于培养24h、48h、72h、96h、7天后测量菌落直径,比较不同温度下菌丝生长差异,并观察各处理中产孢情况。同时将试管斜面上培养4天的木霉菌分别放入温度为35℃、45℃、55℃、65℃的水浴锅内,每温度放4个试管,分别在5min、10min、15min、20min各取1管,在无菌条件下将菌丝挑入PSA平板上,于25℃温箱内培养,观察木霉菌生长情况,明确持续高温对绿色木霉菌丝伸长、孢子着生的影响。1.2.3 pH值与绿色木霉菌丝生长及孢子形成的关系 将灭菌后的PSA培养基,用HCl和NaOH调节其pH值分别为1、2、3、4、6、7、8、9、10、11、12、13,在不同pH值培养基上接种菌块,25℃恒温培养,24h、48h、72h、96h、7天后观察pH值对绿色木霉菌丝伸长、孢子着生的影响。1.3.1 固体发酵基质原料的确定及培养基的优化 试验设计的培养基配方由固定成分和附加成分组成,固定成分以小麦全麦为主,附加部分黄豆粉、糖类和酵母浸膏(具体见表7)。利用设计的配方培养绿色木霉(接种浓度5×106个孢子/ml,基质:菌液=10:1),观察不同配方培养下绿色木霉菌丝和产孢量的情况,确定利于绿色木霉培养的固体发酵基质配方。1.3.2 固体发酵基质中含水量的确定 由筛选获得的固体发酵基质配方中,加入不同比例的水分。含水量试验设计为麦粒:水比例1:0.6、1:0.8、1:1、1:1.2、1:1.4,利用设计的不同含水量配方培养绿色木霉(接种浓度5×106个孢子/ml,基质:菌液=10:1),观察不同含水量下培养绿色木霉菌丝和产孢量的情况,确定利于绿色木霉培养的固体基质中含水量。1.3.3 培养时间对绿色木霉产孢的影响 以筛选获得的固体基质配方作为木霉菌发酵基质培养绿色木霉(接种浓度5×106个孢子/ml,基质:菌液=10:1),观察发酵过程中木霉菌在培养基质中的种群密度变化,定时取样,以血球计数板计数培养物中绿色木霉孢子着生量。1.3.4 利用食用菌废料的固体发酵基质原料的确定及添加成分、比例的优化 首先通过可行性试验明确食用菌废料是否能够提供木霉菌繁殖的基本营养。配方筛选试验设计的培养基配方由固定成分和随机成分组成,固定成分以食用菌废弃培养料(自然风干)为主,附加部分麦麸和无机营养元素;随机成分有酱油渣、玉米芯、黄豆渣、锯木屑、稻杆等(自然风干)废弃物。以食用菌废料、麦麸、无机盐为固定成分分别与其他废弃物按照一定的比例称量350g,料:水为1:1,放在广口玻璃瓶中,灭菌后接种木霉孢子悬浮液(接种浓度5×106个孢子/ml,35ml/瓶),设4次重复,25℃恒温培养,6天后调查结果。用不同培养基25℃培养绿色木霉,生长速度测定结果见表1。由结果可知,绿色木霉菌在供试的几种培养基上均能生长。从生长速度上看,以小麦粉和豆粉浸出液培养基上生长速度最快,是其生长的最适培养基,菌丝培养72h即长满全皿,且菌丝浓密;PDA、PSA、CA培养基相对次之,三者之间生长速度无明显差异;绿色木霉在水琼脂培养基上7天可以长满全皿,但菌落极为稀疏;以MA培养基、土壤浸出液培养基上生长速度最慢,25℃培养7天菌落直径分别为26.00mm和26.25mm。培养基菌落直径(mm)24h48h72h96h7天MA培养基5.258.1310.5013.7526.00小麦粉培养基14.2558.50满豆粉浸出液15.2550.50满PDA10.5041.7579.25满PSA11.0037.7568.50满土壤浸出液5.007.3811.3815.5026.25水琼脂5.5022.5040.2557.50满CA培养基13.0041.0068.75满表1 绿色木霉不同营养条件下菌落生长速度用不同培养基培养观察其孢子着生情况(结果见表2)。由结果可知,该菌在几种培养基上均能产生孢子,从孢子形成的速度和数量上看,以小麦粉和PDA培养基孢子生成的速度最快,产生的孢子数量最多;其次是豆粉浸出液、PSA和CA培养基;以MA培养基、土壤浸出液和水琼脂3种培养基上孢子生成速度最慢,产生量最低。培养基孢子分布直径(mm)24h48h72h96h7天附注MA培养基005.885.886.00+小麦粉培养基0034.25满++++豆粉浸出液0022.2561.00满+++PDA014.6330.25满+++PSA07.0023.7565.00满+++土壤浸出液00008.5+水琼脂0000满+CA培养基07.2519.0061.00满++表2 绿色木霉不同营养条件下培养孢子着生情况由绿色木霉分生孢子在不同营养液中萌发试验可知(结果见表3),其分生孢子在几种营养液中均可萌发,但以1%葡萄糖溶液中萌发效果最好,24h萌发率为30%,48h萌发率为95.5%;10%土壤浸出液中萌发效果最差,24h萌发率为1.5%,48h萌发率为45%;其他几种液体中孢子萌发率24h为4.00%~5.67%之间,48h为76.0%~78.2%。营养液孢子萌发率(%)0h4h6h24h48h1%葡萄糖00030.0095.51%蔗糖0004.0076.010%土壤浸出液0001.5045.0蒸馏水0005.6778.2表3 绿色木霉不同营养液中孢子萌发情况绿色木霉于不同温度下培养,测量其生长速度结果见表4。由结果可知,绿色木霉在10~35℃均能生长,25℃时72h内就能长满培养皿,20℃、30℃时需要96h,15℃时则需要7天,10℃、35℃时第7天仍未长满全皿。20~30℃为绿色木霉的生长适温,25℃为生长最适温度。培养温度(℃)菌落直径(mm)24h48h72h96h7天106.256.317.759.6338.35158.7510.0627.1344.50满2013.5045.3879.83满2519.6358.50满3018.8855.1377.67满3511.3112.2512.5013.7516.5表4 绿色木霉不同温度下菌落生长速度将绿色木霉于不同温度下培养,观察其孢子着生情况、测量其孢子蔓延速度,结果见表5。从结果显示,绿色木霉在15~30℃均能形成分生孢子,其中适宜适温为20~30℃,温度在20℃以下和30℃以上能产生分生孢子但速度减慢,如25℃时96h内产生的分生孢子就能布满培养皿,20℃、30℃时需要7天,15℃时第7天分生孢子仍未布满全皿。因此,25℃为绿色木霉的分生孢子形成的最适温度。培养温度(℃)孢子分布直径(mm)24h48h72h96h7天100000015000066.50200017.7576.5满2506.543.00满300047.2584.5满3500000表5 绿色木霉不同温度下孢子着生情况绿色木霉在不同pH条件下培养,结果见表6。由结果可明显看出,pH值在5~9环境下培养,绿色木霉可以生长,其中pH在5.5~6间生长最适,pH值在8以上生长较为缓慢,由此可见绿色木霉喜好在中等偏酸性条件下生长。绿色木霉孢子着生也表现相似规律,pH值在5~8环境下孢子均可着生,以pH在5.5~6间最适。pH菌落直径(mm)孢子分布直径(mm)24h48h72h7天24h48h72h7天100000000200000000300000000400000000512.0036.0063.38满0015.560.05.52163.38满0033.5满621.6366.38满06.242.0满79.5030.5054.00满0028.2满807.7515.5045.75005.549.25907.008.0022.0000001000000000110000000012000000001300000000表6 pH值对生防木霉菌菌丝伸长、孢子着生的影响不同固体发酵基质原料培养绿色木霉效果见表7。由结果可以看出,在以小麦粒为主的固定成分中加入糖类和酵母浸膏,菌丝量和产孢量最高,如果在发酵过程多次搅拌,可保证整个基质内、外表充满黄绿色孢子。在加入其他成分的配方中菌丝、产孢量均不及前者多,因此通过试验获得的绿色木霉固体发酵基质原料配方为:小麦粒+葡萄糖+酵母浸膏。配方菌丝生长量孢子产生量说明全麦粉+黄豆粉+葡萄糖+酵母浸膏++仅表面分布黄绿色孢子通气性较差全麦粉+葡萄糖+酵母浸膏+仅表面分布黄绿色孢子通气性较差全麦粉+黄豆粉++仅表面分布黄绿色孢子通气性较差小麦粒+黄豆粉+葡萄糖+酵母浸膏++麦粒表面密生黄绿孢子麦粒和豆粉附着性稍差小麦粒+葡萄糖+酵母浸膏+++麦粒表面密生黄绿孢子适宜木霉菌生长小麦粒+黄豆粉++麦粒表面密生黄绿孢子麦粒、豆粉附着性稍差表7 绿色木霉孢子发酵配方筛选试验将固体发酵基质中加入不同比例水培养绿色木霉效果见表8。由结果可以看出,在以小麦粒为主的固定成分中加入不同水量,其对绿色木霉的菌丝量和产孢量影响较大,以固麦粒和水比例为1:0.8~1:1.0的菌丝、产孢量最多,如果在发酵过程多次搅拌,可保证整个基质内、外表充满黄绿色孢子。处理含水比例菌丝生长量孢子产生量说明麦粒:水1∶0.6++菌丝着生处生长黄绿色孢子含水量过低菌丝少麦粒:水1∶0.8+++整个料体着生黄绿色孢子适宜木霉菌生长麦粒:水1∶1+++整个料体着生黄绿色孢子适宜木霉菌生长麦粒:水1∶1.2++孢子主要在上半层分布基料下层含水量较高麦粒:水1∶1.4+孢子着生较少含水量过高表8 绿色木霉固体发酵基质中含水量试验以筛选获得的固体发酵基质配方作为木霉菌发酵基质培养绿色木霉,发酵过程中木霉菌在培养基质中的种群密度变化结果见表9,接种48h后,内部有菌落产生,第3~4天,整个基质全部被白色菌丝覆盖,随后,料体表面有黄绿色孢子大量产生,随着时间的推移,绿色木霉的孢子量增长迅速,到第6天培养料中孢子量达332.4×106个/g,以后孢子量增长缓慢。因此为了缩短发酵时间,降低发酵成本,发酵6天就能达到预期的要求。重复孢子密度计数(×106个孢子/g)2天3天4天6天8天平均8.3351.798.9332.4357.4表9 不同时期绿色木霉孢子种群密度变化为进一步降低生产成本,本试验设计以食用菌废弃培养料为主,附加部分麦麸和无机营养元素;随机成分有5种废弃物。配方设计及其培养木霉孢子效果见表10。由结果可以看出,在以食用菌废料为主的固定成分中加入黄豆渣,菌丝量和产孢量最高,整个基质外表充满黄绿色孢子,内部由于光照不充足产孢量较少,如果在发酵过程搅拌1~2次,可以促进产孢。在加入其他成分的配方中菌丝、产孢量均不及前者多,因此通过试验获得的最佳配方为:食用菌废料+麦麸+黄豆渣+无机营养元素。配方菌丝生长量孢子产生量食用菌废料+麦麸+无机营养元素+酱油渣++上表面零星分布黄绿色孢子食用菌废料+麦麸+无机营养元素+玉米芯++上表面零星分布黄绿色孢子食用菌废料+麦麸+无机营养元素+黄豆渣+++料体整个表面有黄绿色孢子食用菌废料+麦麸+无机营养元素+锯木屑+几乎没有黄绿色孢子产生食用菌废料+麦麸+无机营养元素+稻杆++上表面零星分布黄绿色孢子表10 木霉菌利用食用菌废料等的发酵配方筛选以筛选获得的食用菌废料培养基作为木霉菌发酵基质培养木霉菌,发酵过程中木霉菌在培养基质中的种群密度变化结果见表11,接种48h后,内部有菌落产生,第3~4天,整个基质全部被白色菌丝覆盖,随后,料体表面有黄绿色孢子大量产生,随着时间的推移,绿色木霉的孢子量增长迅速,到第6天培养料中孢子量达248×106个孢子/g,以后孢子量增长缓慢。因此为了缩短发酵时间,降低发酵成本,发酵6天就能达到预期的要求。重复孢子密度计数(×106个孢子/g)2天3天4天6天8天平均7.153.899.8248.7259.3表11 不同时期绿色木霉孢子种群密度变化迄今为止,利用木霉菌防治植物病害的研究已有近60年的历史,并且研究工作大多集中于木霉菌资源的筛选和作用机理方面,在木霉菌人工发酵方面的报道较少。我们通过对生防木霉菌培养条件的研究,进一步获得了其以麦粒为主及食用菌废料为主的固体发酵技术,可以用于绿色木霉的人工发酵,这将为绿色木霉菌产品的制剂化的生产提供技术支持。 -
报告筛选拮抗性酵母防治哈密瓜细菌性果斑病的研究
出版时间:2007哈密瓜细菌性果斑病(Bacterial Fruit Blotch,BFB)是由Acidovorax avenae subsp.citrullii,(Aac)引起的一种毁灭性的瓜类病害,该病菌已经成为了全球瓜类生产中巨大的威胁。中国至今已有12个省相继有该病的报道。目前,该病因其无免疫品种和特效的化学农药,轮作倒茬存在局限性等原因,有效防治该病仍然是一个难题。近几年已有人报道利用生物防治BFB来改变目前防治现状,但多以生防细菌为主(卢云等,2007;Fessehaie和 Walcott,2004),利用拮抗酵母防治瓜类细菌性果斑病国内外未见有报道。2006~2007年,本实验组从湖北武汉、新疆石河子、河南信阳等地采集不同植物叶片、土壤样品进行了酵母菌的分离,获得了463菌株。通过含菌平板测定拮抗性,表明有29个酵母菌菌株对Aac有拮抗作用,占总分离酵母菌株的6.3%,抑菌圈半径大于5mm的有13个。在温室盆栽试验中,将其中的13个酵母菌菌株的菌体悬浮液(1.2×108菌体/ml)分别喷雾接种于哈密瓜苗四叶期的植株上,24h后接种Aac菌体悬浮液(1.0×108cfu/ml),处理后的瓜苗放入温棚内,棚内温度为(32±2)℃,相对湿度大于90%。接种5天后调查各处理哈密瓜苗的发病情况。试验结果表明:菌株Y06109、Y07039和Y0709在哈密瓜子叶或第一片真叶上对BFB具有显著的防治效果。3株酵母菌处理的哈密瓜子叶发病率分别为33%、33%和76%,对照为96%,防效分别为65%、65%和21%。第一真叶发病率分别为14%、17%和10%,对照为96%,防效分别为80%、84%和90%。这些研究结果表明,拮抗酵母的一些种类或菌株对BFB具有一定的生防潜力。对于筛选出的具有抑菌作用的酵母菌株,将进一步测定其田间防病效果,并对其显著防效的拮抗酵母进行种类鉴定。 -
报告盾壳霉在土壤中随水分进行的扩散研究
出版时间:2007重寄生菌盾壳霉(Coniothyrium minitans)是核盘菌(Sclerotinia sclerotiorum)的一种重要生防菌。这种生防菌在其自然生境—土壤中寄生致腐核盘菌菌核,从而达到阻断核盘菌侵染循环及防治核盘菌的目的。为了充分挖掘盾壳霉的防病潜力,必须了解盾壳霉在土壤中的扩散规律。在以前的研究中,获得了一株对杀菌剂农利灵表现高度抗性的突变菌株SV-5-2,以之为基础,建立了一种选择性分离盾壳霉的方法(Yang等,2007)。本研究采用选择性分离的方法探讨了盾壳霉在5种不同土壤(黄棕壤、红壤、潮土、黑土、沙子)中的垂直扩散和水平扩散的动态规律。垂直扩散的研究结果表明:盾壳霉的分生孢子可以随水分在5种不同土壤中垂直扩散到20cm深处。盾壳霉的种群数量随深度的增加而呈数量级减少。例如,在40%含水量黄棕壤中扩散24h后,土壤表层(0~2cm)盾壳霉的数量为4.0×107cfu/g干土,而底层盾壳霉的数量为(16~20cm)则为0.6×103cfu/g干土。研究还发现:盾壳霉在沙子中的垂直扩散效果最好。这可能与土壤中的含沙量、黏性和吸附性有关。同时盾壳霉在40%和60%含水量(绝对含水量)的土壤中的垂直扩散没有显著差异(P>0.05)。水平扩散的研究结果也表明:盾壳霉的分生孢子可以随水分在4种不同的土壤(黄棕壤、红壤、潮土、黑土)中水平扩散距离为10cm,在沙子中水平扩散距离为20cm。盾壳霉的种群数量随距离的增加而呈数量级减少。例如,在黄棕壤中,距离接种点0~5cm处盾壳霉的数量为为4.4×106cfu/g干土,在5~10cm距离中下降到1.3×104cfu/g干土,超过10cm距离的土壤中检测不到盾壳霉。盾壳霉在沙子中的水平扩散效果明显好于其他4种土壤(黄棕壤、红壤、潮土、黑土),这可能与土壤中的含沙量、黏性和吸附性有关。盾壳霉能随水分垂直扩散20cm深,水平扩散10cm远,基本覆盖了土壤的耕作层和油菜种植的行间距。这为田间通过浇水使用盾壳霉孢子进行土壤处理来寄生核盘菌菌核,从而防治菌核病提供了理论依据。 -
报告Screening and Appraisal of Antagonistic Organism against Verticillium dahliae*
出版时间:2007由大丽轮枝菌(Verticillium dahliae Kleb)引起的棉花黄萎病是棉花的主要病害。该病于1914年在美国弗吉尼亚州首次发现,以后随着棉种的调运传播到世界各个棉花主产国[1,2]。我国每年棉花黄萎病发病面积达2×106hm2,重病田病株率高达95%以上,造成极大的经济损失。棉花黄萎病的防治已成为世界棉花生产中的难题。国内外在抗病育种、农业措施和化学防治等方面做了大量工作,对控制此病的危害起到重要作用[3,4]。但目前生产上高抗丰产品种少、有效化学药剂匮缺、农药残留和抗药性问题突出。由于生物防治能克服上述弊病,被认为是一种有效且具有发展潜力的重要防治方法,而获得高效拮抗菌是生物防治的基础。关于棉花黄萎病拮抗菌的筛选,国内外已做了不少研究工作。有报道指出,芽孢菌、荧光假单孢菌、葡柄霉、链霉菌、黄色蠕形菌对大丽轮枝菌都有拮抗作用;Bacillus和Pseudomonas属的某些细菌能有效抑制大丽轮枝菌的生长和使部分分生孢子死亡;木素木霉(Trichoderma ligmerum)的某些菌系有明显的防病增产作用;植物内生菌及根际土壤细菌诱导棉花对大丽轮枝菌抗性[5~9]。由于棉花黄萎病菌存在生理分化现象,不同地区的温度、湿度、光照、植被等生态条件有异,因而不同地区筛选出的棉花黄萎病拮抗菌菌种的适应性和对棉花黄萎病菌的拮抗作用存在显著差异[10]。安徽目前尚未见关于棉花黄萎病拮抗菌筛选鉴定的研究鲜有报道[11,12]。因此,有必要在安徽地区开展对棉花黄萎病的生防研究。作者从安徽主要棉区广泛采集棉花根围土样,经室内分离获得细菌菌株120株,真菌菌株97株,经拮抗活性筛选,发现ZXC-9等7个菌株对棉花黄萎病菌具有较好的拮抗作用,可望应用于棉花黄萎病的生防。现将研究结果报道如下。供试病原菌棉花黄萎病菌(Verticillium dahliae Kleb) 菌株HF和WW3,供试生防菌枯草芽孢杆菌(Bacillus subtilis)菌株BS,均由安徽农业大学植物病原真菌研究室提供。真菌分离采用查氏酵母浸膏培养基和PDA培养基,细菌分离采用营养琼脂培养基(NA)和NB培养液,配制方法均参照文献[13]。1.3.1 土样的采集 在棉花黄萎病害发病田块采样,采用五点取样方法。取健康的棉花植株根土,取样时拨开土表(约5cm深),每样取50g(同地区取样至少相距100m以上),晾干后4℃保存待用。1.3.2 微生物的分离 取10g的土样放在量筒中,加入内装100ml无菌水的三角瓶中,于摇床上振荡2h。取1ml的悬浮液,加入9ml的灭菌水中,依次稀释到10-2、10-3、10-4、10-5、10-6,各浓度取上悬浊液0.1ml涂于选择性培养基平板上,每浓度设3个重复。置于28℃±1℃恒温箱中培养24h后进行细菌检查,真菌和放线菌培养72h后调查,分别记录其菌落数。1.4.1 真菌对棉花黄萎病菌的拮抗作用测定 将分离菌与棉花黄萎病菌HF菌株对峙接种于PDA平板上(φ=9cm),菌丝块直径0.7cm,两菌块接种点相距4cm,并以单独接种棉花黄萎病菌的处理为CK,每处理重复3次,25℃恒温培养,连续7天观察菌落的相互影响,并在两菌株接种点连线上测定接种点到菌落前缘的距离,按下式计算抑菌率。抑菌率(%)=(对照菌落直径-处理菌落直径)/对照菌落直径×1001.4.2 棉花黄萎病菌拮抗真菌的鉴定 在PDA平板上对拮抗真菌菌株进行培养,观察、记载菌落、菌丝、产孢结构和孢子形态特征,参照真菌字典[14],对菌株种类做出鉴定。1.5.1 棉花黄萎病菌拮抗细菌的初步筛选 先将培养48h的病原菌(HF菌株)打成直径0.7cm的菌碟,移植在平板中央,同时将分离到的细菌培养24h后,接种在平板周围,每皿6点,待测菌与病原菌距离为3.5cm,置于28℃培养48h后,检查抑菌圈有无并测量其大小。抑菌带(D-D0)=细菌抑菌圈直径-细菌菌落直径拮抗细菌的分级[15]:0级(-):D-D0=0(无透明带产生),无拮抗性;1级(+):0mm<D-D0<3.9mm,弱拮抗性;2级(++):4mm<D-D0<7.9mm,中等拮抗性;3 级(+++):D-D0>8.0mm,强拮抗性。1.5.2 拮抗细菌对棉花黄萎病菌的拮抗作用测定1.5.2.1 划线法测定结果 初步筛选出的4种细菌菌株XZY-6、XSZ-5、XXX-4和XGC2-9也通过连续10代转移培养,再进行复筛试验。复筛试验并以生防菌枯草芽孢杆菌BS菌株作为防效对照。具体操作方法如下:用接种环取1环分离出的细菌在含有PDA培养基的培养皿中间划一直线,在距直线两侧2cm处分别接种直径为0.7cm的病原菌菌碟,并以单独接种棉花黄萎病病原菌的处理为对照1(CK1),以接种枯草芽孢杆菌BS菌株的处理为对照2(CK2)。每处理重复3次,在25℃下恒温培养,测定其抑菌效果。测量病原菌向拮抗菌方向生长的长度和对照中病原菌菌落的半径(cm),以R值表示拮抗作用的大小[16,17]。1.5.2.2 杯碟法测定结果 在划线法后选取4种细菌菌株XZY-6、XSZ-5、XXX-4和XGC2-9中抑制效果最为明显的XSZ-5菌株进行杯碟法实验。将活化好的XSZ-5菌株用3ml无菌水洗下,接入100ml的NB培养液中,并置于28℃,转速为100r/min的恒温摇床振荡培养。48h后得到菌量为1010~ 1011cfu/ml的活菌液。然后分别向18ml的PDA培养基中加入2000μl、500μl、100μl和10μl的BS活菌液,混合均匀后倒平板,并在平板上接种直径为0.7cm的病原菌菌碟,同时设置对照(即不加入XSZ-5菌的活菌液),各处理重复3次,25℃下恒温培养7天后测量菌落直径,计算抑菌率[16,17]。对自安徽各主要棉区采集土样进行室内分离,共获得真菌菌株97株。以棉花黄萎病菌HF、WW3为目标菌株,采用平皿对峙试验测定各真菌菌株对棉花黄萎病菌的拮抗作用,结果见表1。从表1可见,通过连续7天的测量观察,发现其中有3种菌株ZXC-9、ZZY-3和ZGC1-1对棉花黄萎病菌具有很明显的抑制效果,7天后抑制率分别达到了69.39%、67.52%和74.30%。拮抗真菌菌株Isolatesofantagonisticfungi项目Item不同处理时间的测定结果Testresultsatdifferenttimeaftertreatment3天4天5天6天7天ZXC-12-1菌落直径(cm)2.012.462.632.853.01抑制率(%)—6.8119.5322.6629.59ZXC-9菌落直径(cm)0.971.131.231.311.31抑制率(%)46.9957.1962.3964.4969.39ZGC1-1菌落直径(cm)0.820.951.001.031.10抑制率(%)55.1964.0269.4272.0974.30ZXC-12-2菌落直径(cm)1.721.932.022.092.18抑制率(%)6.0126.5237.9543.2848.99ZXC-2菌落直径(cm)1.311.721.922.002.12抑制率(%)28.4934.8741.2445.7950.28ZXC-15菌落直径(cm)2.332.672.863.073.08抑制率(%)——12.4716.5528.01ZHS-1菌落直径(cm)2.242.382.762.802.89抑制率(%)—9.8115.6124.0932.54ZXC-14菌落直径(cm)1.321.781.982.072.19抑制率(%)27.6632.5239.5443.7848.89ZZY-3菌落直径(cm)0.961.211.351.361.39抑制率(%)47.5454.1758.7263.1467.52CK菌落直径(cm)1.832.643.273.694.28表1 拮抗真菌菌株对棉花黄萎病菌的抑制作用测定Table 1 Inhibition of isolates of antagonistic fungi against V. dahliae2.2.1 棉花黄萎病菌拮抗细菌初筛结果 经过营养琼脂培养基(NA)分离,筛选得到12株拮抗细菌菌株。抑菌圈试验结果(表2)表明,这12株拮抗细菌菌株对棉花黄萎病菌HF菌株和WW3菌株都有一定的拮抗性,其中XZY-6、XSZ-5、XXX-4和XGC2-9这4个菌株对棉花黄萎病菌的拮抗作用较强,对两种目标菌株的作用效果相似,无明显差异。拮抗细菌菌株Strainsofantagonisticbacteria棉花黄萎病菌菌株IsolatesofV.dahliaeHFWW3拮抗细菌菌株Strainsofantagonisticbacteria棉花黄萎病菌菌株IsolatesofV.dahliaeHFWW3XZY-1--XXX-9++++XZY-6+++++XXX-17+++XSZ-5+++++XZY-5++++XSZ-2+++XXC-3-+表2 12个细菌菌株对棉花黄萎病菌的抑菌试验结果Table 2 Inhibitory tests of 12 strains of bacteria against V. dahliae拮抗细菌菌株Strainsofantagonisticbacteria棉花黄萎病菌菌株IsolatesofV.dahliaeHFWW3拮抗细菌菌株Strainsofantagonisticbacteria棉花黄萎病菌菌株IsolatesofV.dahliaeHFWW3XXX-1+++XXC-5--XZY-8++++XXC-9++XZY-13++XXX-4++++++XGC2-9++++++续表22.2.2 拮抗细菌对棉花黄萎病菌的拮抗作用2.2.2.1 划线法测定结果 测定结果(表3)表明,处理5天后,病原菌菌株向各拮抗细菌方向生长缓慢,各菌株均有明显的抑菌带出现。6天后,各拮抗菌对病原菌菌株的抑制作用R值分别为0.571、0.571、0.563、0.571,均表现出较好的抑制效果,而对照生防菌枯草芽孢杆菌BS菌株R值则为0.579。各拮抗菌对病原菌菌株的抑制效果与生防菌枯草芽孢杆菌BS菌株的防治效果相比无显著差异。拮抗细菌菌株Strainsofantagonisticbacteria项目Item不同处理时间的测定结果Testresultsatdifferenttimeaftertreatment2天3天4天5天6天XZY-6处理0.650.680.720.750.75R值0.7360.7010.6610.6360.595XSZ-5处理0.640.670.700.740.74R值0.7270.6910.6420.6270.587XXX-4处理0.660.710.740.750.76R值0.7500.7320.6790.6360.603XGC2-9处理0.650.690.710.740.75R值0.7390.7110.6510.6270.595CK2处理0.630.670.710.720.73R值0.7160.6910.6510.6100.579CKI对照0.880.971.091.181.26表3 拮抗细菌对棉花黄萎病的抑制作用(划线法)Table 3 Inhibition of 4 strains of antagonistic bacteria against V. dahliae by drawing-line method2.2.2.2 杯碟法测定结果 测定结果(表4)表明,XSZ-5菌株培养液对各菌株均有较好的抑制效果,抑制率均在70%左右。各供试菌株在含有XSZ-5活菌液的PDA培养基上均生长极为缓慢,表现出明显的拮抗作用。根据统计软件进行方差分析及差异显著性比较,XSZ-5菌株在不同菌量处理间菌丝生长差异显著,抑制率随菌量的增加而提高。WW3菌株在含有2000μl和10μl的XSZ-5活菌液的处理对菌丝生长的抑制率分别为78.33%和68.44%,且差异不显著。XSZ-5菌株对HF菌株的抑制率高于对WW3的抑制率,但各浓度间差异不显著。处理TreatmentsWW3HF菌落直径Diameter(cm)抑制率Inhibitionrate(%)菌落直径Diameter(cm)抑制率Inhibitionrate(%)CK3.33Aa—3.83Aa—2000μl1.27Bb78.331.17Cc84.98500μl1.30Bb77.191.23BCc83.07100μl1.37Bb74.521.47BCb75.4010μl1.53Bb68.441.67Bb69.01表4 不同浓度XSZ-5培养液对黄萎病菌生长的影响Table 4 Inhibitory effects of different concentration of XSZ-5 strain cultural liquid against V. dahliae对以上3种拮抗真菌菌株进行了培养观察。在PDA平板上,ZGC1-1菌落生长呈放射状,浅褐色,孢子生长迅速,覆盖整个平板底部;显微镜下观察发现,菌丝有隔膜,分生孢子梗顶部膨大形成顶囊,顶囊表面生出小梗,自小梗顶端形成具有串珠状的分生孢子(图1);ZZY-3菌落质地为气生菌丝发达,菌丝致密菌落底部有辐射状皱褶条纹,孢子产生多,菌落颜色为黄色,分生孢子梗顶部膨大形成顶囊,顶囊表面生出小梗,自小梗顶端形成串珠状的分生孢子,分生孢子串生;ZXC-9菌落气生菌丝发达,菌丝亦生长致密,产孢多,底部有辐射状皱褶条纹,菌落颜色为深绿色。分生孢子梗顶端不膨大,经多次分枝,产生几轮对称或不对称小梗,小梗顶端产生成串的青色分生孢子,有些孢子梗形如扫帚(图2)。根据以上特征,参照真菌分类手册,将菌株ZGC1-1和ZZY-3初步鉴定为曲霉属真菌(Aspergillus sp.);菌株ZXC-9初步鉴定为青霉属(Penicillium sp.)。图1 两种棉花黄萎病菌拮抗真菌的形态特征Figure 1 Morphology of two species of antagonistic fungi against V. dahliae通过室内平板对峙复筛试验表明,3株真菌菌株ZXC-9、ZZY-3、ZGC1-1和4株细菌菌株XZY-6、XSZ-5、XXX-4、XGC2-9对于棉花黄萎病菌均具有很强的抑制作用。经连续10代的转移培养,3种拮抗真菌菌株对棉花黄萎病菌的抑制效果仍保持稳定,其中以第7天的抑制作用最为明显,抑制率分别为66.58%、68.30%和76.90%。而4种拮抗细菌菌株XZY-6、XSZ-5、XXX-4和XGC2-9,与生防菌枯草芽孢杆菌BS菌株的防治效果相比也无显著差异。处理5天后,病原菌菌株向各拮抗细菌方向生长缓慢,各菌株均有明显的抑菌带出现。杯碟法测定结果表明,其中的XSZ-5菌株培养液对两种病原菌菌株均有较好的抑制效果,抑制率均在70%左右,是筛选出的各拮抗细菌中效果最好的一种。目前生产上对于棉花黄萎病的防治,由于缺乏高抗丰产品种和有效化学药剂,生物防治被认为是一种具有发展潜力的重要防治途径[18]。本研究从安徽主要棉区棉花根围土样中筛选出了对棉花黄萎病菌具有较好拮抗效果拮抗微生物,为研制开发防治棉花黄萎病的新型生防制剂提供了基础和试验依据,对于棉花黄萎病的综合防治以及减少环境污染,减轻棉花黄萎菌的抗药性,促进可持续治理都具有重要意义。关于这些生防菌的鉴定、抗菌活性成分测定、盆钵试验、根际定殖力以及田间试验还需要进一步的试验研究。