首页 <
知识图谱:全部
-
报告Study on the Diversity of Plum Anthracnose Fungal Pathogen Isolated in Wuhan
出版时间:2007梅树炭疽病是梅树上的主要病害,在武汉地区,从4~10月份都有发生。从梅雨季节开始炭疽病开始大流行。2006~2007年8月调查,武汉地区的梅树炭疽病发病率高达97%以上。笔者从东湖梅园采集炭疽病标本。用常规组织分离法对病组织进行了分离,再进行单孢分离;采用柯赫氏法则给予回接鉴定,确认为炭疽病的病原。所有菌株均在PDA平板上于25℃下培养,并于PDA试管斜面上4 ℃保存。共分离获得22个菌株,研究发现这些菌株在菌落形态、色素分泌、产孢、孢子形态等存在显著的差异。可将这些菌株分成7种类型,其中Ⅰ型菌株:菌丝颜色为白色到灰黄色,菌丝生长较稀疏易产拟菌核和大量橘红色分生孢子团,分生孢子12.5~15μm×4.5~5.5μm;Ⅱ型菌株:菌丝颜色为灰黄色,菌落扩展速度最慢,易产生菌核不易产生分生孢子团,分生孢13.8~16μm×5~7.5μm;Ⅲ型菌株:菌丝颜色为白色较为稀疏,菌落扩展较慢,能产生大量的拟菌核和分生孢子团,菌核较Ⅰ型小且多,分生孢子15~20μm×5~6.3μm;Ⅳ型菌株:菌丝颜色为墨绿色,菌丝生长茂盛,菌落扩展最快,较少产拟菌核和分生孢子团,分生孢子12.5~13.8μm×3.8~5.5μm;Ⅴ型菌株:菌丝颜色为中间墨绿色边缘白色,菌丝生长致密气生菌丝少,菌落扩展较快,易产生大量的拟菌核但不产生分生孢子团,菌核较Ⅲ型菌核小且多,分生孢子10.5~12.5μm×3.8~5μm;Ⅵ型菌株:菌丝颜色为纯白色,菌丝生长茂密厚实,菌落扩展较快,不易产生拟菌核和分生孢子团,分生孢子18.7~22.1μm×7~10.5μm;Ⅶ菌株:菌落颜色为白色,菌丝生长密实,较Ⅵ型气生菌丝少,菌落易扇变,也不易产生拟菌核和分生孢子团,分生孢子13.8~15μm×5~7.5μm。将这7种类型菌株分别在梅树及樱树、桃树、梨树、苹果树、杏树和山楂等蔷薇科果树上的致病力进行了比较。结果表明这7种类型的菌株在这些植物上致病力存在显著的差异。其中:Ⅰ型菌株M17对上述植物的致病力最强,刺伤接种后在这些植物叶片上均能形成典型的病斑,病斑的大小因接种植物不同而略有差异,如在梅花、梨树、桃树、樱树、杏树、山楂和苹果等植物叶片上形成的病斑大小分别为:(2.7±0.2)cm、(2.5±0.2)cm、(2.3±0.2)cm、(2.1±0.2)cm、(1.9±0.2)cm、(1.9±0.2)cm和(1.3±0.2)cm;但在不刺伤的条件下,菌株M17仅能在樱树、梨树、桃树、山楂树等叶片上形成病斑。Ⅲ型菌株M11-1的致病力最弱,仅能在刺伤叶片上形成较小的病斑,如在梅花、桃树、苹果、樱树、杏树、梨树和山楂等植物叶片上形成的病斑大小分别为:(0.73±0.2)cm、(0.36±0.2)cm、(0.32±0.2)cm、(0.30±0.2)cm、(0.65±0.2)cm、(0.5±0.2)cm和(0.45±0.2)cm。所有上述菌株对吉祥草、高粱、大叶黄杨、黄瓜和豇豆等植物均不致病。利用引物对PITS1和PITS4扩增这些菌株的ITS DNA片段,连接至T-载体后,转化E.coli JM109,获得携带ITS DNA的克隆,对克隆进行测序,并在GenBank上进行Blastn序列分析。结果发现上述7个菌株的ITS序列与该数据库中的胶孢炭疽菌(Colletotrichum gloeosprioides)的ITS序列等同性在99.0%以上。因此,这些菌株应该同属于胶孢炭疽菌,但是它们在形态和致病力等方面存在显著差异。 -
报告一 黄瓜生物学特性
出版时间:2015黄瓜果实为假浆果,果实内部大部分为子房壁和胎座。黄瓜具有单性结实的特性,这是它能在密闭、无传粉条件温室内生产的一个重要条件。黄瓜的大小、颜色及形状多样。黄瓜根系分布较浅,主要分布于表土下25厘米内,5厘米内更为密集,但主根可深达60~100厘米,侧根横向伸展主要集中于半径30厘米范围内。黄瓜根木栓化早,损伤后很难恢复,因此黄瓜育苗应适时移栽,或采用穴盘无土育苗措施。黄瓜茎上易发生不定根,且生长旺盛,因此,起高垄使土壤疏松,并在定植后培土,诱发不定根,扩大黄瓜根群是黄瓜生产上一项有效栽培措施。黄瓜茎为攀缘性蔓生茎,具有顶端优势及分枝能力,茎蔓长度会因栽培品种和栽培模式不同而有差异。黄瓜叶为五角心脏型,叶及叶柄上均有刺毛,叶片大。叶片是光合器官,使叶片最大限度的接受光照,减少相互遮挡,同时保持适宜夜温,使白天的光合产物及时输送出去,可最大限度发挥叶片制造养分的功能。黄瓜花生于叶腋,黄色,基本属于雌雄同株异花,偶尔也有两性花,生产上也有全部节位着生雌性花的雌性系品种。黄瓜的种子扁平、长椭圆型、黄白色。一般一个果实含100~300粒种子,千粒重23~42克,采种后约有数周休眠期。种子寿命2~5年不等。1 发芽期 自播种后种子萌动到第一片真叶出现,约5~6天。此期应给予较高的温湿度和充足的光照,以防止徒长。2 幼苗期 从真叶出现到4~5片真叶的定植期,约30天。这个时期分化大量花芽,为前期产量奠定了基础。3 初花期 由4~5片真叶经历第一雌花出现,开放,到第一瓜坐住,约25天。4 结果期 自第一果坐住,经过连续不断的开花结果到植株衰老,直到拉秧。1 温度 黄瓜喜温,其适宜生长温度为18~30℃,最适宜温度24℃,黄瓜正常生育所能忍受的最高温度为30℃,温度过高,尤其是夜温过高,产量降低,品质变劣,且植株寿命也会缩短。最低温度为5℃,低于5℃,植株出现低温冷害。表现为生长延迟和生理障碍等。2 光照 黄瓜是果菜类蔬菜中耐弱光的一种,在温度和CO2自然状态下,黄瓜光饱和点55000勒克斯,光补偿点1500勒克斯,这是黄瓜适应越冬生产的重要特性。在北方,日光温室黄瓜越冬生产是一年中光照最差的季节,一些区域常因出现连续低温阴雪、雾霾天气,造成黄瓜减产。盛瓜期的黄瓜,连续4~5个连阴天,产量会明显降低。3 水 黄瓜对水分极其敏感,一是要求高的空气湿度,一般空气相对湿度在85%~95%条件下,黄瓜生产正常,但空气湿度高又是病害发生的诱因,因此,黄瓜生产病害要预防为主,但不能盲目控制空气湿度;二是要求高的土壤湿度,以土壤含水量为田间最大持水量的70%~80%为宜。4 气体 黄瓜光合强度随CO2浓度升高而增加,在大量施用有机肥的温室内,掀草苫时CO2浓度可达到1500毫克/升,配合相应的温度及水肥措施,可大幅度提高黄瓜产量。CO2不足时,需补施CO2肥。5 土壤 黄瓜喜欢中性偏酸的土壤,在土壤pH值5.5~7.2范围内都能正常生长,以pH值6.5最适宜。但黄瓜耐盐碱性差。地温是黄瓜越冬栽培和早春种植的重要生长、生存因素。黄瓜对地温的要求比较严格,生育期间最适宜温度是25℃,最低15℃。如何提高地温是黄瓜越冬生产的技术关键,也是日光温室黄瓜冬早春生产中普遍存在的问题。 -
报告五 田间管理
出版时间:20151 温光管理 定植后到缓苗可控制温度稍高些,以利于缓苗,白天温度控制在28~32℃,夜间20℃;早春定植后,由于外界温度较低,一般不放风,如果温室内湿度太大,可选择在中午高温时适当放风,潮气放出后及时闭棚。缓苗后(一般7天左右),浇1次缓苗水,要放小风,保持相对湿度在80%以下,温度白天不超过30℃,温度低于20℃时关窗保温,以25~28℃为宜,夜温控制在18℃左右。光照与温度相联,有光,必然有热,光照每天不少于8小时,冬天昼短夜长,可以考虑架设植物生长灯来延长生长时间。一般棚室每5延长米架设一盏生长灯。棚室跨度大于8米的,建议并排双行设立生长灯,以便均匀达到照射光源利于快速生长。阴天也要揭草帘,接受散射光照,要注意,黄瓜刹那间接受晴天光照,务必做到揭花帘。喷温水、防止因强光、骤然升温造成的生理性闪秧、脱水性萎蔫,重症时会造成死秧现象。越冬茬黄瓜从定植到结果期,处在光照强度较弱季节,光合产物低,是前期产量不易提高的主要原因。张挂镀铝聚酯反光幕可起到增温增光效果,增强黄瓜的光合作用强度,显著增产增值,增产幅度可达15%~30%。具体做法是上端固定于一根铁丝上,铁丝固定于温室北墙,将反光幕拉平下端压住即可。2 水分管理 水分管理总原则是苗期要控制浇水,防止秧苗徒长,以达到田间最大持水量的60%左右为宜。结果期水量加大,达到田间最大持水量的80%为宜,且要保持相对稳定,不能忽旱忽涝或大水漫灌。棚室内土壤水分过大时,除妨碍根系的正常呼吸外,还会增加室内空气湿度,加大病害发生几率。定植后浇足定植水,7天后浇缓苗水,从缓苗水后到根瓜坐住期间,原则上不浇水,以防止水分过大引起植株徒长,造成落花化瓜。使用滴、渗灌的或土壤墒情不好的情况下,可适当增加浇一小水,直到根瓜坐住。根瓜坐住后开始膨大时开始浇水,水量要充足,以浇透为宜。进入结果期,由于不同种植模式设施内温度不同,水分管理亦有所不同。冬春茬黄瓜结瓜期由于温度适宜,黄瓜生长量大,一般3~5天浇1次水,进入盛瓜期,黄瓜需水量加大,一般2~3天浇1水;深冬季节黄瓜由于结果初期设施内温度低,光照较弱,黄瓜用水量相对减少,且浇水不当会降低地温,诱发病害,应适当控制浇水,黄瓜不表现缺水不灌水,但要加强中耕保墒,提高地温,促进根系向深处发展,此时浇水间隔时间延长至10~12天,浇水一定要在晴天上午进行。有条件的地方,应该考虑晒水浇灌。会更有利于黄瓜生长发育。不同栽培模式追肥方案依照总的施肥原则,不同模式施肥量也有所不同,见表7。短季节栽培模式(包括塑料大棚春提前、秋延后和日光温室冬春茬和秋冬茬)黄瓜根瓜开始膨大时开始追第一次肥,由于刚开始结瓜,第一次可随水追施少量化肥,进入结果期,可10天左右追施一次化肥,盛果期需肥需水量大,则应5~7天追施一次化肥,但总的追肥原则是,将全生育期尿素总量的70%~80%(56~64千克)和硫酸钾总量的60%(64千克)分次随水追施,短季节黄瓜栽培按整个生育期追施10次计算,平均每次施水溶性氮钾素比例1∶2冲施肥6~7千克,但结瓜初期施肥量较平均值略少,进入结瓜盛施肥量要适当加大,每次追肥量根据基肥用量及植株长势情况而定。日光温室越冬长季节黄瓜越冬一大茬黄瓜结瓜期长达5~6个月,需肥总量多,总的追肥原则是将尿素施用总量的90%(150~180千克)和硫酸钾总量的80%~90%(130~180千克)分次随水追施。施肥规律是根瓜坐住后顺水施肥,结瓜初期因温度低,且需肥量少,可施少量化肥,每亩施氮钾素(1∶2)水溶性肥8千克,低温时15天左右追1次,春季进入结瓜旺期后,追肥间隔时间缩短,追肥量增大,一般5~7天追施1次,每次亩施水溶性速效肥15千克,整个生育期追肥总量氮素不超过150~180千克,注意及时补充生物钾肥和海藻菌生物活性菌肥,以期改良保持土壤根系活力,且施肥时间及施肥量应根据植株长势确定。表7 不同栽培模式追肥方案有的地方在进入盛果期前,还要进行一次“围肥”,即在畦间开沟施肥,以饼肥为主,每亩施150~250千克,加50千克复合肥,再补以一定量的中微量元素,可达到增产提质的效果。在低温季节,由于保护地内CO2(二氧化碳)不能及时得到补充,施加CO2就显得尤为重要。CO2施肥方法很多,一是重施有机肥;二是土壤中结合翻地施入5~10厘米厚的作物秸杆打孔或外置式堆积秸秆,可以释放一定量的CO2;三是深施碳酸氢铵,施入量为10克/平方米,深施5~8厘米,每15天1次。CO2施肥能促进黄瓜生长发育,提高产量,改善品质,提高抗病性。1 吊蔓与落蔓 日光温室多用吊绳吊蔓来固定瓜蔓,吊绳吊蔓在甩发棵初期进行,在栽培行的正上方3米处固定铁丝,当株高25厘米,即有4~6片叶时按株距绑绳,绳子一端固定在铁丝上,另一端绑在植株底部,此端绑口松紧要适宜,要留给植株生长的空间。随植株生长进行人工绕蔓。当植株长到固定铁丝的高度时,要落蔓,不摘心,延长结瓜期,增加结果数。落蔓时要将底部老叶摘除,按顺时针或逆时针一个方向将蔓盘绕在根部,增加空间,增加透光,减少消耗,便于管理。越冬茬黄瓜要不断落蔓延长生育期。2 摘除侧枝及卷须 越冬茬黄瓜以主蔓结瓜为主,所以,一般保留主蔓坐果。要及早摘除侧蔓与卷须,节省养分。根瓜要及时采摘以免赘秧,连阴时间长时要将中等以上瓜摘掉。3 摘叶 20叶后要注意去掉下部老黄病叶。一般果实采到哪里,叶子摘到哪里。一般从开花到采收需要15天左右,个别品种发育快,8~10天即可采收。对采收的要求是早摘、勤摘、严防瓜坠秧。尤其根瓜要尽量及早采收。 -
报告概述
出版时间:2018葡萄的用途很广,除主要用于酿造不同类型的葡萄酒外,还大量用于鲜食,加工成葡萄干、葡萄汁、葡萄罐头等。葡萄是人们最喜欢食用的水果之一,不仅风味优美,而且最为重要的是它的营养价值较高。据测定,成熟的葡萄果实中,一般含有15%~25%的葡萄糖和果糖,0.1%~1.5%的苹果酸、酒石酸以及少量的柠檬酸、琥珀酸、没食子酸、草酸、水杨酸等,0.15%~0.9%的蛋白质和丰富的钾、钙、钠、磷、锰等无机盐类。据营养学家测定,每天食用100克葡萄鲜果,可以满足人体一昼夜需要钙量的4%、镁量的1.6%、磷量的0.12%、铁量的16.4%、铜量的2.7%、锰量的16.6%。葡萄还富含维生素类物质,如维生素A、维生素B(维生素B1、B2、B6、B12等)、维生素C、维生素P、维生素PP(烟酸)、肌醇。葡萄中还含有十几种氨基酸。1升鲜葡萄汁液相当于1.7升牛奶或650克牛肉、1千克鱼、300克奶酪、500克面包、3~5个鸡蛋、1.2千克马铃薯、3.5千克番茄、1.5千克苹果或梨、桃产生的热量。葡萄干中含有65%~77%的葡萄糖和果糖,每1千克葡萄干产生的热量达到13598~14225.6焦耳。用葡萄制作的其他食品,如葡萄酒、葡萄罐头、葡萄汁、葡萄果脯和果酱等,除了含有糖或酒精外,也同样含有多种维生素、无机盐和多种有机物质。如上述所言,葡萄及其产品含有多种维生素,特别是B族维生素、维生素PP和肌醇。多吃葡萄、喝葡萄汁和饮用适量的葡萄酒,有益于防止贫血、肝炎、降低血脂和软化血管。葡萄所含的糖分中,大多数是葡萄糖和果糖,可以被人体直接吸收利用,因此,葡萄及其产品对预防糖尿病有重要的意义。生物学家证明,葡萄及其产品均具有抗病毒活性的能力,红葡萄的抗病毒能力强,鲜葡萄和葡萄汁又比葡萄酒的能力强。英国医药委员会的研究人员在分析了包括美国在内的18个国家人口死亡与饮食的关系后发现,葡萄及其产品的消费量与因心脏病死亡之间有“非常密切的关系,食用葡萄和葡萄产品越多,死亡率就越低”。最近的研究证明,葡萄中含有类黄酮化合物,其中的槲皮酮,能够降低血小板的黏度,可以预防心脑血管疾病的发生,起到保护心脏的作用。葡萄干对幼儿麻疹有较好的疗效。葡萄是结果最快的果树种类,在良好的栽培条件下,一年栽植,二年结果,三年达到丰产,甚至在栽植的第二年,每亩(1亩≈667平方米,下同)地的产量就可以达到500千克。葡萄由于主、副梢花芽形成容易,不但结果早,而且可以达到连年丰产、稳产。葡萄的栽培投资少,见效快,经济效益极高。葡萄的抗旱性、抗盐碱性比苹果、桃等果树强,对土壤要求不严格,不适宜种植农作物的河滩、沙荒地、戈壁、丘陵沟坡地均可以种植葡萄。葡萄又适合于房前屋后栽植和盆栽,是发展庭院经济和美化环境的重要果树。据农业部统计资料显示,截至2015年年底,我国葡萄栽培总面积为79.92万公顷,占世界葡萄栽培总面积的11.16%,位居世界第三位;产量达1366.90万吨,占世界葡萄总产量的14.96%。自2010年后一直居世界葡萄产量的第一位。我国果树生产中,葡萄栽培总面积仅次于柑橘、苹果、梨和桃,占全国果树栽培总面积(1237.14万公顷)的6.46%,居于第五位。从总产量上看,仅次于苹果、柑橘、梨、桃和香蕉,葡萄总产量占全国果品总产量(15771.26万吨)的8.66%,居于全国水果产量第六位。我国葡萄栽培面积、总产量和单产总体呈稳定上升趋势。葡萄种植面积由1980年的3.16万公顷增长为2015年的79.92万公顷,年平均增长率为9.91%,葡萄生产产量由1980年的11万吨增长为2015年的1366.90万吨,总产量的增长幅度大于面积的增长幅度,年平均增长率为15.15%。尤其是2000年以来,总产量由328.2万吨增长到2013年的1155.0万吨,年平均增长率为10.16%。从我国葡萄种植的布局来看,我国葡萄的主要种植区集中在新疆维吾尔自治区(以下简称新疆)、河北、陕西、山东和辽宁等省区。新疆一直是我国葡萄种植大省(区),种植面积居全国首位,2013年葡萄种植面积占全国葡萄面积的20.3%,产量持续增长。山东、河北等环渤海地区葡萄生产产量仅次于新疆,都是我国葡萄生产大省,2013年山东、河北两地葡萄种植面积分别占全国葡萄面积的5.58%和11.4%,此时全国葡萄种植依然集中在新疆、河北和山东三省,但种植面积和生产产量所占比重逐渐降低。重庆、陕西等中部地区以及湖南、浙江、广西等南方省份葡萄种植面积增长迅速。四川、云南等省葡萄产量与面积持续增长,2012年云南省葡萄种植面积有大幅度增长,居全国第9位,2013年继续保持,由此可以看出我国葡萄生产规模有明显地西迁、南移的发展趋势。鲜食葡萄栽培面积较多的省区主要有新疆、辽宁、陕西、山东、河南、广西壮族自治区(以下称广西)、云南、湖南、湖北,上述9个省区鲜食葡萄栽培总面积占全国鲜食葡萄栽培总面积的近70%,反映出近年来鲜食葡萄栽培区域正逐渐向华中(湖南、湖北)和西南各省区(如云南、广西、四川)扩展。我国葡萄栽培主要以鲜食为主,其中鲜食葡萄栽培面积约占80%,酿酒葡萄约占15%,制干葡萄约占5%。从鲜食葡萄品种构成上看,巨峰、京亚、藤稔和夏黑等欧美杂种品种为我国东部地区的主栽鲜食葡萄品种。其中,巨峰仍然是鲜食品种中栽培面积最大的品种,我国育成的欧美杂种品种京亚和户太8号也有较大的栽培面积。近年来,夏黑、金手指和阳光玫瑰种植面积有逐年增加的趋势;欧亚种品种以红地球、无核白、玫瑰香、维多利亚、无核白鸡心、美人指等面积较大,主要分布于云南、陕西、甘肃、新疆、湖南和宁夏回族自治区(以下简称宁夏)等省区,单品种栽培面积均在4万亩以上,其中红地球占20%以上。据农业部统计资料显示,自2001年以来,我国葡萄栽培总面积和总产量总体呈稳定上升趋势,产业布局逐步趋于集中。非适宜区和适宜区内的非适宜品种以及管理技术落后、经济效益低下地区的栽培面积大幅减少,而优势生态区及我国南方经济效益较高地区的栽培面积稳定增加。其中环渤海湾产区、新疆产区和西北及黄土高原产区等三大产区栽培面积占全国栽培总面积的60%以上。经过几十年发展,我国葡萄生产逐渐向资源禀赋优、产业基础好、出口潜力大和比较效益高的区域集中,区域优势进一步显现。目前基本形成西北干旱产区、黄土高原干旱半干旱产区、环渤海湾产区、黄河中下游产区、以长江三角洲为核心的南方产区和西南产区及以吉林长白山为核心的山葡萄产区等相对集中的栽培区域。自2001年以来,我国葡萄栽培总面积和总产量总体呈稳定上升趋势,产业布局逐步趋于集中,但2013年和2014年由于酿酒葡萄收购价格偏低导致2014年部分酿酒葡萄产区出现毁园现象。2015年全国葡萄栽培面积略有增加,但酿酒葡萄栽培面积将有所减少,产量将继续稳步增加,产业布局更加趋于集中,其中环渤海湾产区、新疆产区和西北及黄土高原产区等优势产区面积仍占绝对优势,而经济效益好的以江浙为核心的南方产区和西南产区面积继续较快增加。栽培模式多样化是我国目前葡萄产业的重要特点。栽培方式已从传统的露地栽培模式发展到现代高效农业栽培模式,如设施栽培、有机栽培、休闲观光高效栽培等多种模式。葡萄设施栽培的发展,不仅扩大了栽培区域,延长了果品上市供应期,而且显著提高了葡萄产业的经济效益和社会效益。截至2013年年底我国设施葡萄面积已经达200余万亩,占我国葡萄栽培总面积的20%左右,涉及促早栽培、延迟栽培和避雨栽培等多种模式。其中避雨栽培面积最大,主要集中在以长江三角洲为核心的南方葡萄产区,面积达150万亩左右;促早栽培面积其次,超过50万亩,主要集中分布在环渤海湾葡萄产区及东北地区,近几年西北及新疆促早栽培面积增加较快;延迟栽培发展迅速,面积已达3万亩左右,主要集中分布在西北干旱产区的甘肃等地。2015年葡萄栽培模式多样化更加突出,受经济效益驱动,设施栽培、有机栽培、休闲观光高效栽培和机械化生产等模式栽培面积将快速增加。鲜食葡萄中,巨峰、红地球、玫瑰香、藤稔、夏黑无核、无核白鸡心和无核白等优良品种栽培面积已经占到葡萄栽培总面积的70%以上,而且巨玫瑰、早黑宝、醉金香、火焰无核、阳光玫瑰、克瑞森无核等品种以及刺葡萄优良单系也发展很快。今后,我国葡萄品种结构将进一步优化,品种多样性将继续加强。鲜食品种中巨峰系优良品种(如夏黑无核和阳光玫瑰等)、红地球、火焰无核和克瑞森无核等品种面积和所占比重进一步增加。 -
报告三、发病规律
出版时间:2015该病菌是一种弱寄生菌,普遍潜伏在树体内,在树木正常生长的情况下,并不造成为害,一旦遭遇旱、涝、冻等气象灾害、病虫害、营养不良、土壤微量元素缺乏(如硼)等客观因子,导致树势衰弱时,枝枯病菌才能为害树体。因此,黑松枝叶发黄和枯死的直接原因是枝枯病,而黑松生长势衰弱是引起枝枯病大发生的主要诱因。病原菌以菌丝体在感病植株病皮内越冬,翌年春出现松针枯黄,不脱落,4月上、中旬,由皮下生出子囊盘。子囊盘5月下旬至6月下旬成熟,并释放孢子。分散时期在7月中旬至8月中旬。子囊孢子可持续释放3个月左右。孢子借风力、雨水传播,在水湿条件下萌发后由伤口侵入植株皮层中。10月至翌年春发病部位继续失水干枯,成暗灰色或暗棕色,小枝死亡,甚至整个枝杈死亡。黑松枝枯病严重度分级标准0级:枝干无病。1级:低于25%枝干发病,对树势无明显影响。2级:25%~50%枝干发病,对树势有些影响。3级:50%~70%枝干发病,树势已受到明显影响。4级:75%以上枝干发病,树势极度衰弱,以至枯死。对黑松枝枯病的发病率和严重度可用以下参数进行计算:发病株率(%)=发病株数/调查总株数×100病情指数=∑(各级病株数×该病级值)/(调查总株数×最高级值)×100相对防治效果(%)=(对照病情指数-处理病情指数)/对照病情指数×100 -
报告微生物肥料和生物农药应用案例
出版时间:2012苗足苗壮是丰收的关键,促进小麦生长的措施有多种,其中利用微生物菌剂对促进作物生长、提高作物产量、提高养分利用率是有很好作用的。洪坚平(2008)于2001年9~11月在德国霍恩海姆大学研究了分别施用易溶性磷肥(过磷酸钙)和难溶性磷肥(磷矿粉)的土壤(生黄土)上接种SPll(芽孢杆菌,菌数>1010个/g植物生长促进剂)、T50(毛霉,菌数>109个/g)后对小麦(印度小麦品种,“Tritieum BDME-10”)幼苗余生长和磷吸收利用的影响,试验采用盆栽法,将SPll细菌菌剂[1g(菌剂)/kg(土)]和T50真菌菌剂[1g(菌剂)/kg(土)]分别接种在不施磷、施易溶性磷[过磷酸钙,80mg(P)/kg(土)]和施难溶性磷[磷矿粉,5mg(P)/kg(土)]的容积为1L的盆中。研究结果表明,T50和SPll两种生物菌剂相比,T50在缺磷和施难溶性磷肥土壤上不能很好地满足磷的需要和刺激小麦生长。固氮菌能产生促进植物生长的物质,特别是根系生长的生理活性物质,为了探索该类菌在高寒地区的增产效果,席琳乔(2007)研究了固氮菌对兰州地区燕麦不同生育期促生作用,试验设计包括:①接种剂(菌株)和接种剂(菌株)+半量尿素处理;②全量尿素:296kg/hm2;③半量尿素:148kg/hm2,撒播。研究结果表明,假单胞菌属Pseudomonas sp.N4,动胶杆菌属Zoogloea sp.W6,生脂固氮螺菌Azospirillus lipofPrum C6,固氮菌属Azotobacter sp.05和Azotobacter sp.w5对燕麦有促生作用。拔节期,接种固氮菌后燕麦株高增加0.73%~12.11%,叶绿素增加1.14%~39.43%,地上植物量增加21.45%~43.55%,地下植物量增加51.85%~130.86%,根冠比增加7.7%~76.9%,总植物量增加2.00%~45.36%,粗蛋白增加3.02%~25.57%;半量化肥+固氮菌处理的株高增加1.96%~5.82%,叶绿素和地上植物量没有增加,地下植物量增加3.47%~33.17%,根冠比增加15.38%~30.76%。成熟期,各个处理促生作用降低,处理间差距缩小,Pseudomonas sp.N4和Azotobacter sp.O5促生效果好。在中国100多种间作体系的组合中,70%的组合有豆科作物参与,豆科作物与非豆科作物间作在间作体系中占绝对统治地位。房增国(2009)研究了接种根瘤菌对蚕豆和玉米间作系统氮营养的影响,试验设在甘肃省武威市永昌镇白云村,属于典型的两季不足、一季有余的自然生态区。供试土壤为灰棕漠土,供试作物及菌种:玉米为中单2号,蚕豆为临蚕2号,供试蚕豆根瘤菌为Rhizobium leguminosarum biovar viciae GS374,玉米为中单2号,4月16日播种,5月5日出苗,10月1日收获。供试蚕豆为临蚕2号,3月24日播种,4月18日出苗,8月1日收获。播种时,将蚕豆固氮根瘤菌液(GS374,约含根瘤菌3.2×107个/ml)稀释20倍,装入喷雾器,喷洒在蚕豆种子表层,每颗喷洒10ml,对照区喷洒等量清水,然后覆土盖种。试验结果表明,不施氮处理接种根瘤菌所获得的单作或间作系统产量与不接种但施N 225kg/hm2的相应系统产量相当,且施N 225kg/hm2处理接种仍能促进蚕豆的结瘤作用。统计分析表明,与不接种根瘤菌、蚕豆单作、不施氮相比,接种、蚕豆/玉米间作、施氮均极显著地提高了蚕豆生物学产量。但只有间作能显著增加其籽粒产量;施氮显著增加玉米生物量和籽粒产量。施N 225kg/hm2后,蚕豆接种、间作对玉米生物量无显著影响;但不施氮时蚕豆接种显著提高了与之间作的玉米籽粒和生物学产量,增幅分别为34.3%和25.6%。接种根瘤菌显著提高了不同氮处理以籽粒产量为基础计算的土地当量比和不施氮处理以生物学产量为基础计算的土地当量比。蚕豆接种根瘤菌与不接种相比,其单株根瘤数和根瘤干重均显著增加;间作与蚕豆单作相比对根瘤数的影响较小,但显著促进了蚕豆单株根瘤干重的增加。因此,本研究认为,豆科作物接种合适的根瘤菌,是进一步提高豆科/禾本科作物间作系统间作优势的又一重要途径。青稞即裸大麦,是我国青藏高原及西北高寒地区极为重要的粮食作物及优质饲草,张堃(2010)研究了不同剂型联合固氮菌肥对青稞促生效应和固氮能力,通过温室盆栽实验,利用15N稳定性同位素稀释法,测定其对青稞生长及固氮能力的影响。供试青稞为甘肃省天祝地区当地品种,试验用固氮菌株是从高寒地区燕麦(甘肃天祝)和盐碱地小麦(甘肃兰州)根际分离所得,制成菌肥后有效联合固氮菌数量均在5.00×108个/g以上,供试土壤取自甘肃农业大学草业学院兰州试验站,盆栽试验于2007年1月上旬至2007年5月上旬在甘肃农业大学草业学院人工温室进行。设7个处理:CK1(基质对照,泥炭拌种,用量为种子重量的10%)、CK2(15N尿素对照,半量尿素,丰度为2.24%)、1N(全量氮肥对照)、1/2NL(半量15N尿素+液态菌肥)、NL(液态菌肥)、1/2NS(半量15N尿素+固态菌肥)、NS(固态菌肥处理)。全量氮肥施用量为每盆0.5(相当于220kg/hm2,参考当地农田氮肥施用量),为普通尿素,半量氮肥用量为全量氮肥用量的一半。试验结果表明,对于株高、地上生物量、地下生物量、根冠比来说,联合固氮菌肥与半量氮肥(110kg/hm2)配合施用,表现出与全量氮肥相近的促生效果,即可节约近一半的氮肥用量(110kg/hm2);固体菌肥和液体菌肥的固氮百分率和固氮量分别为17.44%、14.03%和22.87kg/hm2、21.29kg/hm2。并且,固体菌肥对青稞生长的促进作用优于液体菌肥。胡江春(2002)研究了海洋放线菌MB-97促进连作大豆增产机理,他从渤海海水中分离海洋放线菌—细黄链霉菌(MB-97),在重茬大豆根际成功定殖,对克服重茬大豆连作障碍具有显著作用:抑制大豆根际致害微生物(DRMO)紫青霉菌的生长繁殖达80%,减轻了土壤毒素的危害;防治因大豆连作而加重的土传真菌性病害如镰刀菌等引起的根腐病达50%以上;调节优化大豆根际土壤微生物区系,B/F值显著上升,使土壤由低肥力的“真菌型”向高肥力的“细菌型”转化;MB-97对大豆有生长刺激作用,田间试验结果平均增产大豆15.2%,表明海洋放线菌(MB-97)是一株优良的植物根际促生菌(PGPR)。郑卓辉(2007)研究了光合细菌对菜心农药残留的降解效果,供试光合细菌制剂为光合细菌菌肥和光合细菌净水剂。供试作物为柳叶早菜心和高脚菜心。光合细菌净水剂降解农药残留试验于2006年12月在增城市小楼镇种植高脚菜心的大棚菜田进行,增城高脚菜心于11月15日播种,12月15日移栽,移栽30d后菜心具7~9片叶时喷施三唑磷500倍液,每667m2对水45kg。药后2d后喷施光合细菌净水剂60倍液,每667m2对水45kg,3次重复。在喷施光合细菌60倍稀释液的2d、7d、9d后,采摘菜心叶片样本,计算农残抑制率。光合细菌菌肥降解农药残留试验试验于2006年7~9月在广州市白云区人和镇种植柳叶早菜心的菜田进行,对具7~9片叶的菜心喷施三唑磷800倍、马拉硫磷600倍、三氯杀螨醇800倍和集琦虫螨克2000倍的杀虫剂,每667m2对水45kg,药后2d喷施光合细菌菌肥60倍和120倍稀释液,每667m2对水45kg,喷施后2d分3次抽取新鲜菜心检测农药残留情况,计算农残抑制率。试验结果表明,已施用三唑磷的增城高脚菜心在喷施光合细菌净水剂2d、7d、9d后的农残抑制率分别为99.07%、70.26%和40.23%,说明三唑磷在菜心上农药残留可迅速降解,而据田间观察结果,其自然降解速度非常缓慢。在夏天(7月、9月)应用光合细菌菌肥对柳叶早菜心进行农药降解试验,施用三唑磷800倍、马拉硫磷600倍、三氯杀螨醇800倍和集琦虫螨克2000倍2d后,开始喷施光合细菌菌肥,结果表明,柳叶早菜心药残留抑制率开始逐渐下降。据田间观察结果,农药残留会自然降解,但速度较慢,施用光合细菌菌肥60倍降解效果明显优于120倍液。说明光合细菌浓度越高,菌的生长繁殖越快,降解农药残留效果越好。贺冰(2010)研究了微生物菌剂与化学肥料配施对番茄幼苗生长的影响,试验于2009-03-24至2009-05-12在河南农业大学园艺学院试验站塑料大棚内进行,供试的番茄品种为“中杂9号”;化学肥料为氮、磷、钾复合肥,含N 15%,P2O5 15%,K2O 15%。微生物菌剂是含有放线菌、光合细菌、酵母菌、乳酸菌和醋酸菌的混合发酵液。每立方米育苗土中微生物菌剂和化学肥料配施量设置4个处理,分别为CB1:微生物菌剂0.3kg+复合肥325g,CB2:微生物菌剂0.3kg+复合肥260g,CB3:微生物菌剂0.3kg+复合肥227.5g,CB4:微生物菌剂0.3kg+复合肥195g,CF:复合肥325g,以单施微生物菌剂0.3kg为对照。不同处理的化学肥料混施到分苗土中,微生物菌剂稀释50倍液作为分苗底水施入,试验采用完全随机排列,测定了番茄幼苗的形态指标、生理指标和育苗后土壤的速效氮、速效磷、速效钾含量,研究了有益微生物菌剂与化学肥料配施对番茄幼苗生长的影响。结果表明,微生物菌剂与化学肥料配施能够促进番茄幼苗地上部的生长,增加根体积,根鲜重和根干重,提高幼苗叶片可溶性糖含量,提高土壤速效氮含量,这些效果与化学肥料的配施量有关;微生物菌剂和化学肥料配施对番茄幼苗叶绿素含量和土壤速效磷、速效钾的影响不明显。甲氰菊酯作为一种广谱高效的菊酯类杀虫剂,在我国被广泛用于粮食、蔬菜和果树等多种作物,该类农药是,目前,我国出口蔬菜、水果中主要的3类农药残留之一,严重地影响了我国农产品的出口创汇以及国际竞争力。戴建平(2010)研究了光合细菌PSB07-15对辣椒及土壤中甲氰菊酯残留的生物修复作用,试验地设在湖南省蔬菜研究所,供试辣椒品种为湘研19号,光合细菌菌株为沼泽红假单胞菌PSB07-15,试验共设5个处理:PSB07-15菌液7500ml/hm2、3750ml/hm2和1875ml/hm2,光合细菌培养基2250ml/hm2,清水对照(空白CK)。辣椒定植缓苗后喷施40%甲氰菊酯乳油2000倍液,喷施农药10d后开始喷菌液,每隔5~7d喷1次,共喷菌液3次。第3次喷施菌液后7d采集辣椒样品及相应的土壤样品。3次施菌液当天均为阴或晴天,施菌液后24h内均未降雨;田间试验期间日平均温度25.2℃。研究结果表明:菌株PSB07-15施用1875ml/hm2、3750ml/hm2、7500ml/hm2,辣椒鲜质量分别增加15.12%、21.68%和14.79%;菌株PSB07-15能够有效降解辣椒和土壤中甲氰菊酯残留(辣椒中大于47.20%,土壤中大于50.73%)。菜蛾属鳞翅目菜蛾科害虫,是十字花科蔬菜最重要的害虫之一,严重影响十字花科蔬菜的生产。于洪春(2005)研究了苏云金杆菌与生物杀虫剂(2.5%Success胶悬剂)混用对菜蛾防治效果,供试菌株为苏云金杆菌DP和20菌株,用蒸馏水将2.5%功夫菊酯乳油稀释2000倍液,将2.5%Success胶悬剂稀释6000倍液和9000倍液,将DP和20菌株配制成5×107芽孢/ml和1×108芽孢/ml的菌液,并将DP和20分别与Success混配成5×107芽孢/ml+6000倍Success,5×107芽孢/ml+9000倍Success,1×108芽孢/ml+6000倍Success,1×108芽孢/ml+9000倍Success的混合液。然后分别喷雾功夫菊酯2000倍液,Success 6000倍和9000倍液,20菌株1×108芽孢/ml菌液及与Success 6000倍和9000倍液的混合液,并设清水为对照。统计药后24h、48h、72h幼虫死亡率和校正死亡率。研究结果表明,菌株20与生物杀虫剂Success混用后在田间对菜蛾幼虫的杀虫效果明显高于菌株20和Success单独使用的防治效果,施药后48h校正死亡率可达69.4%,72h后校正死亡率达91.2%混用后的杀虫效果也明显高于菌株单用和化学杀虫剂功夫的防治效果。Success对Bt芽孢的存活和萌发无影响。这些为黑龙江地区Bt与Suceess复配制剂的制备和田间混用提供了试验依据。在温室生产中,由于复种指数高,土壤利用强度大,导致土壤微生物多样性降低,微生物群落失衡,土壤盐渍化酸化严重,作物产量和品质降低。黄瓜作为一种大众蔬菜,是温室栽培的主要蔬菜之一。李玉奇(2010)研究了微生物菌肥对温室黄瓜生长、产量及品质的影响,本试验于2008年8月中旬至11月中旬在上海崇明现代农业园区内的塑料温室大棚中进行(30m×70m)。供试黄瓜品种为“春秋王”;3种供试微生物菌肥分别为连茬王、护根宝及木霉菌,试验设计1个对照和9个处理,即:对照(CK)、木霉菌100kg/hm2(M1)、木霉菌200kg/hm2(M2)、木霉菌300kg/hm2(M3)、连茬王100kg/hm2(L1)、连茬王200kg/hm2(L2)、连茬王300kg/hm2(L3)、护根宝60kg/hm2(H1)、护根宝120kg/hm2(H2)、护根宝240kg/hm2(H3)。同时,尿素按225kg/hm2(46%N)施入所有小区。2008年9月10日,将预培养15d且生长均一的黄瓜幼苗,按45000株/hm2移入每个小区。在黄瓜生长期间采用沟灌,保持田间持水70%~80%。结果表明:①木霉菌以200kg/hm2处理效果较好,显著增加了温室黄瓜总生物量、蔓长、茎粗、叶面积指数和叶片数(P<0.05);连茬王处理总体上均能提高温室黄瓜的生长,其中以200kg/hm2处理效果较好;护根宝处理对温室黄瓜总生物量、蔓长、茎粗、叶面积指数和叶片数无显著的影响。各处理均能提高黄瓜的根活力,显著提高黄瓜光合速率、气孔导度和胞间CO2浓度。同时,各微生物菌肥均能显著降低温室黄瓜中硝酸盐含量(P<0.05)。②木霉菌能显著增加温室黄瓜的产量(P<0.05),M1、M2和M3处理分别增加产量49.7%、54.1%和48.5%;连茬王和护根宝也均能增加温室黄瓜的产量,并且L1和H1处理达到了显著水平(P<0.05),分别提高黄瓜产量28.4%和41.5%。根据投入产出效益分析可知,M2的处理增加利润最多,达33847元/hm2。此外,连茬王处理中以L2水平处理增加利润最多,为17766元/hm2,护根宝处理中以H1处理水平增加利润最多,为27746元/hm2。何小凤(2006)研究了在石灰性土壤上不同施氮水平下(0.05mg/kg、0.10mg/kg、0.15mg/kg、0.20mg/kg、0.25mg/kg、0.30mg/kg和0.35mg/kg)固氮菌肥对油菜盆栽土壤微生物量碳、氮的影响,研究结果表明:在一定施肥范围内,施氮量不同,固氮菌的肥效也不同。在中等氮水平(N为0.10mg/kg)时施效最佳,对土壤微生物量碳氮的影响最大,菌群数量也明显增加。当土壤氮水平过高(N为0.15~0.30mg/kg)或过低(N为0.05mg/kg)时,固氮菌肥对土壤微生物量碳氮及微生物数量的影响均受到抑制。马红梅(2011)也研究了固氮菌与氮配施对生菜及油菜产量和品质的影响,结果表明:施加固氮菌(M2)后,生菜、油菜的鲜重和干重较之不加固氮菌(M1)有显著增加趋势,生菜、油菜的维生素C含量分别提高4.2%~18.6%、17.6%~35.0%,还原糖含量分别提高17.6%~35.0%、6.7%~41.3%,硝酸盐含量分别降低40.5%~57.2%和22.8%~40.8%。梁建根(2007)研究了植物根围促生细菌(PGPR)对黄瓜生长及生理生化特性的影响,植物促生细菌CH1和CH2分离自多年种植黄瓜的蔬菜地,CH1鉴定为短短芽孢杆菌(Brevibacillus brevis),CH2鉴定为枯草芽孢杆菌(Bacillus subtilis)。种子消毒后,在CH1与CH2的菌液(109cfu/ml)中浸泡30min后,播种于装有2次高压灭菌的肥沃菜园土基质的塑料钵中,种子处理1周后,再用同等浓度的菌液灌根处理,每钵30ml,待子叶完全展开后,进行各项生理指标的测定,结果表明,CH1与CH2对黄瓜种子萌发、根与植株的生长有显著促进作用,根部与叶部中超氧阴离子产生速率、H2O2和丙二醛(MDA)含量显著减少,与品质相关的叶绿素、蛋白质、可溶性糖和维生素C含量显著增加。红树林生态系统具有很高的生态、社会和经济价值,尤其在固岸护堤、发展滩涂养殖与近海渔业、维持生物多样性、净化环境、提取海洋药物、发展生态旅游以及维持海岸带生态平衡等方面具有重大的价值。红树林造林的成活率低一直是我国进行红树林恢复和发展中存在的难题,为了解决这一难题,李玫(2008)通过溶磷菌与固氮菌双接种对红海榄幼苗生长效应影响的研究,探讨PGPB(根际促生菌)双接种在红树林人工营造上应用的可能性,研究了固氮菌(Phy)、溶磷菌(Vib)单接种及双接种对红树植物红海榄植株生长和氮、磷营养的影响。接种后6个月对试验苗的生长指标等测定及分析表明,Phy、Vib单接种或Phy+Vib双接种均能改善红海榄氮、磷素营养,增强其光合作用,进而明显促进植株的生长和生物量的增加;其中,Phy+Vib双接种的促生效果最显著,其苗高、茎径、地下生物量、总生物量、根全氮含量、根全磷含量和叶片叶绿素总量分别比未接种的对照苗提高43.3%、11.6%、44.8%、29.9%、29.3%、27.0%和16.8%。固氮菌(Phy)、溶磷菌(Vib)双接种在促进红海榄植株生长方面表现出一定的正交互效应,可用于苗期接种。甘肃中部地区干旱少雨,沟壑纵横,植被稀少,水土流失严重,生态环境脆弱,是国家实施西部大开发和生态环境建设的重点地区,大量种植紫花苜蓿对于改善当地生态环境意义重大。刘彦江(2005)研究了在甘肃中部地区退耕还林示范点的退耕地上紫花苜蓿应用根瘤菌剂和稀土肥料效果试验,试验设在山才口镇金盆山流域退耕还林示范点的退耕地中,海拔2010m,年降水量350mm,主要集中在7~9月,春季干旱少雨。试验地为梯田,黄绵土,肥力中等,供试稀土旱地宝、根瘤菌种衣剂由宁夏中天技术创新工程有限公司提供,全元稀土微肥(巨源植物全营养素),生物活性稀土微肥由北京巨源高科公司提供,试验通过根瘤菌种衣剂包衣、根瘤菌种衣剂包衣+稀土旱地宝50倍液喷施、全元稀土微肥400倍液、全元稀土微肥400倍液+生物活性稀土微肥600倍液喷施;根瘤菌种衣剂包衣+全元稀土微肥400倍液喷施、根瘤菌种衣剂包衣+全元稀土微肥400倍液+生物活性稀土微肥600倍液喷施,3种方法对紫花苜蓿播种当年出苗、生长情况及鲜草产量的比较,结果表明,施用以根瘤菌剂和稀土微肥配合效果优于单施,其中以根瘤菌种衣剂+全元稀土微肥+活性稀土微肥效果最好,根瘤菌种衣剂包衣+全元稀土微肥400倍液喷施和全元稀土微肥400倍液+活性稀土微肥600倍液次之,产草量分别达到3597.0kg/hm2、3574.5kg/hm2和3822.0kg/hm2;比CK提高26.9%、19.4%和18.7%。由此得出,根瘤菌种衣剂能促进苜蓿出苗,稀土微肥能促进紫花苜蓿生长,并以根瘤菌种衣剂包衣+全元稀土微肥400倍液+活性稀土微肥600倍液喷施效果最佳。韩光(2011)在重庆北碚新垦坡耕地中性土壤上研究了种植紫花苜蓿并接种根瘤菌和其他根际有益微生物(PGPR)(如联合固氮菌、解磷菌和解钾菌等)对土壤养分的影响,试验地位于西南大学后山,为新垦坡耕地,坡度约为25度。土壤为紫色土,紫花苜蓿为美国引进品种三得利,供试菌株包括苜蓿根瘤菌、巨大芽孢杆菌(中国菌保中心菌株号ACCC10008)、联合固氮菌和硅酸盐细菌,试验设4个处理水平:种植紫花苜蓿不接种(M)、种植紫花苜蓿接种根瘤菌(M+R)、种植紫花苜蓿接种根瘤菌和其他PGPR(M+R+PGPR)、不种植紫花苜蓿不接种(W)。结果显示:接种根瘤菌+其他PGPR的处理对土壤有机质、全氮、全磷、全钾、有效磷和速效钾的提高均达到显著水平,较只接种根瘤菌的处理分别提高33.5%、22.7%、3.8%、11.5%、11.4%和22.3%,较不接种根瘤菌和PGPR的处理分别高42.2%、58.8%、8%、12.6%、37.2%和40.2%,接种根瘤菌+其他PGPR的效果优于只接种根瘤菌和不接种的。同时,上述处理对豆科植物苜蓿植株瘤重、株高、根鲜重、地上部鲜重以及植株全氮含量的提高均达到显著水平,比只接种根瘤菌的处理分别高44.5%、33.2%、77.3%、76.7%和17.7%。将苜蓿和相应的PGPR两者联合使用有更好的土壤改良效果,加速了新垦地贫瘠土壤的培肥过程。黄河三角洲地区地多人少,地势平坦,适于紫花苜蓿规模化种植。但是,该地区干旱少雨土壤贫瘠、盐碱化严重,对紫花苜蓿生长十分不利,李富宽(2005)通过田间试验研究了施磷肥和接种根瘤菌对黄河三角洲地区紫花苜蓿生长及品质的影响,试验在山东省东营市大汶流草场进行,土壤为滨海盐碱土,含盐量0.34%,施磷处理设施过磷酸钙0kg/hm2、375kg/hm2、750kg/hm2和1175kg/hm2 4个水平,在播种前一次性施于小区土表。根瘤菌接种处理设接种与不接种2个水平,接种根瘤菌处理在播种时每千克紫花苜蓿种子拌根瘤菌粉8.5g,结果表明,播种前施磷肥能明显提高紫花苜蓿的出苗和成苗率,显著提高紫花苜蓿的叶茎比、叶面积指数、叶绿素含量,并提高干物质产量12.9%~85.5%,施磷肥还显著提高了紫花苜蓿地上部可溶性碳水化合物和粗蛋白质的含量,降低了中性洗涤纤维含量,使饲草体外干物质消化率增加0.73%~8.49%,播种时接种根瘤菌能显著增加紫花苜蓿单株根瘤结瘤数和平均根瘤重,并能改善苗期的生长,但对干物质产量影响不明显。试验结果显示,黄河三角洲地区种植紫花苜蓿施用过磷酸钙750kg/hm2,并接种根瘤菌可获得较好的提高产量和改善品质的效果。高羊茅作为一种冷季型草种,但在干旱胁迫下,其萌发受到严重影响导致应用受到很大限制。徐妙芳(2009)将硅酸盐细菌菌液浓度设3个梯度,即为103CFU/ml、105CFU/ml和107CFU/ml,将高羊茅种子分置于硅酸盐细菌VKPM7519、VKPM7517菌液中浸种3h,对照以无菌水代替硅酸盐细菌浸种,浸种后的种子于PEG水分胁迫下萌发。研究表明,在同等干旱胁迫的条件下,硅酸盐细菌菌液处理的盆栽高羊茅表现出不同的受旱程度,其中,经胶质芽孢杆菌BM5和土壤芽孢杆菌VKPM7517处理的高羊茅的叶片相对含水量较高,叶片脯氨酸含量、可溶性糖含量、相对电导率和根冠都比较小,可见受旱程度较弱,表明硅酸盐细菌对提高高羊茅的抗旱性方面具有一定的作用。原因是硅酸盐细菌的荚膜由多糖组成,荚膜多糖为高度水合分子,含水量在95%以上,可帮助细菌抵抗干旱对生存的威胁。荚膜多糖可以减慢水分运动的速度,从而减缓土壤水分的蒸发,而小的荚膜会结合水分以保证细菌本身的生命活动,造成土壤干旱更加严重。烟草是一种需钾、磷较多的经济作物,特别是钾,不仅影响烟株的生长发育,而且直接影响烟叶的质量,在减施肥料的情况下施用PGPR菌肥,能否获得作物的优质高产呢?王豹祥(2011)研究了应用PGPR菌肥减少烤烟生产化肥的施用量,利用从环神农架烟区烤烟根际筛选的抗生菌、固氮菌、解磷菌和解钾菌菌株,经形态和生理生化特征及16S rDNA序列分析,分别为蜡状芽孢杆菌(Bacillus cereus)、粪产碱菌(Alcaligenes faecalis)、阴沟肠杆菌(Enterobacter cloacae)和阿氏肠杆菌(Enterobacter asburiae)。将此4菌株的菌剂以相同的菌数和灭菌草炭混合制成PGPR菌肥,在湖北省房县湖北中烟工业有限责任公司试验基地进行,土壤类型为黄棕壤,种植烤烟品种为云烟89,菌肥施用量30kg/hm2,于烤烟移栽时溶于生根水中一起施入。该试验共设4个处理,分别是:①常规施肥同时施用PGPR菌肥;②NPK肥为常规施肥的80%同时施用PGPR菌肥;③常规施肥;④NPK肥为常规施肥的80%。结果表明,施用菌肥的二处理与未施用菌肥的二处理相比,施用菌肥不同生长期烤烟根际放线菌的数量显著降低17%~27%(P<0.05),根际微生物生物量碳含量提高3%~16%,现蕾期根际解磷菌的数量显著提高24%(P<0.05),并可提高烤烟的抗病性,烤后烟外观质量好。王曙光(2002)研究了丛枝菌根对无性繁殖茶苗生长及茶叶品质的影响,该试验中接种的AM真菌分别为:分离于中国科学院鹰潭红壤丘陵开放实验站茶园的Acaulosporalavis(光壁无梗球囊霉,菌号:34);分离于中国科学院鹰潭红壤丘陵开放实验站耕地的Glomusmanihot(木薯球囊酶,菌号:38)和分离于中国科学院封丘开放实验站耕地的Glomus caledonium(苏格兰球囊霉,菌号:90036)。菌剂是以三叶草为宿主植物的根—土混合物,使用前用MPN法测每种菌剂的繁殖体含量(包括孢子、菌丝和被侵染的根段),插穗生根后选大小一致的苗木,接种AM菌剂,试验持续14个月。结果表明,接种AM真菌明显促进了无性繁殖茶苗的生长,无论是株高还是地上、地下干重都高于不接种者,且差异达极显著水平。对茶树吸收无机元素有明显的促进作用,尤其是对P、Ca、Mg等的吸收。接种AM真菌的茶苗根际细菌、放线菌数量和酸性磷酸酶活性都明显高于对照。接种AM真菌还提高了茶叶水浸出物、氨基酸、咖啡碱和茶多酚的浓度,改善了茶叶的品质。菌根菌对煤矸石环境的间接作用,即接种菌根真菌之后,菌根真菌对煤矸石土壤改善并不是直接作用于煤矸石,而是通过植物作为介质,通过促进植物对矿质元素的吸收,改善植物的生长状况,即改善了煤矸石的环境。毕银丽等(2007)在自然状况下用白蜡接种丛枝菌根真菌,研究丛枝菌根真菌对煤矸石山土地复垦的生态效应,以宁夏回族自治区大武口洗煤厂煤矸石山复垦地为实验点,在煤矸石山上铺了0.8~1m厚的河沙作为生长基质,属于极贫瘠的沙土。供试菌种为实验室增殖培养的Glomus mosseae和Glomus etunicatum的混合菌剂(按质量1:1混合),简称“Glomus”spp.。供试植物是宁夏回族自治区石嘴山市当地苗圃提供的先锋植株白蜡幼苗,株高1m左右,每株穴播接种50g混合菌根菌剂。结果表明,接种菌根真菌13个月后,植被成活率可提高15%,植被的盖度高于对照9%,促进了植株生长和发育,使植物生长加速,增加了生物物种的丰度;而且试验结果还发现,接种菌根真菌后,植物的侵染率高达90%以上,菌丝的长度比对照伸长了1.4倍,从而使根系的范围被扩大,这有利于生态系统稳定性的维持。茆振川(2004)研究了苏云金杆菌B24-14及其外毒素对植物寄生线虫的作用,试验中用于分离植物寄生线虫生防菌的土壤样品取自甘肃敦煌戈壁滩地表5~15cm土壤;自北京马连洼采集根结线虫病病土,以黄瓜品种中农12号为寄主植物,进行B24-14的防治线虫病温室试验。供试线虫为松材萎蔫线虫,用漏斗法将培养在灰葡萄孢菌上的松材线虫分离出来;用乙醇分级沉淀和紫外扫描方法,提取B24-14菌株的外毒素。用细胞培养板法检测其对松材线虫的毒杀效果,称取B24-14菌株粗提外毒素0.1g,分别用无离子水等比稀释为4mg/ml、2mg/ml、1mg/ml、0.5mg/ml、0.25mg/ml和0.125mg/ml溶液;按每穴0.5ml加入细胞培养板孔中,每孔中加入约100条松材线虫。检查线虫死亡率,结果表明,在4mg/L质量浓度下处理8h,线虫的杀死率可以达到93.75%,致死中质量浓度为574μg/ml;随处理时间延长和外毒素质量浓度的提高,毒杀效果也明显增强;6种质量浓度的外毒素处理线虫,其死亡率与毒素质量浓度的自然对数呈正相关,相关系数为0.981。温室防病试验表明,B24-14菌株的液体菌剂可以有效地防治根结线虫,处理21d黄瓜苗根结减退率达到71.6%~84.6%,经多次试验其防治效果均与对照呈显著差异。甜菜夜蛾(Spodoptera exigua)是近年来爆发危害的重要夜蛾科害虫,对Bt的敏感性较差。马谈斌(2011)研究了苏云金杆菌与黏虫颗粒体病毒联合作用对甜菜夜蛾的影响,以甜菜夜蛾为试虫,研究黏虫颗粒体病毒(PuGu-Ps)对苏云金杆菌(Bt)毒力的增效作用。用蒸馏水将Bt、Bt+PuGUPs配制成一定浓度悬浮液,按照生物杀虫剂药效测定的浸液饲喂法,在病死率为10%~90%的范围内,以等比法将上述悬浮液用蒸馏水稀释成500倍、1000倍、2000倍、4000倍、8000倍和16000倍等6个浓度。甜菜夜蛾饲喂人工饲料,每处理取人工饲料3g,滴加200μl不同浓度药液,充分混合后,分装于直径6cm培养皿中,接入初孵的甜菜夜蛾幼虫,每皿接虫20头,重复3次,设蒸馏水处理的人工饲料为对照。各处理置于(25±0.5)℃光照培养箱中饲养,48h后检查病死率,计算致死中浓度和共毒系数。结果表明:PuGv-Ps对甜菜夜蛾无致毒作用,但Bt中加入PuGv-Ps后可提高Bt对甜菜夜蛾的毒力,甜菜夜蛾致死中量LC50由Bt单剂的1.094mg/ml下降到0.862mg/ml,共毒系数达127。亚致死剂量Bt处理甜菜夜蛾能影响昆虫的生长发育,表现为幼虫生长量相对减少、蛹重下降、化蛹率降低和化蛹历期延长,添加PuGV-Ps后可进一步增强Bt对甜菜夜蛾生长发育的抑制作用。甜菜夜蛾中肠蛋白酶活性测定结果表明,PuGV-Ps对甜菜夜蛾中肠酶活性具有抑制作用;昆虫同时取食PuGv-Ps和Bt后,中肠酶液总蛋白酶活力均有所下降,在中肠酶液最适pH值范围内蛋白酶活力抑制作用最明显。球孢白僵菌是一种在国内外已被广泛深入研究的重要杀虫真菌,用于多种农林害虫尤其是刺吸式口器害虫的微生物防治,应盛华(2003)研究了球孢白僵菌分生孢子乳悬剂对甘蓝上桃蚜的田间控制效果,试验在云南昆明市郊官渡区选取肥力和长势均匀的4~5叶期甘蓝(莲花白)菜地0.1hm2进行,利用液—酵法生产球孢白僵菌悬乳剂,首先将孢子粉为有效活性成份和由生物学相容的惰性液载体、乳化剂、稳定剂及紫外保护剂等助剂组成的配方优化乳液,按1/10的比例(W/V)配制成孢子乳悬剂,使含孢量达到1010个/ml配制时按配方比例称量孢子粉和各种助剂,先将惰性液(一种石化产品)加热到30~35℃,然后将上述助剂加入少量惰性液中,充分搅拌均匀,再加入全部惰性液,混匀后即成乳液,最后将称量好的孢子粉分批次加入乳液中,充分搅拌均匀即成球孢白僵菌孢子乳悬剂Ⅰ同时,在配制好的孢子乳悬剂Ⅰ中按1%的比例(W/V)加入与该菌孢子相容的10%吡虫啉可湿性粉剂,搅拌混匀即得孢子乳悬剂Ⅱ,然后用普通背负式喷雾器逐一从清水对照、低浓度至高浓度对甘蓝植株进行喷雾,喷雾量控制在22~50kg以内,结果表明:用含孢量106个/ml和105个/ml的菌液喷雾乳悬剂Ⅰ仍表现出明显的控蚜效果Ⅱ,而添加微量吡虫啉的乳悬剂Ⅱ的控蚜效果总是优于同一浓度下的乳悬剂Ⅰ,昆明地区夏季温和而多小雨的气候有利于孢子乳悬剂发挥作用。在实际应用中,真菌杀虫剂的防治效果受环境因子的影响较大,防治效果不大稳定,且杀虫速度相对较慢,影响使用的积极性。在白僵菌油剂中加入适量的化学农药来提高杀虫效果和杀虫速率是一项有益的尝试。王滨(2003)就对不同浓度白僵菌油剂与溴氰菊酯混合超低量喷雾防治马毛松毛虫的效果进行了研究,试验在安徽省桐城市林场一片高约4m的幼林进行,林内松毛虫虫株率100%,平均虫口密度每株180头以上,松毛虫4龄。在每平方米使用量1500ml白僵菌油剂、1.5ml 2.5%溴氰菊酯时,48h内的死亡率为28.1%;在用量为6000ml白僵菌油剂、12ml 2.5%溴氰菊酯时,48h内的死亡率高达94.4%。到松毛虫化蛹时以上两处理的总体防治效果分别为48.8%和99.6%。各防区的白僵率从7.5%~31.5%不等,与白僵菌油剂的用量呈相关性。结果表明,白僵菌与溴氰菊酯混合的方法是快速而持续控制松毛虫的有效手段。叶斌(2005)研究了金龟子绿僵菌对马尾松林节肢动物群落多样性的影响,该林区为中亚热带季风气候,林场地貌属低山丘陵,郁闭度约0.6,优势树种为马尾松,林龄为7~8年。土壤以地带性红壤为主,土层一般分布在1m左右,土壤中等肥沃,植被以铁芒萁、野杜鹃、五节茅、禾草及杂灌为主。分别于2004年2月下旬、4月上旬、6月下旬和9月下旬在福建省上杭县旧县村林场对施菌前后各样地施菌区和对照区马尾松毛虫虫口密度及其他节肢动物群落进行调查,将调查对象分为植食性昆虫、捕食性昆虫、寄生性昆虫、蜘蛛,调查分4个层次进行:①乔木层;②灌木草本层;③枯枝落叶层;④土壤层。试验结果表明:林间施菌区的物种总数及群落个体总数均较对照区要略少;垂直分布格局中,灌木层的物种数和多样性指数最大;时序动态分析中,6月份的多样性指数达最大值(1.6683);改善了整个马尾松林节肢动物群落的多样性和稳定性。我国研制的绿僵菌油悬浮剂已大面积用于防治蝗虫,但控制时间常需10~15d,防效在70%~90%,适用于中低密度蝗虫的防治,这些缺点极大限制了绿僵菌防治蝗虫的效率。白僵菌已成为我国南方各省防治马尾松毛虫的一个主要菌种。在林间温度高或相对湿度低时,白僵菌的防效较差,而绿僵菌属广谱性虫生真菌,寄主范围广,宋漳(2006)在同一地区就将绿僵菌与白僵菌混合使用对马尾松毛虫的毒力,绿僵菌和白僵菌菌粉的含孢量分别为每克含40个和107个,分别制成绿僵菌粉炮、白僵菌粉炮以及绿僵菌与白僵菌混剂粉炮(70%绿僵菌+30%白僵菌),每个粉炮净重125g。采取投放粉炮方式进行防治,每公顷施75~90个。单独使用绿僵菌和白僵菌防治越冬代马尾松毛虫试验,在上杭县旧县乡水东村18年生马尾松林中进行,防治面积10hm2,绿僵菌与白僵菌混合使用防治越冬代马尾松毛虫试验在上杭县湖洋乡湖洋村15年生马尾松林中进行,防治面积8.2hm2。防治时间为2004年3月4日至3月24日,防治期间日平均气温15.2℃,日平均相对湿度77%,处理后20d内定期调查死亡情况。共毒系数分析表明,绿僵菌和白僵菌混合使用对马尾松毛虫幼虫的毒力比单独使用提高了1.75倍,林间防治试验结果也表明,绿僵菌与白僵菌混合使用对马尾松毛虫的防治效果显著优于单独使用。陈祝安(2000)研究评价了田间施放绿僵菌防治稻水象甲效果,WZW3菌株于1995年从铜绿丽金龟(Anomala corpulentaMotschlsky)虫尸上分离纯化获得。2029菌株由中国农业科学院生物防治研究所提供,分离于土壤。测试用虫采自瑞安市场桥,系越冬成虫,室内饲养3d。田间放菌分孢子悬浮液喷雾、喷粉、菌药合用、先菌后药、先药后菌、超低量喷雾、空白对照7种处理。除超低量喷雾1333m2外,其他均为4000m2。菌剂为中国农业科学院生物防治研究所提供的绿僵菌2029菌株高孢粉,每克含孢量5×1010/g,孢子萌发率50%左右。①菌剂喷雾前孢子经Tween-80 3000倍液乳化,使用剂量为1×1014个孢子/hm2;②喷粉时将菌剂+CaCO3粉稀释到预定浓度,均用动力喷雾器喷施;③菌药合用采用当地农民常用的三唑磷农药,每公顷用药750g+菌剂(1kg/hm2),使用前化学农药和菌剂先进行相溶性检测;④先菌后药为放菌后24h喷药;⑤先药后菌为喷化学农药后24h放菌;⑥超低量喷雾工具选用电动喷雾器。选在成虫抱卵期、早稻插秧后3~5d内进行放菌,放菌前统计成虫虫口基数,放菌后隔10d和15d,检查虫口数。次代成虫羽化后,每点取10丛稻株,统计成虫。结果表明,在稻水象甲成虫怀卵期,田间用绿僵菌(1014孢子/hm2)喷雾防治,13d后对成虫的防治效果达92.5%。经防治后的幼虫和次代成虫平均虫口分别为2.12头/丛和0.30头/丛,而对照分别为8.40头/丛和4.17头/丛,差异均达极显著(t>0.01)。对虫口密度高发地块,若采取菌剂和化学农药配合使用,效果则更佳。稻水象甲在该试验区一年一代,主要为害早稻。4月中旬到5月上旬为成虫抱卵期。早稻插秧后,成虫由越冬场所陆续转移到稻田产卵,此时只要搞好除虫工作,有效控制成虫数量,就能减少幼虫为害和次代成虫发生数。因此,必须把握时机,于成虫产卵前放菌,一般为插秧后3~5d为宜。甜玉米属于甜质型菜果用玉米,由于甜玉米富含糖分(含糖量比普通玉米高10%以上),因此,在其生长发育期间更易受亚洲玉米螟(Ostrinia furnacalis)的为害,从而影响甜玉米的产量和品质。胡学难(2004)在深圳龙岗生态示范农场甜玉米地研究了斯氏线虫颗粒剂对亚洲玉米螟的控制作用,研究内容主要包括:①斯氏线虫在玉米心叶中的存活时间,选择处于心叶中期未被亚洲玉米螟侵染的玉米共20株,每株接线虫悬浮液2ml,浓度为500条/ml,每隔2d取3株玉米进行剖查,剖查后充分用水冲洗玉米植株(特别是心叶)以收集线虫,记载线虫数直到查不到线虫为止。②玉米心叶中不同存留时间的斯氏线虫对亚洲玉米螟侵染力的影响,选择没有感染亚洲玉米螟的处于心叶中期的玉米40株,每株接线虫悬浮液5ml,浓度为1000条/ml,对照喷清水,置于养虫笼内观察,每隔2d选择上述处理的5株玉米,每株接3龄亚洲玉米螟幼虫5头,9d后检查死亡率和虫孔数。试验研究结果得出:①接线虫2d、4d、6d、8d和10d后,在玉米心叶内回收的线虫数分别为:788.7条/株、412.3条/株、380.4条/株、287.0条/株和24.1条/株,16d后检查,玉米心叶内仍能回收到线虫,从这一试验结果可以得出:在应用斯氏线虫对亚洲玉米螟进行生态控制时,所施用的线虫对田间陆续迟发生的亚洲玉米螟幼虫仍有感染的可能,这就为建立亚洲玉米螟生态控制系统提供了一定的依据。②在玉米心叶中施用斯氏线虫4~10d后再分别接入亚洲玉米螟,线虫对亚洲玉米螟仍具有侵染力,在线虫施用剂量为1000条/ml时,10d后进入心叶中的亚洲玉米螟幼虫,其虫口减退率仍达41.9%。虽然虫口减退率随施线虫后时间的延长而下降,但是,线虫在4~10d之内仍未丧失它的侵染力。试验还得出了应用斯氏线虫在甜玉米地控制亚洲玉米螟的最佳施用剂量和施用次数组合,即施用剂量为1.0万条/株,施用次数为2次(心叶中期喷第1次,5d后喷第2次)。蛴螬已成为花生田毁灭性害虫,一般可使花生减产20%~30%,严重者达50%以上,部分地块甚至绝收,为了解决生产上的难题,李俊秀(2007)研究了昆虫病原线虫对花生田蛴螬的防治效果,试验设在开封市农林科学研究所试验田,前茬小麦,土壤质地淤土,蛴螬发生严重。麦垅点种花生,品种为豫花10号,种植密度150000穴/hm2。供试药剂为病原线虫1号、2号制剂(中国农业大学研制),线虫2.8万条/ml;以上两个制剂均为小杆线虫,是分别从黄瓜和小麦的根际土壤中分离所得;50%辛硫磷EC。试验设4个处理,即处理1:施病原线虫1号制剂;处理2:施病原线虫2号制剂,施药浓度为22.5万~30万条/m2;处理3:施50%辛硫磷EC 22.5kg/hm2;处理4:为对照,不施任何农药。施药方法:花生初花期后的6月20日用药。线虫制剂施用前镜检线虫含量28万条/ml,保证每穴花生施用线虫1.5万~2万条,达22.5万~30万条/m2,将制剂稀释150倍后,每穴花生浇施药液100ml;施药后浇水,保持湿度。辛硫磷乳油按22.5kg/hm2的用量稀释500倍,后随灌溉施于小区内。对照不用药。试验结果得出:①病原线虫1号和病原线虫2号防治花生田蛴螬效果特别突出,防虫效果均达到96%以上,使荚果危害率降低至2%和2.8%,完好荚果保持在97%~98%,使花生增产91%以上,比施用辛硫磷防治增产率提高20%。同时,线虫农药还避免了化学农药的残毒,使用方便,是极具开发价值和推广前景的新农药。②施用病原线虫防治花生田蛴螬提高了花生荚果的质量和产量。病原线虫2号处理的荚果数量虽然较少,但其充分发挥了豫花10号的特征,其好果中三粒者居多,且荚果饱满,单穴荚果称重为24.3g,超过其他3个处理,致使产量最高。对照由于秕果较多,单穴称重只有12.7g,致使小区产量最低。目前,草原蝗虫的防治受到国家及地方高度重视,而因化学农药对生态的破坏严重,生物农药越来越受到各界人士的青睐。朱聿振(2006)研究了绿僵菌防治低密度草原蝗虫对蝗虫多样性的影响,试验区位于内蒙古自治区锡林郭勒盟白音锡勒牧场桃林塔拉分场,该区草原类型为典型草原,海拔1215m;属温带半干旱大陆性气候,年均气温0℃,气温日较差大,年均降水量300~450mm,降水变率大,70%的降水集中在7~9月。试验地分3个区,分别是化防区、生防区和对照区。这3个区域的划分均以2003年草原蝗虫大发生以后的防治情况而定的,分别是自2003年大发生以后每年使用25%虫胆畏乳油、绿僵菌制剂防治和对照区。在每个小区内选择生长状况相对较一致为取样点,每小区内设6个取样点。取样方法为样框法,样框为无底样方。研究结果得出:化学药剂对草原蝗虫多样性指数H′的影响是一个持续降低的过程,直至其药力失效。而生物药剂绿僵菌在防治后略有降低后保持在一个稳定的水平,在防治蝗虫的前提下,绿僵菌的使用对草原生态系统的稳定和持续发展有一定的保护作用。 -
报告棉花枯萎病抗性鉴定方法
出版时间:2012棉花枯萎病抗性鉴定是病原菌致病性分化、寄主抗性遗传、抗病机制、抗病种质筛选、抗病品种(系)选育等研究中一项不可或缺的重要基础之一。因此,建立一套准确而快速的鉴定方法对于开展棉花抗枯萎病育种和提高枯萎病综合防治等具有重要的理论和实践意义。棉花枯萎病是寄主与病原菌在一定环境条件下相互作用的结果。因此,在研究菌系致病力分化和棉花抗枯萎病遗传育种规律过程中,必须使寄主与病原菌的互作关系得到充分体现,才会获得准确、可靠的试验结果。也就是必须使寄主(棉花)和病原菌(枯萎病菌)均处于良好的生长条件下;接种的病原物必须有适当的浓度和接种量;在寄主发育的适宜时期接种;供试验的寄主应有尽可能大的群体,保证寄主与病原菌的互作关系得以充分体现,还应尽最大可能地减少寄主个体间的互作和病原菌菌系间的互作,避免非接种病原菌的干扰,保证整套试验条件自始至终得以均一化。田间自然病圃鉴定,一般很难达到或满足上述鉴定条件的要求。人工病圃则是通过模拟自然病田的发病环境,设计成可添加接种病原物,又可调节水分,并限制病圃内水分流动,使研究者对鉴定条件的调控能力大为增强,所以,从理论上讲,人工病圃鉴定可获得较为准确可靠的结果。在棉花枯萎病区选择地势平坦、肥力均匀、灌排方便、土质适合植棉的病地或重病地,按照植物检疫要求,采用两种接菌方法建立人工诱发病圃。有条件的地方可建立长20m,宽2m,深0.5m的水泥池,将土壤用氯化苦或氨水进行灭菌处理。人工接入带有棉花枯萎病菌的棉籽或麦粒培养物(菌)。一种方法是在冬耕前,收取感病80%以上的棉秆和残枝落叶,铡成4~6cm长的小节,250~300 kg/亩,均匀地撒于地面,冬耕时翻入耕作层内接菌。若冬耕误了接种时机,可将带病接种用的茎枝,按上法铡成小节后,一层带病茎枝一层土,灌水湿润堆沤,春耕撒于土面,翻耕在耕作层接菌。这种接种方法,我国在20世纪50~60年代的抗性鉴定筛选时普遍采用,效果较好。另一种方法是采用制备接种用的麦粒砂或棉籽菌载菌体,播种或移栽时,每穴接种培养好的棉籽菌载菌体20~30粒或麦粒砂载菌体5~8g,25~30 kg/亩。这种接菌方法,我国在70年代应用较多。两种方法接菌建立的大田人工病圃,第一年最好种植感病品种,以检测病圃的均匀性。鉴定应用时一定要种植感病对照,要求用高感品种,发病率达80%以上,病指60以上,以确保病圃鉴定的准确性。接种用的菌种,应选择致病力强的菌系,不仅棉花品种间抗性易于鉴别,而且鉴定出的抗病品种在病区适应性也广。谭永久等(1980)采用川F5(四川射洪)菌系,转接1~5代的菌种,寄主是洞庭一号,测定不同菌种的致病力(表4-1)。结果以选择1~2代菌种致病最强,3~4代菌种致病有所减轻。因此,抗性鉴定用的接种病菌来源,应选择本地区致病性强的菌系,采集当年大田发病3级以上的病株分离纯化制备成接种病原菌。菌种代数发病株率(%)病指病菌含量(%)1100.0093.083.02100.0093.185.9396.071.042.0497.078.046.0591.072.843.0表4-1 菌种转接代数与致病力在棉花枯萎病的盛发期间,采取感病3级以上的棉花枯萎病株,分离时用镊子(镊子在火焰上灭菌)扯去病棉茎表皮,剪成5cm左右的小段,用0.1%的升汞液(升汞1g、浓盐酸2.5ml、蒸馏水1000ml)表面消毒1~2min,或用10%的漂白粉表面消毒3~5min,再用灭菌水冲洗3次,用灭菌剪刀剪成约5mm的小块,放入马铃薯蔗糖琼脂(PDA)培养基上,在25~28℃的恒温箱中培养,3天后长出菌丝,7天后可镜检菌落,挑取典型棉枯萎病菌丝转入PDA培养基斜面试管,在恒温箱中繁殖培养成一级菌种。以8月中下旬制备为宜。实验室内宜用Zepek's培养液培养,大量培养采用浓淘米水加糖5%,装入500ml三角瓶内;或用按麦粒1份,砂2份配制的麦粒砂培养基,先将麦粒煮沸30mm,混合砂后装入广口瓶内。再经压力1.5kg/cm2灭菌1h,接种一级斜面棉花枯萎菌种每瓶1管,在25℃±1℃的恒温箱内培养10天。若采用浓淘米水培养基,每天必须摇振1~2次,以使病菌均匀加速生长,供制备三级菌种用。以8月中下旬至9月上中旬为宜。菌种培养基用棉籽或玉米,浸泡24h充分吸水,滤至棉籽稍干无滴水,再用麻袋装入棉籽,每袋装相当于棉籽5~6kg,在压力1.5 kg/cm2灭菌1h。取出后冷至50~60℃时,每5kg棉籽接种二级菌液100ml,在26~28℃室内培养7天。待菌丝长满表面后,才逐渐降温,让菌丝生长深透,供翌年土壤接菌用。谭永久等(1980)报道,用每平方米9g、45 g、90 g和450 g棉籽菌粉及每平方米1800g麦粒砂载菌体等5种菌量,以洞庭一号(感)、69-128(耐)、川73-27(抗)3个不同抗感类型的品种研究鉴定菌量。结果以每平方米接种棉籽菌粉45~90g的菌量能明显区分出不同品种的抗性,是达到早期鉴定的适合菌量;每平方米1800g麦粒砂接种土壤发病过重,病势发展快,把抗病品种鉴定成耐病品种,不能正确反映出品种的抗病性。一般品种的苗期抗枯萎病性鉴定,多在温室或纸钵或营养钵中进行,选用从未种过棉花的深层土壤,将培养出的麦粒沙病菌按土重量2%接菌,或用棉籽菌粉按土重0.5%接菌,充分拌匀,装入废报纸做成的营养钵内(纸钵用高10cm、直径7cm的铁皮卷成圆筒作模子,外面裹上旧报纸抽出后成纸钵),每个纸钵装接菌土250g。田间病床的苗期抗枯萎病性的鉴定筛选,育苗苗床,松土一次后,每平方米均匀撒上棉籽菌粉90g,再松土6~8cm深,灌水后将苗床抹平,划格播种。人工水泥槽接菌按纸钵接菌方法进行。温度对抗性鉴定的影响极大。朱荷琴等(1994)连续6年的鉴定试验表明,播种后1个月内日平均气温22℃左右,棉花出苗快,棉苗发病早,播种后20天见病株且病情发展迅速,播种后25~30天达发病高峰期,整个鉴定周期40天左右;在播种后1个月日平均气温低于20℃条件下,棉花发病缓慢,鉴定周期延长。综合诸多试验结果,在保持一定土壤湿度时,床温日平均20~25℃,经过25天后,感病品种发病病指达75以上;18℃以下发病最慢,25天的病指仅55.3,鉴定时间只好延长;26℃以上棉花长势快,高温高湿病指难升高,棉苗病症掩蔽,发病反而慢,25天的病指仅46.7,鉴定品种的抗性难区分。因此,鉴定中最适合的病床温度在23℃左右。早春播种气温偏低,可采用塑料薄膜盖病(苗)床以有利于提高床内温度。当气温在16~22℃时,盖上薄膜可提高床内温度4~8℃,对病菌侵染诱发病害有利,达到早期准确鉴定抗性。利用不同品种在一定鉴定时期内发病指数的差异,以确定不同程度的抗病类型。朱荷琴等(1994)报道,播种后30天的调查结果抗、感品种(系)差异明显,充分体现出了各品种(系)的抗性水平,且感病对照达鉴定要求(病株率80%或病指50左右)。播种后26天的调查结果鉴别力较差,播种后35天的调查结果掩盖了部分抗病性材料的抗性。因此,棉苗发病后每4天左右调查一次,密切注意棉苗发病情况,掌握好感病对照达鉴定要求时的调查是十分重要的。综合多数试验结果,采用早期病床鉴定方法,感病品种5~10天出现症状,20天达到发病高峰,发病率达95%以上,病指70以上;20~25天增长率不大,只是为害程度加重。耐、抗病品种10~15天见病症,20天内病指分别为48.5和34.4,鉴定25天病指达64.8。说明抗、耐、感病品种早期鉴定的历期以25天为宜。鉴定时间短了,会把耐病品种(系)认为抗病类型,达不到早期快速鉴定目的。苗期与成株期鉴定结果之间具有显著的相关性。1975~1979年四川省农业科学院棉花研究所对503个棉花品种(系)进行苗期鉴定和大田病圃成株期鉴定相关性的测定。其中,392个品种(系)相关性达极显著标准,79个品种(系)相关显著,这两者占93.7%,仅32个品种呈负相关,占6.3%。朱荷琴等(1994)对34个品种(系)同时进行苗期与成株期鉴定。并对鉴定结果进行相关分析,相关系数r=0.7819,达极显著水平。说明苗期鉴定与成株期鉴定的抗性趋势基本一致,苗期表现抗病的品种(系)蕾期仍然表现抗病,可利用早期(苗期)鉴定方法,鉴定品种(系)的抗病性。一般使用年限较长的老病圃棉花发病程度会逐渐减轻,病圃出现衰退现象。谭永久等(1980)于1976~1979年研究病圃连续种植抗病品种后病菌致病力的变异。结果表明,以连续种植抗病品种4年的病土,病菌致病力显著减轻;连续种植5年的病菌致病力减轻达极显著水准(表4-2);在连续种植抗病品种8年后的病土,土壤中病菌的菌量减少显著。说明病圃长期种植抗病品种后,病土中病菌的致病力在逐年减弱,病菌数量逐年减少,致使发病程度逐年减轻。连续种植年数抗病品种(%)感病品种(%)236.441.4352.563.5439.573.5530.159.2625.670.0表4-2 病土连续种植抗感品种后病株率变化朱绍琳等(1985)经多年试验后指出,病田连续种植2~5年抗病品种后,换种感病品种,蕾期发病株率及病指均随抗病品种种植年数的增加而呈下降的趋势,种植年数与病株率及病指呈显著的负相关(P<0.05),r值分别为-0.8571和-0.8358。1983年种植抗病品种2~4年的,换种感病品种后,病株率和病指均显著高于抗病品种;而种植抗病品种5年的,则无明显的差异。1984年在另一块种植抗病品种5年的病田上,重复进行对比试验,感病品种与抗病品种的病株率和病指也无明显的差异。1984年在上年种植抗病品种4年和5年的两块病田上,继续按上年试验地段进行对比试验,结果表明,连续换种2年感病品种,发病株率和病指上升幅度不大,两块病田种感病品种的发病株率仅比上年分别高0.82%和1.28%,病指分别高0.92和0.82。不仅如此,种植抗病品种5年的病田,连续换种两年感病品种,与抗病品种相比,病株率和病指差异仍不显著。据室内平板测定,病田的土壤含枯萎病菌数也随种植抗病品种年数的增加而有减少的趋势。1983年测定,种植抗病品种2年的土壤枯萎病菌量为5.84×103个/g,3年的为3.75×103个/g,4年的为4.50×103个/g,5年的为0.50×103个/g。同一块病田种植抗病品种的土壤菌量,显著少于种植感病品种。1987~1988年马存等(1992)在枯萎病田种植抗病品种86-1,连作10年后,再种感病品种,病指分别为27.2和6.8,抑菌效果为43.9%和76.2%。1990~1992年辽宁省农业科学院经济作物研究所试验,连作抗病品种10年以上病圃田间抑菌效果为56.2%,连作5年的抑菌效果为17.6%;测定土内菌量减少45.6%和59.2%。总之,为了防止病圃病菌致病力的减退,影响抗性鉴定的准确性,可采取每年施入一定量带病棉秆补充接菌。同时,也可在病圃中多种植感病品种(系),借以繁殖病菌。朱荷琴等(1994)于1991年在原病圃基础上进行了加生土(多年未种植棉花的生沙土)和再接菌试验,病圃加生土25%和再接菌与对照(不加生土不接种)相比,各品种(系)的病指没有明显差异,加生土45%处理与对照相比,中棉所12病指差异不明显,冀棉11病指下降14.59,再接菌处理严重影响出苗(表4-3)。由于每年大量种植感病品种(系),在连续使用5年9轮鉴定试验后,仍不需要接菌,未出现病圃衰退现象。品种(系)加生土25(%)45(%)对照接菌5g/m行长10g/m行长86127.83—28.42—×冀棉1172.2261.6176.2077.20×中棉所1230.8130.7328.3430.94×陕115528.74—26.26—×川732735.80—40.30—×北农878249.92—45.74—×表4-3 病圃加生土和再接种后病指(米荷琴等,1991)为减少因每年需大量枯萎病培养物接种于病圃所耗费的人力与物力,邵圣才等(1999)于1990~1995年在病圃进行了两种接种方法试验:①在病圃每年采用通气培养法生产二级枯萎菌种,再用棉籽培养物扩大培养后接种于病圃,每亩接种25kg棉籽(简称病圃1);②在病圃的育种材料两行中间种1行感枯萎病品种,每亩用2.5kg感病品种种子,让枯萎病菌在感病棉株上扩大繁殖,待枯萎病发病达高峰期时,调查感病行和育种材料的病株率和病指后,将感病行棉株翻耕于土中,以扩大土中的枯萎菌量,称为活体繁殖枯萎菌(简称病圃2)。经过6年每年种植统一感病品种,比较两种不同接种方法后可看出,头两年病株率和病指差异不大,第三年后致病力的差异较明显地表现出来,种感病品种活体繁殖枯萎病的病圃,病株率和病指都高于棉籽培养枯萎病菌的病圃(表4-4)。证明生物活体繁殖比试管保存棉籽扩大培养物繁殖的枯萎菌生活力强,致病力高,对筛选抗病品种(系)有利。处理项目1990年1991年1992年1993年1994年1995年活体接种(病圃2)病株率(%)63.471.293.593.5100.0097.6病指29.526.739.755.860.458.4培养物接种(病圃1)病株率(%)72.168.576.484.379.665.7病指31.227.632.940.839.730.6病圃2比病圃1病株率(%)-7.82.717.19.220.431.9病指-1.7-0.96.8*15.0**20.7**27.8**表4-4 不同接种方法病圃致病力1995年在两种病圃中,均于两行育种材料中间种1行感病品种。6月23日枯萎病发病高峰期调查结果,两种病圃的中间感病行平均发病率和病指差异显著,与种植感病品种地段的表现一致。感病品种活体繁殖枯萎病的病圃致病力强,且发病均匀,病株率53.7%~100.0%,平均89.4%;病指22.3~71.7.平均57.4。而棉籽培养菌种接种的病圃病株率7.2%~100.0%,平均63.4%;病指1.2~53.7平均29.7。中间行种感病棉株繁殖枯萎菌,可以克服土壤枯萎病菌的不均匀性。这是因为每年可将发病重地段的病株在翻耕时移至病轻地段,使之逐渐均匀,而培养物接种无法均匀病圃。1991~1995年分别将上年两个病圃当选的抗病株行(基本无枯萎病)上升为株系,随机种放在两个病圃中继续鉴定抗病性。每年调查结果表明(表4-5),病圃2中筛选出的抗病株行在株系抗性鉴定时有97.3%~100.0%达到抗枯萎病标准,而病圃1筛选出的抗病株行,在株系抗性鉴定时只有82.5%~93.396%达到抗枯萎病标准。由此可见,用活体繁殖病菌的病菌对抗枯萎病鉴定的准确率高。这也与在枯萎病发病高峰时,对材料的抗性选择参照了中间感病行的发病程度有关。处理项目1991年1992年1993年1994年1995年从病圃2中筛选的株行株系份数110.083.076.065.087.0达标率(%)97.398.8100.0100.098.9从病圃1中筛选的株行株系份数113.094.087.060.075.0达标率(%)82.392.685.193.388.0表4-5 两种病圃对抗病性鉴定的准确率与人工病圃法相比,苗期室内鉴定的优点是比较灵活、易搬动,可人为地控制发病条件,适合于种质资源材料和大批新品种(系)的抗枯萎病性筛选。研究结果表明,室内用毒素检测棉苗的致萎度能反映棉花成株期在田间病圃对棉花枯萎病的抗性程度,即室内用毒素检测棉苗为抗的品种(系),在病圃内也为抗病型,室内为感病反应的品种(系),在病圃内也为发病重的感病型。用旧报纸或牛皮纸卷成10cm×7cm纸钵,每钵放入菌土250g(棉枯萎菌棉籽或麦粒培养物按土重0.08%~1.0%预先接入经消毒的沙壤土中),将钵放在铁皮框盘内然后播种。种子经温汤浸种并用杀菌剂消毒,每个品种(系)播种15个钵,每钵留苗5株。白天温度要求20~25℃,夜间15~18℃,土壤湿度保持在60%~70%。调查方法、分级标准和抗病类型的划分与人工苗床病圃法相同。人工病圃诱发筛选抗病或耐病的品种(系)资源,都需要有一个适宜发病的环境条件和发病过程,需要较长时间,且往往受到自然条件的影响,有可能使本来感病的试验材料不能充分表现其感病性,又需较多的人力、物力投入田间鉴定工作。在室内人工控制条件下,用凝集素检测棉苗的抗病性,就可克服上述问题,加快育种进程。自1888年StillmarK首次从蓖麻籽中发现凝集素以来,人们从植物及动物中陆续发现了凝集素。凝集素是一类具有糖专一性,可促使细胞凝集的蛋白质或糖蛋白。20世纪70年代以来,凝集素的研究在各个方面进展迅速,用途日益广泛,逐渐成为生物学研究中的一类重要物质。一些研究表明,在生物体中,凝集素在寄主与寄生物相互关系的作用中,可能作为对病原微生物的一个防御因素。如草藤(Rleia Cracca)凝集素能抑制土壤中分解其种皮的微生物生长;麦胚凝集素通过与绿色木霉(Trichoderwa viride)和腐皮镰孢(Fusarium solani)的菌丝尖端结合抑制其菌丝生长,孢子萌发和壳多糖合成,起到保护幼苗免被霉菌侵袭的作用。刘士庄等(1984)研究表明,抗枯萎病棉花品种种子磷酸缓冲液(PBS)抽提液对兔血球的凝集作用明显高于感病品种,且其对兔血球的凝集力与品种抗枯萎病呈显著正相关。随后,刘士庄等(1987、1989、1996),张久绪等(1989、1990)和李琼等(1991、1992)进行了这方面研究,在理论与应用两方面均取得重要成果。因为凝集素能使血红细胞凝集,所以,将棉籽或棉株有关部位浸提液与兔血红细胞发生反应,使兔血凝集。在室温25℃左右,湿度不低于70%的条件下,用显微镜检查兔血球的凝集情况。凝集力强度用正、负符号分以下六级记录(图4-1)。①“-”。血球基本分散(图4-1-1)。②“+-”。血球基本分散,但有2~5个血球凝集(图4-1-2)。③“+”。血球5~10个凝集在一起者较多,但分散血球仍居多(图4-1-3)。④“++”。血球20个以下凝集在一起者较多,分散血球减少(图4-1-4)。⑤“+++”。血球20个以上凝集在一起者较多,分散血球很少(图4-1-5)。⑥“++++”。血球30个以上凝集在一起者较多,基本无单个血球(图4-1-6)。棉花品种(系)对枯萎病抗性强、病指低,其棉浸提液对兔血球的凝集力强,血球分散度低。109个品种(系)蕾期调查的病指与室内棉种浸提液对兔血球的聚集力测定比较,选用部分品种列于表4-6。从表4-6可知,高抗枯萎病的代表性棉花品种(系)86-1、52-128、57-681、73-27、陕836、鲁抗1号的田间病指较低,平均为1.8、5.4、8.9、9.8、7.4和4.2,其棉籽浸提液对兔血球凝集力都强,血球凝集程度达到+++,血球分散度均在1.0以下;高度感染枯萎病的代表品种岱字棉15号、达棉1号、豫棉69、邯郸14的田间病指很高,平均为82.2、65.0、43.6、71.1,其棉籽浸提液对兔血球的凝集力都很弱,凝集程度仅+-或-,血球分散度很高,均在3.5或4.0;对枯萎病抗性一般的棉品种(系)其病指多介于高抗和高感品种之间,其棉籽浸提液对兔血球的凝集力亦介于高抗和高感品种(系)之间。图4-1 血红细胞凝集力强度划分(刘士庆等,1984)棉花品种(系)病指分散度凝集力冀合30185.861.5++~++晋B65.782.5+~++鲁抗1号4.22.0++晋72.82.5+~++中3812.02.0++冀3558.93.0+临汾402310.92.0++表4-6 棉种凝集力与田间病指比较(刘士庄等,1987)棉花品种(系)病指分散度凝集力陕8367.41.5+++川41427.21.0+++521285.41.0+++576818.93.0+73279.83.0+8611.81.0+++C724.73.0+邯郸1471.13.5±豫棉6943.63.5±达棉1号65.04.0-岱棉15号82.23.5±珂31073.73.5±苏344635.83.5±表4-6 棉种凝集力与田间病指比较(刘士庄等,1987)(续)-1李琼芳等(1992)对4个中棉品种,3个海岛棉品种及6个半野生棉品种进行血凝活性测定与田间病圃抗枯萎病性的相关性分析结果说明,陆地棉中,抗、感品种间血凝活性有明显差异,中棉及半野生棉均有明显的血凝活性,具有一定的抗枯萎病性,海岛棉血凝活性弱,田间表现不抗枯萎病(表4-7)。种子类型血凝活性病指数幅度平均等级幅度平均病指陆地棉~++++0~4.02.40.3~82.227.24中棉+~++2.0~3.02.525.2~45.730.45海岛棉~±3.5~4.03.7545.2~56.655.40半野生棉+~++2.0~3.02.510.7~17.913.23表4-7 棉花种子凝集素的血凝活性与田间枯萎病指数的相关室内测定血凝活性及田间抗性鉴定的相关系数为0.6716(李琼芳等,1992)、0.4937(刘士庄等,1989),均达1%极显著水准。这表明,室内棉籽浸提液对兔血球的凝集力测定,在鉴定棉种抗病性实践中,具有与田间病圃抗性鉴定同样的效果。张久绪等(1990)报道,凝集素对枯萎病菌孢子萌发具有明显的抑制作用,其抑制效果与凝集素浓度呈正相关,浓度为4mg/ml、2mg/ml、1.25 mg/ml和0.5 mg/ml抑制效果分别为90.61%、991.98%、80.22%和36.67%。(1)苗期棉花子叶期和1~3片真叶期,抗、感品种各行凝集素的活性有明显差异。抗病品种凝集活性物质主要存在于根、茎内,子叶和真叶含量相对较少,感病品种的根、茎血凝活性弱,子叶和真叶无血凝活性。随着棉株生长,4~6片真叶期凝集素分布于全株,抗病品种根、茎、叶均表现血凝活性强,感病品种根、茎、叶的血凝活性均较弱,表明感病品种凝集素的形成较迟(表4-8)。抗病类型品种子叶期1~3片真叶期4~8片真叶期根茎子叶根茎子叶真叶根茎子叶真叶抗861+~++±++~+++++~+++±~±+++++~+++~++7327+~++±++~+++++~+++±~±++~+++++~++++~+++~++感达棉1号±~+—+±——+±±±726870±—±——±±±±表4-8 棉花苗蕾期各组织凝集素的活性比较(李琼芳等,1991)(2)花铃期在花铃期,抗、感品种间血凝活性差异不很显著,整个棉株各组织均表现明显的血凝活性。感病品种在这一生长发育阶段,凝集物质有逐渐增多的趋势,尤其是主根和中下部茎皮层,表现出较强的血凝活性。抗、感品种间血凝活性差异逐渐缩小,此时也正值棉田感染枯萎病的棉株在蕾期以后病情开始恢复时期,看来棉花生育过程中凝集素的形成,对感染枯萎病病株有促进恢复的作用(表4-9)。抗病类型品种须根主根中下部茎皮层木质部皮层木质部皮层木质部上部茎皮层真叶抗861+++++++++++++++++++~+++~+++7327+++++++++++++++++++~+++~+++~++感达棉1号+++~++++~++±~+±~++726870+++~++++~+++++表4-9 棉花花铃期各组织凝集聚的活性比较(李琼芳等,1991)(3)吐絮期棉花吐絮至拔秆,几次取样测定结果表明(李琼芳等,1991),皮层、叶、枝、铃柄和铃壳的血凝活性均强,无明显差异。收获时,测定抗、感品种健株的种仁血凝活性,两者有明显差异,抗病品种种仁的血凝活性强,感病品种种仁的血凝活性弱。收取抗病品种73—27棉株不同部位的自交铃种子,测定其血凝活性结果显示,不同部位的棉铃种仁浸提液的血凝活性有明显差异,以中部(3~8台)内围棉铃种子血凝活性强且稳定。棉花凝集素广泛存在于陆地棉、中棉、海岛棉的3大棉种中。抗病品种的根和种仁凝集素粗提物,对棉枯萎病菌孢子萌发具有明显的抑制作用,棉花种子内凝集素活性程度与品种的抗枯萎病性呈正相关,血凝活性强的品种,抗性好,反之抗性差。至于棉花凝集素对自身的保护抵抗病原菌的生理功能,以及探索应用棉花凝集素导入组织细胞培育生物技术等,还有待进一步研究。镰刀菌酸(Fusaric Acid,FA)是Fusarium oxysporum中的几个专化型所产生的一种非专化型毒素。自1952年高又曼从F.oxysporum f.sp.lycopersice,F.oxysporum f.sp.vasinfectum和Gibberilla fujikuro首次分离并作为致萎毒素报道以来,先后发现镰刀菌酸可以使棉花、番茄、香蕉、亚麻和西瓜等萎蔫(Mace等,1981)。仇元等(1963)报道,棉花枯萎病病菌的培养滤液的50%稀释液,处理棉苗可使其萎蔫。丁正民(1979)和徐孝华(1984)用棉花枯萎病原菌培养滤液的粗提物,同样可使棉苗萎蔫。王贺祥等(1988)认为,棉花抗镰刀菌酸与抗枯萎病有一定的相互关系。李成葆等(1990)用单一的镰刀菌酸纯品处理棉花,研究了它与棉花抗枯萎病性的关系。结果认为,镰刀菌酸可以用致萎性作为棉花品种抗枯萎病性鉴定的参考指标。棉株根系吸收的FA运输到叶片后,具半透性的原生质膜被破坏,叶片的蒸腾作用所失去的水分远大于根系吸收的水分,破坏了水平衡,造成植株萎蔫。从表4-10可以看出,FA对感病品种的致萎性大于抗病品种。棉苗在100μg/ml浓度的FA溶液中处理6h后,抗病品种中,5173的茎萎蔫率和叶萎蔫率分别为41.2%和20.6%,而感病品种鄂荆92却达99.5%和94.7%。50μg/ml的FA对抗病品种作用小,中棉所12的茎、叶萎蔫率仅分别为5.9%和21.2%,感病品种冀棉11已达31.6%和52.6%。FA处理10h后,高浓度(100μg/ml)下,抗、感品种的茎、叶均已全部萎蔫,这表明,此时FA的作用已超过抗病品种所能忍受的范围,抗、感品种均表现出高敏感性,掩盖了其抗性差异。但低浓度(50μg/ml)下,抗病品种中棉所12的茎、叶萎蔫率分别为14.7%和53.7%,感病品种冀棉11已达68.4%和81.6%。由此可见,在一定的条件下,不同抗性品种对FA的致萎性反应差别很大,且与品种抗枯萎病性呈正相关性。时间100μg/ml50μg/ml中5173鄂荆92中12冀棉11茎萎蔫(%)叶萎蔫(%)茎萎蔫(%)叶萎蔫(%)茎萎蔫(%)叶萎蔫(%)茎萎蔫(%)6h41.220.589.594.75.921.231.6对照0.00.00.00.00.00.00.010h100.0100.0100.0100.014.753.768.4对照0.00.00.00.00.00.00.0表4-10 FA对棉苗的致萎性作用(李成葆等,1990)病圃鉴定是评价新品种抗病特性必须经过的程序,其结果对反映该品种在自然情况下的抗病性具有很好的代表性。但因所需时间长和占据空间多,不适于大批材料的抗病性鉴定,而且,受环境条件影响较大,常常会影响鉴定结果的一致性和准确性。此外,还受季节限制。探寻和建立高效、快速、准确的鉴定方法,以满足棉花枯萎病的抗病性鉴定的需要,实属必要。彭姗等(2008)在总结和吸收以往棉花苗期抗枯萎病鉴定方法优点的基础上,研究了病圃鉴定法和液体培养棉花苗期孢子悬浮浸根法鉴定棉花枯萎病抗性的效果。结果表明,液体培养棉花苗期孢子悬浮液浸根法(接种浓度为107个分生孢子)鉴定枯萎病抗性,全周期只需要30天。运用这种方法,不仅可以鉴定出棉花品种对枯萎病菌的抗、感病性,还可以鉴定不同枯萎病菌菌株的致病力。对比不同浸根接种时间(10min、20min、30min、40min、50min、60min)对结果的影响,发现浸根接种40min可加快发病,鉴定结果和田间病圃鉴定的比较一致。棉花品种的抗性鉴定,主要是棉花品种或棉株受病菌侵染后不同程度发病的表现,通过发病率及发病强度的调查进行比较鉴别。病害发病高峰期不同,对抗性鉴别时间也有不同要求。成株期鉴定枯萎病一般在花蕾期(6月下旬至7月中旬)进行田间调查,7~10天一次,连续调查3次。11月下旬拔秆时再进行剖秆考察,结合各次调查结果对棉花的抗病性进行综合评价。苗期鉴定在棉苗开始发病后调查,7天1次,连续调查3次。依棉株的发病程度将其划分为0~4级,共5级,其中,0级为健株,1级发病最轻,4级发病最重,棉株发病分级标准列于表4-11。病级苗期蕾铃期剖秆0健苗、无病状健株、叶片无病状健株、茎秆木质部无病变症状表4-11 棉花枯萎病株分级标准病级苗期蕾铃期剖秆1子叶边缘呈黄色网状或子叶变黄发紫,真叶未显病状病株25%以下叶片表现叶色加深皱缩,叶脉呈黄色网状或叶片变黄,变红紫色等症状茎秆木质部病变(褐色)部分占棉株高度的25%以下2子叶和少数真叶变黄或发紫,叶脉呈黄色网状,株形出现矮化病状病株叶片26%~50%表现病状,株形明显矮化茎秆木质部病变部分占棉株高度的26%~50%3子叶和大部分真叶呈现典型病状,病叶变黄或发紫,叶脉呈黄色网状,株形矮缩或出现萎蔫51%~75%的叶片表现病状,株形矮缩茎秆木质部病变部分占棉株高度的51%~75%4棉苗萎蔫,青枯死亡76%~100%的叶片表现病状,严重时枯焦脱落,枝茎枯死,有时整株出现急性凋萎死亡茎秆木质部病变部分占棉株高度的76%~100%表4-11 棉花枯萎病株分级标准(续)-1根据病圃调查结果,可依次求出以下指标。发病株率能较好反映棉花群体中棉株发病的频率,人工病圃中,以感病对照品种的发病率在75%左右为宜。由于1级病株与4级病株所造成的为害有较大差别,棉花发病率相同,如果棉花发病程度(级别)不同,棉花受病害损失差别较大,所以,发病株率不宜作为抗病鉴定的唯一指标。病情指数,又称病指,能够同时反映棉株发病率和发病程度,较为准确反映出棉花病害对其产量和品质造成的为害。但棉株发病程度会因病圃菌量、气候因素和发病条件的不同而出现较大差异,抗病鉴定中,很难控制使感病对照的病指正好在50左右,这样,易造成同一品种在不同地点或不同年份因棉株发病程度不同而所得的抗病鉴定结果不一致,重演性差,故病指仍然不宜作为抗病鉴定指标。由于以IR或ER作为抗病鉴定指标,其比较标准的对象是感病对照品种,因为对照品种和鉴定材料所处的环境条件完全一致,这样,可以最大限度排除鉴定条件对鉴定结果的影响,有效提高了棉花抗病鉴定结果的准确性和可比性,大大减少了因鉴定地点或鉴定年份不同而造成的误差,重演性较好。所以,相对抗性指数(IR)和相对抗病效果(ER)最适合作为棉花抗枯萎病的鉴定指标。据吴征彬等(2000)研究结果,用IR和ER作为抗病指标所得抗病鉴定结果完全一致,说明这两种指标的抗病分级标准是合适的,两种指标可在抗病鉴定中选择应用。以IR和ER为抗病指标,根据棉花的抗枯萎病程度可将棉花的抗病性分为免疫(I)、高抗(HR)、抗病(R)、耐病(T)和感病(S)5级(表4-12)。指标IHRRTSIR0.00.1~5.05.1~10.010.1~20.0≥20.1ER100.099.9~90.190.0~80.180.0~60.1≤60.0表4-12 棉花对枯萎病的抗性分级标准中文名:棉花枯萎病拉丁学名:Fusarium oxysporum schl.f.sp.vasinfectum(Atk.)Snyder et Hansen英文名:Cotton Fusarium wilt或Fusarium wilt of cotton棉花枯萎病是棉花生产的重要病害之一,广泛分布于世界各主要产棉国家,对棉花生产造成严重威胁。该病在我国各棉区均有发生。据1982年全国普查,病田面积达2223万亩,占当年棉花种植面积的1/3。20世纪90年代,枯萎病在新疆维吾尔自治区各主产棉区呈扩展蔓延的趋势。1995年在新疆维吾尔自治区莎车县、和田地区因该病绝产3.3万亩,1996年又在新疆维吾尔自治区和田地区大面积流行为害。棉花枯萎病可在棉株整个生长季节侵染为害,田间棉苗现蕾出现发病高峰。主要症状有5种。病株子叶和真叶的叶脉褪绿变成黄白色,但叶肉不变色;叶片局部或全部变色,呈现黄色网纹状。这是枯萎病最常见的症状。病株在5~7片真叶期,上部叶片发生皱缩、畸形,叶色深绿,叶片变厚;棉株节间缩短、矮化,表现为皱缩状。这种症状在现蕾期,气候条件适宜的情况下,田间可经常见到。病株子叶或真叶首先从叶缘开始,局部或整个叶片变黄,但不呈现黄色网纹,严重时叶片脱落。这种症状在温室抗性鉴定中最常见,也是苗期(三片真叶以前)枯萎病的主要症状。病株的子叶或真叶突然失水萎蔫,叶片变软,下垂,严重时棉株呈青枯干死,但叶片不脱落。这种症状在气温变化较大,尤其是大雨之后,气温突然升高的情况下,经常出现。病株的子叶或真叶局部或全部变成紫红色,随着病情的发展,叶片从边缘开始凋枯,致使叶片枯萎、脱落,棉株死亡。这种症状较少见,只有在棉花苗期遇较长时间的低温条件下才发生。棉花枯萎病的症状并不是固定不变的,有时以一种症状为主,有时几种症状混合发生,有时前期是这种症状,后期又发展为另一种症状。其症状类型与品种及气候条件更为密切,尤其是气温和降雨。棉花枯萎病的抗性鉴定采用温室苗期纸钵土壤接菌法鉴定,可在任何具有温室(可保证温度在20~25℃)的地区进行,生育期以三片真叶以前的苗期为宜。鉴定中选用一个感病对照和一个抗病对照。抗病对照选择标准:在常规接菌量下病指小于10;感病对照选择标准:在常规接菌量下病指大于50。鉴定材料种植于温室,采用纸钵土壤接菌盆栽法。纸钵为直径6cm,高8cm,随后装入30cm×20cm×9cm的塑料盆中,3次重复,每重复6钵,共18钵,装入一盆中。每个鉴定材料1盆。将经160℃干热灭菌的无菌土与棉花枯萎病菌混匀,枯萎病病菌量为土重的2%~3%。随后装入钵中至2/3高度,放入盆中。播种前先浇300ml自来水,使钵中的土吸足水分,随后将已催芽的种子先拌杀菌剂,再摆放于钵中,每钵6~8粒棉籽。最后用无菌土盖上(高度与钵平齐),再浇入200ml自来水。在我国由于棉花枯萎病菌7号小种分布最广,为此宜选用7号小种,但各地可根据当地的优势小种,选择所用菌系。菌种采用麦粒沙培养(麦沙比为3比1,先将麦粒用水煮涨为止,沥干水分后拌入细沙,装入罐头瓶,湿热灭菌2h;在超净台上将已培养好的枯萎病菌平板或斜面接入其中,随后置25℃温箱培养7~10天。播种后将塑料盆置温室中,进行育苗。温室温度保持在25~28℃之间,切勿超过30℃,进行精心管理。棉苗拱土前,只要钵中土壤不会太干,一般不要再浇水。棉苗出土后,注意保持盆中的干湿度。土壤湿度保持在60%~90%为宜。早晚注意温度变化,防止温度太高和过低。在棉苗第一片真叶长出后,棉花枯萎病陆续开始发生,在播种后1个月左右开始调查各品种的枯萎病发生情况。调查采用V级分级法。可进行数次调查,当感病对照病指达50左右时,即可全面调查各品种的发病率,求出病情指数,进行校正后,评判各品种的抗病水平。温室苗期棉花枯萎病的主要症状为青枯型和黄色网纹型,真叶和子叶发生萎蔫,叶片变软,下垂,叶缘开始凋枯,叶脉变黄色,以致叶片枯萎,棉株死亡。各病级分级标准如下。0级 棉株健康,无病叶,生长正常;Ⅰ级 1~2片子叶变黄萎蔫;Ⅱ级 2片子叶和1片真叶变黄萎蔫,叶脉呈黄色网纹状;Ⅲ级 2片子叶及1片或1片以上真叶变黄萎蔫,叶脉呈黄色网纹状;棉株矮化或萎蔫;Ⅳ级 棉苗所有叶片发病,棉株枯死。根据调查的结果,计算各品种的发病率和病情指数(简称病指)。由于地区间的鉴定存在差异,即使同一地点,年度、批次间,由于鉴定的外界条件不可能完全一致,鉴定结果可能有轻重不同。为此,必须对鉴定结果进行校正,即采用相对病指(简称相对病指)进行校正,方法为鉴定中必须设感病对照,在感病对照病指达50.0左右时进行发病调查。由于感病对照病指不可能刚好为50.0。为此,采用校正系数K来进行校正。K值的求法:感病对照标准病指50.0除以本次鉴定感病对照病指。用K值与本次鉴定中被鉴定品种的病指相乘,求得被鉴定品种的相对病指(IR)以K值在0.75~1.25(相当于病指40.00~66.67)的鉴定结果为准确可靠。根据被鉴定品种的相对病指的大小评定品种的抗性级别。各级别评定标准如表4-13所示。序号抗病类型英文缩写病指标准相对病指标准1免疫I002高抗HR0~5.00~5.03抗病R5.1~10.05.1~10.04耐病T10.1~20.010.1~20.05感病S>20.0>20.0表4-13 棉花品种抗枯萎病性评定标准鉴定地点:鉴定时间:年月日K=品种名称总株数0级病株数Ⅰ级病株数Ⅱ级病株数Ⅲ级病株数Ⅳ级病株数发病率(%)病指相对病指表4-14 鉴定结果调查表 -
报告(二十五)黏虫(Oriental Armyworm)
出版时间:2013黏虫(Mythimna separataWalker),又名东方黏虫,俗称行军虫、五花虫、剃枝虫、夜盗虫等,属鳞翅目(Lepidoptera),夜蛾科(Noctuidae),是我国农作物的重要迁飞性害虫,除新疆未见报道外,遍布全国各地。黏虫是一种杂食性、暴发性、间歇性发生的暴食性害虫,严重发生时可造成巨大损失。黏虫以幼虫为害,低龄幼虫潜伏在植株心叶中,啃食叶肉造成孔洞。3龄后幼虫为害叶片后,呈现不规则缺刻。暴食时,可吃光叶片,仅存植株主脉,再成群转移至附近田块为害,损失重大。黏虫主要为害麦、稻、粟、高粱、玉米等多种禾谷类作物,大发生时也可为害棉、麻、豆类、果树、林木及牧草等16科100余种植物。成虫淡褐或黄褐色,体长15~20mm,翅展35~45mm,触角丝状,胸发达。前翅中央近前缘有两个淡黄色圆斑,外圆斑下方有1个小白点,两侧各有1个小黑点,翅顶角有1条向内伸的斜线。卵半球形,直径0.5mm,初乳白色,渐黄褐色,孵化前黑灰色,有光泽。每个卵块由数十粒至数百粒组成,多为3~4行排列成长条状。叶片上的卵块常包被在筒条状的卷叶内。幼虫分6龄,老熟幼虫体长35~38mm,头黄褐色,中央有1个黑褐色“八”字纹,腹背线白色,亚背线蓝色或黑褐色。幼虫体色多变,有浅黄绿、灰绿、黑褐色,大发生时多显黑色;背中浅白色,边缘有细黑线,两侧各有2条极明显的浅色宽纵带,两纵带的边缘均饰白色细线。蛹褐色,长20mm,腹背5~7节各有一横排小点刻;尾刺3对,中间1对粗直,侧面2对细而弯曲。图3-68 植株被害(叶片缺刻,主脉残存)黏虫发生世代随地理纬度及海拔高度而异。冬季生活状态也不同,在北纬33°以北地区基本不能越冬,南岭以南冬季尚可为害。成虫具有迁飞习性,每年有规律地进行南北往返远距离迁飞,从而构成全国各发生区虫源的紧密衔接。根据发生特点,我国基本划分为5个发生区。①越冬代发生区:位于粤、桂、滇、闽及黔南地带,1年可发生5~6代。②1代发生区:位于长江及黄淮流域以及鲁南地带,1年可发生3~4代。③2代发生区:位于东北、华北、西北及西南等15省、市,1年发生2~3代。④3代发生区:位于东北三省、内蒙古、冀、鲁、晋及京津地区,1年发生2~3代。⑤晚秋世代发生区:主要为越冬代发生区的部分地区。图3-69 黏虫(不同龄期幼虫)图3-70 黏虫老龄幼虫(左:幼虫;右:头部放大)成虫喜食蜜露,羽化后需补充营养方可正常产卵繁殖。白天栖息在植株间,傍晚活动。成虫喜生长茂密的农田,将卵块产在叶尖及枯黄的叶片上,并分泌胶质物将卵裹住。每块卵10余粒至数百粒,每头雌虫可产1000~3000粒,卵期3~6天。幼虫期22~25天,初孵幼虫怕光,集聚在心叶内为害,3龄后食量大增,4~6龄为暴食期,食量占总量的90%以上。幼虫老熟后移至植株根部做土茧化蛹,蛹期9~11天。黏虫在气温19~23℃和相对湿度50%~80%时生存最适,30℃以上产卵量降低。在蛹羽化及卵盛孵期,雨水过多不利于其存活。图3-71 黏虫(左:成虫;右:蛹)1.农业措施防治 在越冬区,结合种植业结构调整,合理调整作物布局,减少小麦种植面积,压低越冬虫量,控制翌年的一代虫源。在北纬33°以南地区,秋季应结合作物的中耕,铲除杂草,控制3代黏虫,减少越冬虫源,降低第1代发生区的发生程度。在1~3代发生为害区,通过合理密植、加强田间水肥管理等,控制田间小气候,可降低卵的孵化率和幼虫存活率。2.诱杀防治 成虫发生期,田间插放杨树枝把或谷草把、放置糖醋盆诱杀成虫,压低田间卵和幼虫的发生密度。于成虫产卵期,在田间插放谷草把诱卵,定期集中烧毁处理,或人工采卵,降低田间虫口密度。3.化学防治 在幼虫3龄前及时防治,用20%灭幼脲1号胶悬剂或用25%灭幼脲3号悬浮剂喷雾;或用20%氰戊菊酯乳油、20%甲氰菊酯乳油、4.5%高效氯氰菊酯乳油、2.5%溴氰菊酯乳油和0.3%二氯苯醚菊酯(除虫精)粉等喷洒;或用2.5%溴氰菊酯(敌杀死)乳油25ml兑细沙1.5kg制成颗粒剂,用量1.5kg/亩,均匀撒施于植株新叶喇叭口中。4.生物防治 应用苏云金杆菌、黏虫核型多角体病毒等生物杀虫剂,防治效果较好。