首页 <
知识图谱:全部
-
报告Nano-particles’ Effect to the Survival of Bacillus cereus 905 on the Cucumber Phyllosphere
出版时间:2007在自然界,植物、微生物和环境之间的关系是极其复杂的。只有详细了解生防微生物在植物根际或叶围与病原物及其他生物、植物及其分泌物、土壤及各种环境因子之间的相互作用及其变化规律,才能有效地调控无机、有机环境,更好地发挥生防微生物的防病功能[1]。国内外在探索环境因素在植物与微生物互作过程中的影响方面,已经开展了较多工作,包括温度、湿度、降雨、光照等气候条件,土壤理化性质,作物栽培条件等。在纳米技术出现之前,人们很难认识到自然环境中的纳米颗粒物对微生物的影响。近年来,大气等环境中纳米颗粒(超细颗粒物)的生物效应已开始深入研究[2,3],如光催化纳米二氧化钛对很多微生物都具有杀菌作用[4,5]。这样对于暴露在自然条件下的细菌尤其是叶围微生物,适应这种较为苛刻的环境将是细菌生存的一个重要考验。蜡样芽孢杆菌Bacillus cereus 905菌株是本实验室从植物上分离获得的生防细菌,具有促进植物生长,增强农产品品质和防治多种植物病害的功效[6],并已开发应用于农业生产,取得了预期的经济、生态及社会效益。前期研究发现,离体条件下该菌株在纳米颗粒光催化作用的影响下存活率明显降低。二氧化钛表面产生的·OH和其他如H2O2、O·2等活性氧都参与了灭菌作用[7]。鉴于光催化纳米二氧化钛具有广谱的杀菌作用,我们必须考虑到它对于自然界中有益微生物的影响。本研究以已在生产中应用的有益芽孢杆菌(Bacillus cereus 905)为研究对象,分析纳米TiO2作用下,该细菌在黄瓜叶围存活能力的变化,有助于阐明纳米颗粒对植物叶围微生物的影响。分别称取适量的纳米TiO2(P25,Degussa Co.),高压灭菌,保存于暗处。使用前加入无菌磷酸缓冲液(0.1mol/L,pH 7.0),超声波水浴振荡30min使纳米TiO2均一地分散于溶液中。Bacillus cereus 905(GFP),由中国农业大学植病系生防室分离保存并用GFP标记[8]。将B.cereus 905(GFP)接种至含有相应抗生素的LB培养基,30℃160 r/min悬浮振荡培养过夜,1000×g离心收集菌体,用无菌磷酸缓冲液洗涤菌体两次,收获的菌体重新悬浮于磷酸缓冲液中,菌体浓度由平板活菌计数法来确定。所有试验选择在日光温室生长的,4片真叶龄的健康黄瓜植株(Cucumis sativus cv.CAU NO.32)上进行。用B.cereus 905(GFP)菌悬液(108CFU/mL)喷雾接种叶面,或直接将叶面浸润菌悬液3s钟接种。这样的接种程序可以达到107CFU/叶的接种量。接种1h后用美术喷笔(Airbrush,HD-470,台湾)将TiO2悬浮液(0.2mg/mL)均匀喷雾在接种过的叶面上。使用美术喷笔是为了使TiO2以极小的雾粒(平均体积750μm3)覆盖叶围,既不蘸湿叶面也避免了叶围微生物的空间移动[9]。处理后的植株继续在日光温室内培养一定时间后,取样进行原位观察或平板回收。每个处理,随机取5片叶子,每片叶子随机切割6个1cm×1 cm的组织用以原位观察,用激光共聚焦扫描显微镜(Confocal Laser Scanning Microscope,Nikon EZ-C1)迅速扫描叶的上表面,寻找发绿色荧光细菌,操作要求熟练,防止荧光淬灭。每个取样点,每个处理随机取5片叶子,每片叶子置于预装30mL无菌缓冲液(0.1mol/L磷酸缓冲液,0.1%Bacto-Peptone,pH 7.0)的离心管或灭菌袋中,超声波水浴振荡7min,充分洗脱叶围微生物[10]。叶围洗脱液梯度稀释后,涂布至含有相应抗生素的LB平板上,30℃培养1~2天,通过菌落计数估计B.cereus 905的群体数量。对于纳米二氧化钛光催化杀菌作用机制的研究表明,二氧化钛吸收波长≤387.5nm近紫外光的光能,产生·OH,以及H2O2、O2等活性氧,从而起到杀灭B.cereus 905的作用,纳米二氧化钛本身对于B.cereus 905没有暗毒性[7],则实验中同时设一个低水平的光照条件作为参比。由于是利用太阳光作为光源,能穿透玻璃到达植物叶面并被纳米二氧化钛所吸收利用的光波绝大多数为UVA(320~400nm),在日光温室的一角通过设遮阳网来创造低UVA剂量的光照条件。纳米二氧化钛处理后的植株继续在日光温室内培养8h,立即取样进行原位观察或平板回收。8h内低UVA剂量的光照条件和正常日照条件下的平均UVA辐射强度分别为0.2mw/cm2和1.3mw/cm2。图1 纳米二氧化钛对B.cereus 905(GFP)在黄瓜叶围存活能力的影响Figure 1 The impact of nano-TiO2 to the survival of B. cereus 905 on the cucumber phyllosphere如图1所示,两种不同UVA剂量光照8h后,在纳米二氧化钛的影响下,B.cereus 905的残余量分别降低为对照(纳米二氧化钛浓度为零)的52.4%(0.2mw/cm2)和11.6%(1.3mw/cm2)。对照处理B.cereus 905的存活能力保持在106CFU/叶的水平,甚至在低UVA剂量的光照条件下,纳米二氧化钛处理的B.cereus 905的存活能力也能维持与对照同一数量级的水平;而在高UVA剂量的光照条件下,B.cereus 905的存活能力明显下降,甚至发生数量级的变化,群体数量比对照下降了88.4%。原位观察结果也与平板回收的结果保持一致(见图2)。对每个叶片随机切取组织块扫描观察发现,在所有的处理中不论是单个细菌还是细菌聚集体,它们在叶围的存在位置与叶表面的结构特征有关。叶表面对于细菌来说是一个非常不平坦的生活环境。它实际上是掩藏有许多不同结构的区域的集合体,包括腺毛、钩毛、气孔、表皮细胞和纹理等。大多数观察到的细菌位于叶的纹理或腺毛处,也有一部分位于表皮细胞上或气孔附近。在纳米二氧化钛处理的叶面,观察到的细菌数量较少,并且很难观察到单个细菌,大多数细菌以聚集体的形式存在。Monier J-M和 Lindow SE也发现菜豆叶面菌Pseudomonas syringae以单个细胞的存在形式比以聚集体的形式对于环境的干燥胁迫更为敏感[11]。图2 Bacillus cereus 905(GFP)在黄瓜叶围存活情况(原位观察)Figure 2 The survival of Bacillus cereus 905 on the cucumber phyllosphere(Microscopy of Bacteria in Situ)本研究表明,在正常日照情况下,B.cereus 905的存活能力明显下降,群体数量比对照下降了88.4%。无论是原位观察还是传统的平板回收结果说明,受二氧化钛光催化杀菌作用的影响,有益微生物B.cereus 905在黄瓜叶围的存活能力明显降低,这与在离体条件下得到的结论[7]相一致。鉴于光催化纳米二氧化钛广谱的杀菌作用,我们必须考虑到它对于自然界中有益微生物的影响。对纳米颗粒物生物效应的研究,是一个急需研究的领域。空气及植物表面等许多地方都存在许多纳米级颗粒,对于暴露在自然条件下的细菌,适应这种较为苛刻的环境将是细菌生存的一个重要考验。尤其是随着纳米包膜肥料、纳米土壤改良剂、二氧化钛光合作用促进剂等的产业化,以及农业生产中的投入使用,会使越来越多的人们注意到这一问题。目前对于纳米颗粒作为环境因素对植物、微生物影响的研究并不多见,本文探讨了有益微生物在植物表面受纳米颗粒影响而产生的存活能力问题,但如何创造生防微生物的适宜环境,或改进其对环境的适应能力以提高生防制剂效果的稳定性,还需要进一步深入的研究。 -
报告拮抗放线菌B1的初步鉴定及对番茄灰霉病的防效
出版时间:2007番茄灰霉病是由灰葡萄孢(Botrytis cinerea)侵染引起的一种在我国乃至全球分布的重要病害。尤其是保护地番茄,其高湿条件为该病流行创造了有利的发病条件。目前番茄生产由于缺少抗病品种,防治番茄灰霉病仍主要依靠化学防治,多采用速克灵等化学药剂喷雾,但在连续使用的情况下,病菌逐渐产生了抗药性,防效逐年下降。此外,大量使用化学药剂也造成了严重的农药残留问题和环境污染问题。近年来人们通过大量筛选和利用抗灰霉病的有益微生物及其代谢产物,使生物防治日益成为番茄灰霉病控制中的一条重要而有效的途径。作者研究了本实验室筛选的拮抗放线菌B1菌株对番茄灰霉病的生防效应,并对其分类地位进行了初步鉴定,为该菌株的应用与开发提供基础。B1菌株是从北京番茄温室土壤中筛选得到的一株拮抗菌,平板抑菌试验结果表明,它对多种植物病原细菌和真菌有较强的抑制作用,其中对灰葡萄孢的抑制能力最强,抑制率达86.3%。B1代谢产物对番茄灰霉菌的菌丝有扭曲、膨大等致畸效应。室内离体检测表明B1菌株对番茄离体叶片和果实的灰霉病均有较好的防治效果。温室试验证实B1菌株对番茄苗期的灰霉病的防治效果在60%以上。根据B1菌株的形态特征、培养特征、生理生化特性及16S rDNA序列分析结果,将其鉴定为链霉菌属淡紫灰类群(Streptomyces lavendulae)。 -
报告绿色木霉菌Tr9701的抑病机理及其在黄瓜叶片、根部定殖初探
出版时间:2007木霉菌(Trichoderma spp.)广泛存在于土壤及其他基物中,作为生防菌以其生长速度快,产孢量大、作用谱广、作用机制多样、能在植株、土壤中增殖并形成有效群体等诸多优势而备受关注。我们针对蔬菜上常见病害,从土壤中分离、筛选获得对蔬菜病原菌具有较强抑菌活性的绿色木霉菌株Tr9701,通过对其产几丁质酶活性等对其抗病机理进行了初探,同时试验了其在黄瓜叶片、根部的定殖能力,为今后开发可替代某些化学农药的微生物杀菌剂做了基础性工作,现将初步研究结果记述如下。1.1.1 供试菌株 绿色木霉Tr9701(Trichderma viride),由天津市植物保护研究所生防室筛选、鉴定。供试病原菌立枯丝核菌(Rhizoctonia solani)、番茄灰葡萄孢霉(Botrytis cinerea),由天津市植物保护研究所病害室分离、鉴定。1.2.1 绿色木霉菌制剂几丁质酶检测据Harman等的方法[1],在胶体几丁质培养基中培养绿色木霉菌,进行产几丁质酶预试验,然后将绿色木霉菌分生孢子液接种到合成诱导液体培养基中诱发几丁质酶产生,以不加胶体几丁质为阳性对照,在28℃,150r/min振荡培养,连续提取培养液制备几丁质酶粗提液。检测采用还原糖法[2]处理,在试管中加入几丁质酶粗提液、10g/L胶态几丁质各1ml,37℃恒温水浴30min,加入DNS10ml,混匀后沸水浴10min,用水冷却至室温,观察颜色变化,以100℃高温灭活处理15min几丁质酶粗提液为对照,试验重复3次。1.2.2 绿色木霉几丁质酶粗提液对病菌的抑菌活性测定 将黄瓜立枯丝核菌、番茄灰葡萄孢霉菌菌丝块转移到平板上,每平皿接种4块,分布于4角,平皿中心放滤纸片并加入100μl几丁质酶粗提液或阳性对照液,重复3次,空白加入等量无菌水,定期观察抑菌圈大小。1.2.3 绿色木霉菌对立枯丝核菌重寄生作用的显微观察 将灭菌赛璐玢膜置于直径90mm的水琼脂培养皿上,在平板两侧各植入经活化培养的绿色木霉和立枯丝核菌菌丝块,25℃下对峙培养,待菌丝接触后置于光学显微镜下观察。1.2.4 绿色木霉菌在黄瓜叶片和根部的定殖 取菜田表层10cm深处土壤,混腐熟的猪粪和蛭石(按3:1:1比例),过筛后,用150倍甲醛液消毒,边喷边混,喷匀后堆起,盖塑料布闷5天,然后晾晒14天,待残药挥发后铺于苗床待用。同时将冰箱保存的绿色木霉菌活化,转接到小麦粉培养基上,在25℃温度下培养7天,培养基上长满菌丝和孢子后,在组织捣碎机中捣碎、过滤,配成绿色木霉菌孢子悬浮液(5×106个孢子/ml)备用。木霉菌叶面定殖:将培养制成的孢子悬浮液用消过毒的手持喷雾器喷雾,均匀喷至黄瓜叶面正反两面,直到叶面上均匀布满一层细微水珠而不流淌为止。喷雾后1h取第一次样,以后每隔一周取一次样,共4次。每次每处理取的叶片剪成0.5cm见方小片,称量取样叶片加入10倍无菌水中振荡(120r/分)15min。取稀释液0.1ml涂布于木霉选择性培养基上,25℃下培养3~4天,5皿重复,计菌落数。以第一次取样所检测到的菌量为接种量,菌量以cfu/g叶表示。木霉菌根际定殖:将培养制成的孢子悬浮液,均匀浇灌至黄瓜根部,直至黄瓜苗根部土壤全部浸润为止。浇灌后1h取第一次样(地下1~2cm处根围土壤),以后每隔3天取一次样,共4次。检查时,分别称取根围土壤1g,加入无菌水20ml中振荡(120rpm)15min。取稀释液0.1ml涂布于木霉选择性培养基上,25℃下培养3~4天,5皿重复,计菌落数。以第一次取样所检测到的菌量为接种量,菌量以cfu/g叶表示。通过预试验,绿色木霉菌Tr9701在胶体几丁质培养基上生长可以形成显著几丁质酶解透明圈,因此进行了绿色木霉菌几丁质酶的诱导试验。诱导条件下几丁质酶粗酶液加入DNS后变为深棕红色,与阳性对照相比有显著差异,说明绿色木霉菌菌株产生几丁质酶,且经诱导处理的绿色木霉菌几丁质酶产生量明显提高,经检测,在培养第5d时达到最大值。绿色木霉菌Tr9701几丁质酶粗提液对立枯丝核菌、灰葡萄孢霉的抑菌活性在平皿接种后2天内,立枯丝核菌、灰葡萄孢霉菌丝生长迅速,但菌丝接近木霉几丁质酶粗提液接种点周围时,生长缓慢,最后停止,从而形成明显抑菌圈。空白对照无抑菌圈,立枯丝核菌菌丝长满平皿,灰葡萄孢霉菌丝长满平皿并形成大量菌核。试验表明,绿色木霉Tr9701的几丁质酶粗提液对立枯丝核菌、灰葡萄孢霉的抑菌圈直径分别为28mm和15mm,比阳性对照的抑菌圈直径大,其差异达到了显著水平。显微观察显示绿色木霉菌对立枯丝核菌具有较强的寄生能力,绿色木霉菌丝与立枯丝核菌菌丝接触后并列生长或缠绕,有时以钩状结构入侵立枯丝核菌菌丝。在接触后期则观察到被寄生的立枯丝核菌菌丝断裂和消解的现象。2.4.1 绿色木霉菌在黄瓜叶面的定殖 绿色木霉菌在叶面上的定殖动态见表1。由结果可知,绿色木霉菌在叶面环境中由于各种条件的影响,第一周内的菌量比初始菌量降低。此后绿色木霉菌适应了叶面环境,菌量逐渐回升,第14天检测菌量为1.02×104cfu/g叶片。21天后菌量持续下降,尤其是第28天菌量降至0.12×104cfu/g叶片。镜检观察绿色木霉菌Tr9701在叶面喷雾后,主要定殖于叶面气孔周围、腺毛基部及叶面凹陷处。这些位点或是分泌物产生处,或是叶面水分分布较多处,能为绿色木霉菌的生长繁殖提供适宜的条件。同时,这些位点也是其他病原菌的竞争位点,通过绿色木霉菌的人工接种,相比病原菌具有种群数量大,出现早的特点。因此,绿色木霉菌对这些位点的抢先占领,不仅有利于本身的生存,而且使黄瓜叶面受到保护,免于病原菌的侵染。重复调查时间1h3天7天14天21天28天11.241.210.941.150.830.1820.960.950.810.920.660.0831.151.080.860.980.790.1441.371.400.951.030.720.10平均1.181.160.891.020.750.12表1 绿色木霉菌孢子在黄瓜叶片上定殖情况(孢子着生量×104个孢子/g)2.4.2 绿色木霉菌在黄瓜根际的定殖 绿色木霉菌在黄瓜根际土壤中定殖结果见表2。由结果可知,第一周内土壤的菌量比初始菌量降低,可能是在根际土壤环境中,由于各种因素的影响,木霉菌受到一定抑制,此后绿色木霉菌适应了土壤环境,菌量逐渐回升,第14天检测菌量为2.64×104cfu/g叶片。21天后菌量持续下降,尤其是第28天菌量降至0.68×104cfu/g叶片。在调查中发现,绿色木霉菌定殖黄瓜根部能力受水分含量和pH值影响明显,水分偏高或偏低都影响绿色木霉菌菌株在黄瓜根部的定殖,pH偏酸性条件下的定殖量明显高于偏碱性条件下的定殖。重复调查时间1h3天7天14天21天28天12.432.371.852.521.090.6422.692.592.032.731.240.7232.362.321.892.611.080.6542.842.561.942.701.110.71平均2.582.461.922.641.130.68表2 绿色木霉菌孢子在黄瓜根部定殖情况(孢子着生量×104个孢子/g)木霉菌腐生性强,适应性广,生长和繁殖快,可迅速利用营养和占据空间,是当前微生物菌剂控制病害的研究热点[3]。本试验结果表明,我们所筛选的绿色木霉菌Tr9701有较强的产几丁质酶活性,且经诱导处理酶产量明显提高,其酶粗提液经试验对立枯丝核菌、灰葡萄孢霉有显著抑制作用,通过诱导产生的木霉几丁质酶在对于抑制病原菌的生长具有重要意义。经显微观察发现,绿色木霉Tr9701对于立枯丝核菌是通过趋向生长、识别、接触缠绕和穿透,寄生于病原真菌之上,对立枯丝核菌具有较强的寄生能力。此现象证明,当绿色木霉菌遇到立枯丝核菌等病原菌时,受到刺激和诱导,产生溶菌酶,抑制立枯丝核菌等的生长,并可降解菌丝。生防菌在植物表面的定殖能力反映了生防菌在植物表面与病原菌竞争空间和营养的能力。本研究表明,绿色木霉菌可以在黄瓜叶面和根部定殖。据Darah(1991)报道,根圈微生物的分布与沿根的可溶性碳的分布距离有关,微生物量的积累有赖于根分泌物的释放,因此添加一定的营养可以促进绿色木霉Tr9701的定殖。本研究进一步证明,绿色木霉Tr9701产几丁质酶、寄生、定殖能力强,是较好的生防材料。当前由于生防微生物控制植物病害具无污染、价格低廉的优点,具有广阔的应用前景。因此对绿色木霉菌Tr9701的发酵工艺、田间应用范围等有待进一步研究。 -
报告Optimization of Liquid Fermentation Conditions of Bacillus subtilis Xi-55
出版时间:2007枯草芽孢杆菌(Bacillus subtilis)是土壤和植物微生态的优势种群,内生芽孢,抗逆能力强,繁殖速度快,营养要求简单,对农作物安全。作为植物根际有益微生物,通过分泌抗生物质和生长竞争,在防治植物病害方面发挥多种有益作用[1]。剂型以活体芽孢为主,田间施用可以较长时间的发挥抑制病菌作用[2~3]。枯草芽孢杆菌Xi-55是本课题组从水稻植株上分离、筛选出来的一株活性较强的生防菌株,研究发现对多种植物病原菌具有良好的防治作用[4]。芽孢杆菌的发酵培养是工业化大规模生产芽孢杆菌制剂的前提。本文对所筛选出的枯草芽孢杆菌的发酵条件进行优化,进行20L发酵罐的放大培养研究,以提高其发酵水平,为芽孢杆菌制剂的工业化生产提供参考依据。1.1.1 供试菌株 枯草芽孢杆菌Xi-55,四川省农业科学院植物保护研究所分离获得。1.1.2 培养基 斜面培养基(LB培养基):酵母膏5g,蛋白胨10g,NaCl 10g,琼脂15g,蒸馏水1000ml,pH值7.0。种子培养基(BPY培养基):牛肉膏5g,蛋白胨10g,NaCl 5g,酵母膏 5g,葡萄糖 5g,蒸馏水1000ml,pH值7.0。基础发酵培养基(KB培养基):蛋白胨 20g,甘油 10ml,K2HPO4 1.5g,MgSO4·7H2O 1.5g,蒸馏水1000ml,pH值7.0。1.2.1 培养方法 将保存在斜面上的菌种用接种环以划线形式接入LB平板上,28℃恒温培养24h活化。将活化的菌株接入装有100ml种子培养基的250ml三角瓶中,在28℃,180rpm条件下,振荡培养36~48h,制备液体种。按1%的接种量接入发酵培养基(100ml/250ml三角瓶),摇床振荡培养,测定发酵菌数量。1.2.2 生长量的测定 采用平板菌落记数法。培养液用10倍梯度稀释法稀释6~7个梯度(101,102,103,……,107)后,选择3个稀释度较高的梯度稀释液,分别吸取50μl在LB平板上,然后用灭菌的L形玻棒将菌液涂匀,每梯度重复3次。28℃恒温培养24~36h后,调查平板上的菌落数,然后计算活菌数(cfu/ml)[5]。1.2.3 培养基的优化 采用正交表L9(34)[6],四因素三水平安排试验。1.2.4 发酵条件的优化 采用优化培养基通过单因子试验,测定不同时间、温度、初始pH值、接种量和装液量对发酵菌数的影响。1.2.5 扩大培养 采用德国产Biostat C 20L全自动液体发酵罐,配制发酵培养基10L,添加消泡剂CXX-910 0.5‰。种子培养及接种量均同摇瓶试验。发酵技术参数设为:发酵温度28℃±0.5℃,通气量10L/min,搅拌转速180rpm,溶氧控制设定为以通气量为主、转速为辅,罐压0.05~0.06MPa,初始pH值为7.2。每隔4h取样,测定发酵菌数和观察芽孢形成情况,同时记录罐体内pH值变化。分别以培养时间为横坐标,菌数和pH值为纵坐标,绘制枯草芽孢杆菌在发酵罐中培养的生长曲线和pH值曲线。采用L9(34)正交设计方案,分四因素三水平对Xi-55发酵培养,测定高峰期菌数,正交试验因素水平见表1,正交设计及结果见表2,极差分析见表3。结果表明:4种营养成分对其菌数影响的顺序是A>C>D>B,培养基成分优化组合为A3B2C1D3,即蛋白胨3%,甘油1.0%,K2HPO4 0.05%,MgSO4·7H2O 0.15%。试验因素Experimentalfactor水平(Level)(%)123蛋白胨(Peptone)123甘油(Glycerine)0.51.01.5K2HPO40.050.100.15MgSO4·7H2O0.050.100.15表1 培养基优化正交试验因素水平Table 1 Orthogonal experimental factor levels for medium optimization试验号Experimentalnumble水平(Level)(%)A[蛋白胨]PeptoneB[甘油]GlycerineC[K2HPO4]D[MgSO4·7H2O]菌数(Bacteriumamount)(109cfu/ml)111117.01212225.25313331.834212318.585223110.92623129.927313211.428321325.259332123.00表2 培养基优化L9(34)正交设计及结果Table 2 L9(34) orthogonal design and results for medium opitizationA[蛋白胨]PeptoneB[甘油]GlycerineC[K2HPO4]D[MgSO4·7H2O]K14.7012.3315.6113.64K213.1413.8114.068.86K319.8911.588.0615.22R15.192.237.556.36优化组合Optimization-groupA3B2C1D3因素顺序FactororderA>C>D>B表3 培养基优化L9(34)的极差分析Table 3 Range analysis of L9(34) for medium opitization2.2.1 时间对Xi-55发酵细菌数量的影响 每隔12h从摇床上取样,测定发酵液中细菌数量,绘制Xi-55生长曲线。结果显示(图1),在发酵0~12h 之间,菌体生长繁殖缓慢;12~36h 为菌体生长加速期,也为菌体繁殖高峰时期,发酵液内细菌数量明显增加;36~48h为稳定期,菌体数量基本稳定;60h以后为孢子衰亡期,活菌由于自身产生的分解物质而使菌体分解,发酵液变透明。根据该试验结果,36~48h为Xi-55适宜发酵时间。2.2.2 温度对Xi-55发酵细菌数量的影响 分别置于24℃、26℃、28℃、30℃和32℃摇瓶培养,测定不同培养温度的生长量,结果表明(图2),28℃细菌数量最高,28~30℃细菌数基本稳定,低于28℃和超过30℃菌数明显下降。所以28~30℃为Xi-55适宜发酵温度。图1 时间对发酵菌数的影响Figure 1 Effects of time on the bacteria amount图2 温度对发酵菌数的影响Figure 2 Effects of temperature on the bacteria amount2.2.3 初始pH值对Xi-55发酵细菌数量的影响 设定pH值分别为5,6,7,8,9的培养基摇瓶培养,测定细菌生长量。结果显示(图3),当pH值为7时,细菌数量最高,当pH值为 7~8时,细菌数量基本稳定;pH值低于7和超过8,菌数明显减少;且 pH值为9或5时,菌体数量急剧减少或为零,据此推断pH值高于9或低于5时,Xi-55生长可能严重受抑制甚至不能生长,有待进一步研究。所以发酵培养基的适宜初始pH值为7~8。2.2.4 接种量对Xi-55发酵菌数的影响 分别采用0.5%、1%、2%、3%、4%等5个接种量梯度摇瓶培养,测定细菌生长量,结果显示(图4),接种量在0.5%~2%范围内,菌量数随接种量的增加而增加,接种量为2%时,菌量数最高;接种量超过2%,菌数明显减少。总体上来看,菌体生长量并非随着接种量的增加而增加,而是有一个限度。所以,2%为最佳接种量。图3 初始pH值对发酵菌数的影响Figure 3 Effects of initial pH value on bacteria amount图4 接种量对发酵菌数的影响Figure 4 Effects of inoculation amount on bacteria amount2.2.5 装液量对Xi-55发酵菌数的影响 采用装液量分别为50ml/500ml、100ml/500ml、150ml/500ml、200ml/500ml锥形瓶摇床振荡培养,测定细菌生长量,试验结果表明,通过摇瓶装液量的不同来调节通气量对Xi-55发酵菌数有较大影响。一定范围内,装液量越少,则通气量越高,氧气供应越充足,那么细菌数量就越高。50ml与100ml装液量差别不明显,但从总生长量考虑,100ml/500ml锥形瓶为最佳装液量(图5)。图5 装液量对发酵菌数的影响Figure 5 Effects of pack amount on bacteria amount在摇瓶优化发酵条件的基础上,进行了20L发酵罐的扩大培养。从生长曲线(图6)可以看出,发酵罐扩大培养的发酵周期与摇瓶发酵周期基本一致。由于发酵罐的搅拌和通氧条件均优于摇瓶发酵,因此,菌体浓度和芽孢同步形成率都明显优于摇瓶发酵。36h菌体数量达到最高量,50.61×109cfu/ml;然后进入稳定期,开始大量形成芽孢,44h形成芽孢90%以上。分析pH值曲线(图6)发现,初始pH值7.2,随着菌体生长,pH值缓慢下降;对数生长期菌体迅速繁殖,pH值也急剧下降,表明菌体大量利用养分产生了酸性物质;稳定期随着芽孢逐渐形成,pH值回升,44~48h时,芽孢数量达到最大;52h以后pH值上升至7.4左右,可以看到菌体碎片,细胞自溶,表明生长和代谢受到抑制。因此,发酵终止应在52h前,最佳放罐时间应在44~48h。图6 20L发酵罐中的生长与pH值曲线Figure 6 The growth and pH curve in 20L fermentation tank从以上试验可以看出,培养基的组成和时间、温度、培养基初始pH值、接种量、通气量、摇床转速等培养条件均对菌株的生长有很大的影响。通过单因子试验和正交试验方法,确定枯草芽孢杆菌Xi-55优化培养基为:蛋白胨3%,甘油1.0%,K2HPO4 0.05%,MgSO4·7H2O 0.15%;优化发酵条件为:时间36~48h,温度28~30℃,初始pH值7~8,接种量2%,装液量100ml/500ml锥形瓶,摇床转速180~200rpm。并进行了发酵罐扩大培养,36h达到生长高峰期,最适放罐时间44~48h;此时所获得的菌体数量约为50亿个/ml,为大规模工业化发酵培养提供了有益借鉴。在发酵过程中发现,发酵液的黏度较大,很容易产生泡沫,必须用消泡剂来消除。而本试验中采用的发酵专用含硅消泡剂CXX-910对pH值有轻微影响,故添加消泡剂不宜过多。操作时可预先在培养基里添加少量消泡剂,然后通过发酵罐上的补料装置在发酵过程中自行控制补充,这样可以在满足消泡的同时尽量降低消泡剂的添加量,减少消泡剂对pH值的影响,比一次性添加或单纯通过补料装置添加效果要好。 -
报告黄瓜内生细菌对黄瓜灰霉病的生物防治研究?? 基金项目:教育部长江学者和创新团队发展计划资助项目(No.200558);杨凌农业科技开发基金项目(2004JA08)。
出版时间:2007灰霉病是保护地蔬菜栽培中危害十分严重的病害,传统的化学防治造成了严重的农药残留和环境污染。应用微生物进行生物防治能够克服上述缺点,是一种安全、有效和环保的方法。本研究旨在从黄瓜植株内分离、筛选能够抑制灰霉病的拮抗细菌,并测定拮抗菌株在不同处理下对灰霉病的防治作用。主要结果如下:通过平板对峙培养筛选出8株对黄瓜灰霉病菌具有较强拮抗作用的细菌,再对这8株菌发酵滤液的抑菌活性进行测定,选出抑制效果最好的两个菌株B12和B13,抑制率分别为84.0%和81.8%。在离体叶片上,B12、B13发酵滤液对灰霉病菌的扩展均有较强的抑制作用,抑制率分别为83.2%和81.4%。两菌株活性产物可引起病原菌菌丝扭曲,菌丝膨大成串珠状分枝,顶端膨胀后细胞壁破裂,原生质外溢,产生溶菌作用。B12、B13发酵液对于灰霉病菌孢子的萌发具有强烈的抑制作用。在孢子萌发试验中,经B12、B13发酵液处理的孢子萌发率仅分别为5.5%和8.6%,滤液对孢子萌发的抑制效果与发酵液相近。将两菌的发酵滤液置于不同的温度和pH环境下处理,当温度在100℃以下、pH值在6~9时,滤液的抑菌效果表现出较强的稳定性。在温室试验中,两菌发酵液对灰霉病有较好的预防效果,B12、B13的保护防效分别为70.5% 和68.7%,治疗防效分别为51.2%和47.8%。 -
报告Epidemics of Rice Stripe Virus and Its Control Techniques
出版时间:2007水稻条纹叶枯病由灰飞虱传播的发生严重的水稻病毒病。该病2004年在浙江长兴突然发生,全县发病面积为663.3hm2,发病较重的田块丛病率达50%以上,株病率达17.6%,一般丛病率在10%左右,株病率在1%~5%,其中产量损失10%~30%为21.7hm2,损失30%以上为2.79hm2,涉及15个乡镇,个别严重田块颗粒无收。2005年水稻条纹叶枯病以较快的速度蔓延,6月中旬在长兴夹浦、洪桥、虹星桥、雉城等乡镇的单晚秧田和早播直播稻相继发病,部分严重田块株病率超过25%,7月10日左右,出现第二个症状表现高峰,移(抛)栽稻、直播稻不同程度发病,发病面积达1万hm2,其中66.67hm2损失产量20%以上。针对水稻条纹叶枯病流行的严峻形势,为了有效地控制病害暴发流行,确保水稻生产安全,从2005年起,我们对水稻条纹叶枯病及传毒媒介灰飞虱发生动态进行较为系统的监测,开展了防治技术的研究。现将调查试验结果综述如下:在前一年发病较重的田畈,选取有代表性的田块对水稻条纹叶枯的发生情况进行定期跟踪调查,以观察水稻条纹叶枯病的田间消长规律。从田间调查来看,秧田从6月上旬后期开始发病,6月15日出现第一个症状表现高峰;移栽到大田后,6月23日调查,丛病率为6%,株病率为0.89%,病情指数为0.08,至7月10日左右出现第二个症状表现高峰;以后随着发病株的枯死和分蘖的增加,丛病率和株病率都呈下降趋势,株病率下降相对较快,8月20日左右出现第3个症状表现小高峰(见图1、图2)。从田间发病调查情况看,发病程度最重在7月底,见图3。图1 水稻条纹叶枯病丛发病率增长动态(浙江长兴)图2 水稻条纹叶枯病株病发病率增长动态(浙江长兴)图3 水稻条纹叶枯病病情指数增长动态(浙江长兴)2005年灯下监测,5月中旬成虫开始上升,6月中旬出现了第2代成虫高峰,诱虫量大,诱虫量为2936头,7、8月出现了3、4代成虫的小高峰,9月出现了5代成虫高峰,9月中旬和下旬分别诱到成虫1522头和1722头,10月还有大量的成虫出现,见图4。图4 灯下灰飞虱成虫消长情况(浙江长兴,2005)2006年灯下监测,5月上旬灯下始见,下旬成虫开始上升,迁入水稻秧田为害,6月上旬后期至中旬出现了第2代成虫高峰,为全年虫量最高,诱虫达6337头,7月上旬、8月上旬又出现了3、4代成虫的小高峰,8月底至9月初后灯下虫量上升,出现了5代成虫高峰,诱到成虫1520头;10月灯下诱虫量减少,见图5。图5 灯下灰飞虱成虫消长情况(浙江长兴,2006)2005年4月22日麦田调查,越冬代虫量为5.4万头/hm2,6月16日秧田虫量为13.05万头/hm2,6月21日平均卵量480万粒/hm2,6月28日秧田虫量为4.05万头/hm2,7月下旬虫量为1.05万头/hm2,8月上中旬虫量为0.45万头/hm2,9月上旬虫量为1.5万头/hm2,9月15日虫量为4.05万头/hm2,9月20日虫量为7.5万头/hm2,9月26日虫量为16.5万头/hm2,9月30日虫量为25.5万头/hm2,10月5日虫量为33万头/hm2,10月10日虫量为27万头/hm2,10月15日虫量为10.95万头/hm2。2006年4月上旬麦田调查,越冬代虫量为15.9万头/hm2,6月30日秧田虫量为16.95万头/hm2,7月3日秧田虫量为8.55万头/hm2,7月中下旬田间虫量下降,8月1日虫量为8.55万头/hm2,8月14日虫量为19.95万头/hm2,8月25日虫量为17.25万头/hm2,8月28日虫量为20.1万头/hm2,9月8日虫量为24万头/hm2,9月下旬虫量上升,9月25日为153.45万头/hm2,9月29日虫量为28.55万头/hm2,10月虫量还比较高,10月8日虫量为48万头/hm2,10月12日虫量为31.5万头/hm2,10月17日虫量为30万头/hm2。田间灰飞虱消长曲线见图6。图6 田间灰飞虱发生消长情况(浙江长兴,2006)灰飞虱的发生量和带毒率对水稻条纹叶枯病的发生有着密切的关系,近年来,随着灰飞虱发生量增加和带毒率的提高,水稻条纹叶枯病发生面积扩大,发生程度加重。据测定,2005年长兴县灰飞虱带毒率斑点免疫快速测定为11.27%,2007年达18%。水稻灰飞虱生物法测定传毒率,2006年为6.7%,2007年为7.4%。田间观察,5月中下旬的1代灰飞虱成虫传毒造成秧田和部分早播直播田(5月下旬播种)发病,至6月中旬左右出现了水稻条纹叶枯病的第一个显症高峰;6月上旬后期至中旬的2代灰飞虱成虫高峰造成了7月中旬左右的水稻条纹叶枯病的第2个显症高峰,由于6月上旬后期至中旬的灰飞虱成虫高峰量较大,因此,7月10日左右水稻条纹叶枯病表现高峰来势凶猛,发病面积大,发病程度重;8月中旬在病情发展上有一个小高峰,如2006年8月7日左右个别失治田块出现了第3个症状表现高峰,株病率达20%以上。以后随着水稻的生长,抗逆能力增强,田间虽有大量的灰飞虱成若虫,但基本不发病。水稻条纹叶枯病的防治应立足于预防,采取“抗、避、断、治”的综合防治措施。在目前水稻对条纹叶枯病防治还没有高抗品种的情况下,重点要切断灰飞虱的传毒途径。为此,我们围绕灰飞虱的防治开展一系列的农业防治措施和药剂防治试验,根据水稻条纹叶枯病的感病期,强化药剂浸种、拌种处理和秧苗期、大田前期灰飞虱的防治,配合使用病毒钝化剂,水稻条纹叶枯病得到了有效地控制。在条纹叶枯病重发区,推广秀水63、秀水09等抗病性好的品种,压缩武运粳7号、加育991等感病品种种植。浙江长兴1代灰飞虱成虫迁移高峰期在5月中下旬,推迟至6月上旬播种的直播稻可避开大部分1代灰飞虱的迁入传毒,减少发病机率。水稻条纹叶枯病的感病期主要在秧苗期,水稻秧田期的灰飞虱防治尤其重要。因此,要及时清除农田周边杂草,5月上旬前冬闲田提前翻耕,减少灰飞虱中间寄主,恶化灰飞虱生存环境,抓好麦田灰飞虱的防治,麦田收割后及时灌水翻耕,并抓好“四边”杂草中灰飞虱的防治。同时抓好药剂浸种、拌种处理的秧田期和大田前期的灰飞虱防治。坚持“治杂草和麦田保秧田、治秧田保大田、治大田前期保大田后期”的策略。经过几年来的试验示范,防治灰飞虱以5%锐劲特45~50ml/667m2、40%毒死蜱100~120ml/667m2、50%稻丰散100ml/667m2,加水50kg喷雾防治为佳。在浸种灵浸种的基础上,催芽露白后每千克种子用35%丁硫克百威(稻拌成、稻伴)种子处理干粉剂5g拌种,混拌均匀后播种,随拌随用。在水稻发病前和发病初期,配合使用病毒钝化剂2%菌克毒克100~150ml/667m2防治1~2次,减轻水稻发病程度,减少水稻产量损失。 -
报告Preliminary Study on Non-host Resistance to Sclerotinia sclerotiorium in Gramineae Plants
出版时间:2007核盘菌是普遍存在的坏死性真菌病原,能够侵染75科408种植物。在寄主植物中尚未发现免疫种或单基因抗性,包括十字花科。然而在禾本科等非寄主植物中该病菌是不致病的或弱致病的。为研究非寄主抗性机制,我们用该病菌接种了竹子、小麦、玉米和油菜。接种后24 h,这些植物对病菌的反应是不同的,竹子和玉米上无病斑,小麦上有小的病斑,但不同品种有变化,而油菜上产生了大的病斑。扫描电子显微镜研究表明,接种的竹子叶表面形成了一层膜,但在光学镜下菌丝穿透进入了上表皮细胞。菌丝进入竹子和油菜叶表皮细胞的方式是不同的。在油菜上菌丝很快进入上表皮细胞和细胞间隙,但竹子中菌丝仅限于上表皮和叶肉细胞。我们推定禾本科植物叶表面物质和细胞壁成分可能是阻止菌丝进入细胞的重要障碍。需要进一步分析这些成分。Sclerotinia sclerotiorium(Lib.)de Bary is a ubiquitous necrotrophic fungal pathogen capable of infecting at least 408 plant species of 75 families.No highly resistant varieties or germplasm is found in hosts including Cruciferae plants.On non-host plants such as some Gramineae species,however,the pathogen is avirulent or weak virulent.To understand how these non-hosts resist the pathogen,we inoculated S.sclerotinia mycelium to the leaves of bamboo,wheat,maize and oilseed rape as well.There were different responses in these plants after 24 hpi(hours post inoculation).No lesion was found on bamboo and maize leaves.Small lesions were observed on wheat,but the lesion size varied among different cultivars.Larger lesions were observed on oilseed rape leaves than any other Gramineaes at earlier time after inoculation.The scanning electron microscope(SEM)study showed clearly that inoculated bamboo leaf formed a layer of membrane on the leaf surface,but the slides under a light microscope unveiled hyphae penetration into the epidermal cells.The modes that hyphae grew into the leaves were also different between bamboo and oilseed rape.The hyphal growthfast under the oilseed rape epidermal and in the intercellular space,but in bamboo the growth was limited in the epidermis and mesophyll cells.We assumed that surface substance and cell wall composition are important obstacles of the hyphal penetration in non-host Gramineae plants.Further work needs to be done to analyze these compounds in comparison with oilseed rape. -
报告Nitric Oxide and Hydrogen Peroxide Signaling in Tobacco Resistance to Tobacco Mosaic Virus Induced by Oligogalacturonic Acid
出版时间:2007Plant and fungal cells are surrounded by a cell wall rich in diverse polysaccharides and proteins.It has become apparent in recent years that the carbohydrates in the cell wall function not only to maintain cell shape and integrity,but also may serve as signals in plants(Mohnen et al.,1993).Oligogalacturonic acid(OGA),a well studied elicitor,is derived from plant cell walls(Nothnagel et al.,1983).When added to cultured plant cells,it induces an oxidative burst within minutes,releasing ROS via a pathway that involves receptor binding,activation of a G-protein,influx of Ca2+,stimulation of phospholipase C,and induction of a number of kinases(Apostol et al.,1989;Horn et al.,1989;Legendre et al.,1992;Chandra et al.,1995;Legendre et al.,1993).Purified OGAs 13 to at least 26 residues long stimulate pp34 thiophosphorylation in vitro(Philippe et al.,1995).OGAs are also involved in the induction of the jasmonate pathway during plant defense response to E.carotovora subsp.Carotovora attack(Cecilia et al.,1999).The first response observed after the addition of OGAs that is clearly involved in plant defense is the production of active oxygen species,including H2O2,and O2-.This response,termed the oxidative burst,occurs within a few minutes after the addition of OGAs to suspension-cultured soybean,tobacco,and tomato cells.Reactive oxygen species are thought to have direct(through cytotoxicity)and indirect(through signaling)roles in the plant cell death required for the HR.Reactive oxygen species induce the expression of defense related genes,and are implicated as second messengers that elicit other defense responses,including systemic acquired resistance(SAR)and the HR(Brent etal.,2001).Different elicitors are thought to activate different sets of second messengers.The two signaling events that appear to participate in the OGAs inducing plant defense include the oxidative burst and NO accumulation.Inhibitors of mammalian nitric oxide synthase reduced both OGA-induced NO ac-cumulation and NOS activity,suggesting that OGA-induced NO production occurs via a NOS-like enzyme(Hu et al.,2003). Nitric oxide(NO)is a highly reactive molecule that rapidly diffuses and permeates cell membranes.During the last few years NO has a significant role in plant resist-ance to pathogens by triggering resistance-associated cell death and by contributing to the local and systemic induction of defense genes.NO stimulates signal transduction pathways through protein ki-nases,cytosolic Ca2+mobilization and protein modification(María et al.,2004). Most of the ex-perimental data available on NO detection during plant-pathogen interactions come from studies of infections by biotrophic pathogens(María et al.,2004). Additionally,an increase in NOS activity correlated with the pathogen resistance response has been observed in resistant tobacco during TMV infection( Durner et al.,1998;Chandok et al.,2003).Here we report that OGAs induced a range of defense responses in tobacco,including oxidative burst,NO accumulation and stimulation of superoxide dismutase(SOD)activity and catalase(CAT)activity.Furthermore,we show that tobacco plant sprayed with OGAs developed a resistance against infection by tobacco mosaic virus.We also provide evidence that the defense response induced by OGAs was connected with H2O2 and NO pathway.Plants of tobacco(Nicotiana tabacum var.sam sun NN)were grown from seeds in a greenhouse and were used at the 4~6-leaf stage after 2 months in culture.The plants were kept in a growth chamber at(23±1)℃ with a photoperiod of 16 h and 70%~80%relative humidity for several days before treatments.Diphenylene iodonium(DPI),2-(N-morpholino)ethanesulfonic acid(MES),Sodium nitroprusside(SNP),catalase(CAT,from bovine liver),NG-nitro-L-arginine-methyl eater(L-NAME)and 4,5-diaminofluorescein diacetate(DAF-2 DA)were obtained from Sigma.2′,7′-dichlorofluorescin diacetate(H2DCF-DA)from Biotium.All other reagents were from Shanghai Chemical Reagent CO.,LTD,Tianjin Kermel Chemical Development Centre,or Beijing Chemical Plant.OGAs was prepared from enzymatic hydrolysis of pectin and separated with membrane according to the report(H Zhang et al.,1999).An aliquot of OGAs was dissolved in water and analyzed with a matrix-assisted laser desorption-ionization time-of-flight mass spectrometer(MALID-TOF-MS,Bruker,Germany).Tobacco mosaic virus(TMV)that came from our collection was multiplied in N.tabacum.TMV was extracted from systemic infected plants by homogenization of infected leaves in 0.05mol/LH3PO4 buffer(0.05mol/L KH2PO4,0.05 M Na2HPO4 pH 6.8)with subsequent clarification of the extract by centrifugation at 2000g for 6 min.The supernatant extract was used for mechanical inoculation.All leaves of plant were sprayed with 50μg/ml of OGAs,the control plants were sprayed with water.24h~25d after OGAs application,plants were inoculated mechanically with TMV.The lesion caused by TMV was investigated at 7d after inoculation.Results were analyzed using Duncan's multiple range test at P= 0.05.For measurements of SOD and CAT activities,tobacco leaves treated with OGAs were kept in liquid nitrogen.The enzymes in the frozen powders were extracted by adding 0.05g polyvinylpyrrolidone and 5ml 0.05mol/L sodium borate buffer at pH 8.8 and homogenized at 4℃.SOD activities were measured as described by Zhu Guanglian(Zhu Guanglian et al.,1990).CAT activity was determined using the method of Beers&Sizers(Beer et al.,1952).NO and H2O2 measurement was performed using their fluorescent indicator dye DAF-2 DA and H2DCF-DA as described previously by H.Kojima(H.Kojima et al.,1998)with slight modifications.The epidermis was peeled carefully from abaxial surface of the leaves and cut into 5-mm length.Epidermal strips were placed into Tris/KCl buffer(Tris 10 mmol/L and KCl 50mmol/L,pH 7.2)containing DAF-2 DA at a final concentration of 10μmol/L for 30min,or H2DCF-DA at 50μmol/L for 10min,at 26℃ in the dark.The epidermal sections were removed and transferred to a dish of fresh Tris/KCl buffer(without probe)to wash off excess fluorophore apart from light.Then the epidermal strips were placed in Tris/KCl buffer containing OGAs and inhibitors.Examination of peels was performed using laser scanning confocal microscopy(Leica,TCS SP2)with exciting wavelength 488 nm,emitting wavelength 505~530nm.Plants were sprayed with 0.01 and 0.1 mmol/L of sodium nitroprusside(SNP),50μg/ml of OGAs,1 mmol/L,10mmol/L and 100 mmol/L H2O2,H2O2 scavenger catalase(CAT,100unit/ml)and OGAs cotreatment,H2O2 scavenger ascorbic acid(0.1mmol/L)and OGAs cotreatment and NOS inhibitor L-NAME(1mmol/L)for 30min before OGAs respectively.The control plants were sprayed with water.In all cases,24h after OGAs and other materials applications,plants were inoculated with TMV.The lesion caused by TMV was investigated at 7d after inoculation.The effect of OGAs,SNP and H2O2 on local infection was calculated from the ratio of the number of local lesion produced on the treated leaves to that on the control leaves treated with water.The TOF-MS profiles of OGAs sample were showed in Figure 1.The mass spectrum indicated that peaks corresponding to the mass numbers of( M+ Na)+of trimer to enneamer were detected.So the sample was composed mainly of OGAs having degree of polymerization( DP)2-8.Figure 1 TOF-MS of oligochitosan sampleThe results of control effects on TMV with OGAs at different concentration(50~100μg/ml)showed that the best concentration was 50 μg/ml(data not shown).The effects of application of OGAs at different time were summarized in Table 1.It was found that tobacco leaves treated with OGAs were protected against TMV infection.When the inoculation occurred at 19d after spraying 50μg/ml OGAs on tobacco plants,the relative control effect was 53.42%.We concluded that the resistance induced by OGAs became better with the inducing time until 19d.The resistance was reduced after 19d.Dayof50μg/mlgalacturonideappliedNumberoflesioncausedbyTMVRelativecontroleffect(%)vcdsaw1d125±5814.40a?4d116±3920.55a?7d120±4217.81a10d84±3742.47ab13d97±4433.56ab16d90±3238.36ab19d68±3453.42b22d71±3451.37b25d89±3739.04bck146±51—Table 1We examined the effects of OGAs on the activity of plant resistance correlated enzymes.The results(Figure 2 and Figure 3.)indicated that OGAs increased activity of SOD and CAT compared with the H2O-treated ones.There are no distinct differences on the activity of POD and PPO of tobacco leaves treated with OGAs or water(data not shown).SOD and CAT are concerned with eliminating oxygen free radical.Within one hour,activities of CAT and SOD were induced to maximum.Figure 2 Time course of SOD activity in tobacco leaves treated by 50μg/ml OGAs or H2O as CKFigure 3 Time course of CAT activity in tobacco leaves treated by 50μg/ml OGAs or H2O as CKBecause of activity of SOD and CAT induced by OGAs and the two enzymes correlative with oxygen free radical,we examined the production of H2O2 induced by OGAs.To study the effects of OGAs on the production of H2O2 in tobacco cells,the H2O2-sensitive fluorophore H2DCF-DA were used.The results of production of H2O2 in epidermal cells of tobacco leaves induced by OGAs were shown in Figure 4.It was found that OGAs caused an increase of intracellular H2DCF-DA fluorescence in epidermal cells and guard cells of tobacco leaves,indicating the production of H2O2.Fluorescence became visible along the plasma membrane and in organelles in the epidermal cells of tobacco leaves treated with OGAs(Figure 4C),but the fluorescence was very faint in the epidermal cells only loaded with H2DCF-DA(Figure 4A).The Figure 4E and G showed that CAT and DPI could inhibit the level of H2DCF-DA fluorescence in the cells of tobacco leaves treated with OGAs.The results revealed that CAT and DPI could suppress the production of H2O2.Figure 4 Laser scanning confocal microscopy of OGA-induced production of H2O2 in epidermal cells of tobacco leaves. (A) The cells loaded with H2DCF-DA. (B) Bright field image of the cells loaded with H2DCF-DA. (C) The cells loaded with H2DCF-DA before treatment with OGA. (D)Bright field image of the cells loaded with H2DCF-DA before treatment with OGA. (E) The cells loaded with H2DCF-DA and elicited by OGA in the presence of the CAT. (F) Bright field image of the cells loaded with H2DCF-DA and elicited by OGA in the presence of the CAT. (G) The cells loaded with H2DCF-DA and elicited by OGA in the presence of the DPI. (H) Bright field image of the cells loaded with H2DCF-DA and elicited by OGA in the presence of the DPI.The NO-sensitive fluorophore DAF-2DA was used to observe NO accumulation.The observed LSCM results of OGAs-induced production of NO in epidermal cells of tobacco leaves were shown in Figure 5.It was found that OGAs could enhance the level of intracellular DAF-2DA fluorescence in epidermal cells of tobacco leaves,indicating massive production of NO.Production of NO and/or accumulation was observed in organelles and along the plasma membrane in the epidermal cells of tobacco leaves treated with OGAs(Figure 5C).However,the DAF-2DA fluorescence indicating production of NO was not observed in the epidermal cells only loaded with DAF-2DA(Figure 5A).The results also indicated that CPTIO and L-NAME could inhibit the level of H2DCF-DA fluorescence in the cells of tobacco leaves treated with OGAs(Figure 5E and G).The results representedthat CPTIO and L-NAME could suppress the production of NO.Figure 5 Laser scanning confocal microscopy of OGA-induced production of NO in epidermal cells of tobacco leaves. (A) The cells loaded with DAF-2 DA. (B) Bright field image of the cells loaded with DAF-2 DA. (C) The cells loaded with DAF-2 DA before treatment with OGA. (D) Bright field image of the cells loaded with DAF-2 DA before treatment with OGA. (E) The cells loaded with DAF-2DA and elicited by OGA in the presence of the CPTIO. (F) Bright field image of the cells loaded with DAF-2DA and elicited by OGA in the presence of the CPTIO. (G) The cells loaded with DAF-2DA and elicited by OGA in the presence of the L-NAME. (H) Bright field image of the cells loaded with DAF-2DA and elicited by OGA in the presence of the L-NAME.As H2O2 and NO appear to be a key factor associated with plant induced defense disease,it was interesting to test the effect of exogenous NO and H2O2.The effect of OGAs,NO donor SNP and H2O2 at different concentrations and some scavengers are summarized in Figure 6.It was found that treatment with OGAs,SNP and H2O2 protected tobacco leaves against TMV local infection.The least lesion was observed at the treatment of 50μg/ml OGAs among the all treatments.The inhibition effect of H2O2 showed dependence on the amount of H2O2.The lesion of co-treatment of OGAs and the H2O2 scavenger CAT or ascorbic acid on TMV infection was as high as CK.We also observed SNP inducing resistance was dose-dependent.When the tobacco plants were treated with L-NAME before OGAs,the induced resistance was depressed.Therefore,we can presume NO and H2O2 are important factors participating in OGAs inducing resistance to TMV.Figure 6 Effect of OGAs and exogenous NO and H2O2 on disease symptomPectic oligosaccharides,produced by microbial enzymes,are well-known oligosaccharins,eliciting defence responses in diseased plants(Dumville et al.,2000).A broad spectrum of OG-induced pathogenesis-related defense responses has been reported(M.T.Esquerré-Tugayé et al.,2000).Most defense and developmental responses are induced by OGAs with a degree of polymerization(DP)between 10 and 15 galacturonic acid residues.OGAs with a DP less than 8 can also trigger defense responses in plants:they induce accumulation of protease inhibitors(T.Moloshok et al.,1992),ethylene production(S.D.Simpson et al.,1998)and elicitation of genes involved in jasmonic acid metabolism in tomato(C.Norman et al.,1999).In this report,we observed the OGAs with a DP between 2~8 could induce tobacco resistance to TMV.The concentration of OGAs used was also discussed.OGAs-induced plant growth has been reported(LoSchiavo et al.,1991;Filippini et al.,1992),and the maximal effect to growth was about 10-4 M(Stephen et al.,1993).To elicit plant defense responses,OGAs concentration higher than those usually required for control developmental process.In our experiments,50μg/ml was the best concentration to induce resistance within 100μg/ml(data not shown).It showed the efficiency of the OGAs in inhibition of virus infection was not depended on the dose of OGAs.But the inhibition effect was dependent on the treatment time.We observed the inducing effect of resistance to TMV was gradually elevated before 19d,but the mechanism of this needed further study.Research showed that lag period of the induced resistance of glucohexaose was about 7days and the protection period was about 28 days(Li Hongxia et al.,2005).Furthermore,tobacco plants treated by sulfated fucan or linear β-1,3 glucan showed resistance to TMV or bacterium E.carotovora after 5 days(Olivier Klarzynski et al.,2003;2000).So far no oligosaccharides were reported to have so long time inducing effect.Therefore,OGAs have more predominance to be applied in agriculture.Experimental results also showed that NO and H2O2 played important roles in OGAs inducing tobacco resistance to TMV.NO and H2O2 as important signaling active molecules in pathogen defense reaction has been extensively studied(Levine et al.,1994;Mehdy et al.,1996;Baker et al.,1995;Jabs et al.,1996;Delledonne et al.,1998;Rout-Mayer et al.,1997?;Binet et al.,1998).First,we examine the activity of plant resistance correlated enzymes.Because the activity of PAL has been confirmed elevated by many reports(Messiaen et al.,1994;Lapous et al.,1998;Dixon et al.,1989;Tepper et al.,1990),we just mensurated the PPO,POD,SOD and CAT.This includes the activity of SOD and CAT elevated,so we estimated the extra H2O2 production.To evaluate the stimulatory effect of OGAs on tobacco cells,we measured the production of H2O2 and NO in tobacco cells.The data indicated that OGAs induced the production of H2O2 and NO in epidermal cells of tobacco within a short time.These results were in agreement with the reports by Xiangyang Hu,who claimed OGAs stimulated NO accumulation in the growth medium of ginseng suspension cultures(Hu et al.,2003).Rout-Mayer and Binet discovered respectively H2O2 production within a few minutes after the addition of OGAs to suspension-cultured tobacco cells(Rout-Mayer et al.,1997;Binet et al.,1998).Many reports show H2O2 and NO exist are correlated to plant defense.H2O2 is involved in the induction and/or execution of hypersensitive reaction(C.S.Bestwick et al.,1997).H2O2 is required for the cross-linking of plant cell wall components as a part of the structural defense response(C.Lamb et al.,1997).The production of H2O2 may also lead to the development of an antimicrobial environment within the apoplast(M.Peng et al.,1992).In many cases,H2O2 collaborate with NO to execute invading pathogens.H2O2 and NO production were induced almost at the same time by cryptogein,a fungal elicitor(Foissner et al.,2000).NOS inhibitors compromise the hypersensitive resistance response in Arabidposis and tobacco(Delledonne et al.,1998?;Huang et al.,1998).TMV infection could elevate NOS(nitric oxide synthase)activity,and NO could induce PR-1 expression(Durner et al.,1998).NO,as well as other ROS,have been shown to stimulate the accumulation of SA(Durner et al.,1999),which play a critical signaling role in the activation of plant defense responses after pathogen attack.Furthermore,to test whether OGAs functions on inducing resistance in tobacco via NO and H2O2 pathway,we examined the effects of OGAs,exogenous NO donor SNP and H2O2 on inducing resistance to TMV.It was found that all of these treatments reduced lesion caused by TMV.But co-treatment with OGAs and H2O2 scavenger CAT or ascorbic acid blocked the inducing resistance.The tobacco plants inhibited NOS activity by L-NAME were not induced resistance by OGAs.So the defense response induced by OGAs was connected with NO and H2O2 pathway.The study reported herein reveals that OGAs can induce the production of H2O2 and NO,and induce the defense response against TMV.Our understanding of OGAs induced resistance is sketchy.The mechanisms of OGAs eliciting defense responses of tobacco need further investigation.
